|
[1]
|
Beckmann, C. F., & Smith, S. M. (2004). Probabilistic Independent Component Analysis for Functional Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 23, 137-152.[CrossRef]
|
|
[2]
|
Brdar, I. (2014). Positive and Negative Affect Schedule (PANAS). In Encyclopedia of Quality of Life and Well-Being Research. Berlin: Springer.[CrossRef]
|
|
[3]
|
Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis. Human Brain Mapping, 14, No. 3.[CrossRef] [PubMed]
|
|
[4]
|
Cuijpers, P., Koole, S. L., Van Dijke, A., Roca, M., Li, J., & Reynolds, C. F. (2014). Psychotherapy for Subclinical Depression: Meta-Analysis. British Journal of Psychiatry, 205, 268-274.[CrossRef] [PubMed]
|
|
[5]
|
Diener, C., Kuehner, C., Brusniak, W., Ubl, B., Wessa, M., & Flor, H. (2012). A Meta-Analysis of Neurofunctional Imaging Studies of Emotion and Cognition in Major Depression. NeuroImage, 61, 677-685.[CrossRef] [PubMed]
|
|
[6]
|
Friedrich, M. J. (2017). Depression Is the Leading Cause of Disability Around the World. JAMA, 317, 1517.[CrossRef] [PubMed]
|
|
[7]
|
Gao, C., Wenhua, L., Liu, Y., Ruan, X., Chen, X., Liu, L., & Jiang, X. (2016). Decreased Subcortical and Increased Cortical Degree Centrality in a Nonclinical College Student Sample with subclinical Depressive Symptoms: A Resting-State fMRI Study. Frontiers in Human Neuroscience, 10, 617.[CrossRef] [PubMed]
|
|
[8]
|
Gotlib, I. H., & Joormann, J. (2010). Cognition and Depression: Current Status and Future Directions. In Annual Review of Clinical Psychology, 6, 285-312.[CrossRef] [PubMed]
|
|
[9]
|
Guo, W., Liu, F., Zhang, J., Zhang, Z., Yu, L., Liu, J., Chen, H., & Xiao, C. (2014). Abnormal Default-Mode Network Homogeneity in First-Episode, Drug-Naive Major De-pressive Disorder. PLoS ONE, 9, e91102.[CrossRef] [PubMed]
|
|
[10]
|
He, H., Yu, Q., Du, Y., Vergara, V., Victor, T. A., Drevets, W. C., Savitz, J. B., Jiang, T., Sui, J., & Calhoun, V. D. (2016). Resting-State Functional Network Connectivity in Prefrontal Regions Differs between Unmedicated Patients with Bipolar and Major Depressive Disorders. Journal of Affective Dis-orders, 190, 483-493.[CrossRef] [PubMed]
|
|
[11]
|
Hwang, J. W., Egorova, N., Yang, X. Q., Zhang, W. Y., Chen, J., Yang, X. Y., Hu, L. J., Sun, S., Tu, Y., & Kong, J. (2015). Subthreshold Depression Is Associated with Impaired Restingstate Functional Connectivity of the Cognitive Control Network. Translational Psychiatry, 5, e683.[CrossRef] [PubMed]
|
|
[12]
|
Hwang, J. W., Xin, S. C., Ou, Y. M., Zhang, W. Y., Liang, Y. L., Chen, J., Yang, X. Q., Chen, X. Y., Guo, T. W., Yang, X. J., Ma, W. H., Li, J., Zhao, B. C., Tu, Y., & Kong, J. (2016). Enhanced Default Mode Network Connectivity with Ventral Striatum in Subthreshold Depression Individuals. Journal of Psychiatric Research, 76, 111-120.[CrossRef] [PubMed]
|
|
[13]
|
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D., & Pizzagalli, D. A. (2015). Large-Scale Network Dysfunction in Major Depressive Disorder: A Meta-Analysis of Resting-State Functional Connectivity. JAMA Psychiatry, 72, 603-611.[CrossRef] [PubMed]
|
|
[14]
|
Kaiser, R. H., Whitfield-Gabrieli, S., Dillon, D. G., Goer, F., Beltzer, M., Minkel, J., Smoski, M., Dichter, G., & Pizzagalli, D. A. (2016). Dynamic Resting-State Functional Connectivity in Major Depression. Neuropsychopharmacology, 41, 1822-1830.[CrossRef] [PubMed]
|
|
[15]
|
Koshiyama, D., Fukunaga, M., Okada, N., Morita, K., Nemoto, K., Usui, K., Yamamori, H., Yasuda, Y., Fujimoto, M., Kudo, N., Azechi, H., Watanabe, Y., Hashimoto, N., Narita, H., Kusumi, I., Ohi, K., Shimada, T., Kataoka, Y., Yamamoto, M. et al. (2020). White Matter Microstructural Alterations across Four Major Psychiatric Disorders: Mega-Analysis Study in 2937 Individuals. Molecular Psychiatry, 25, 883-895.[CrossRef] [PubMed]
|
|
[16]
|
Liu, F., Wang, Y., Li, M., Wang, W., Li, R., Zhang, Z., Lu, G., & Chen, H. (2017). Dynamic Functional Network Connectivity in Idiopathic Generalized Epilepsy with Generalized Ton-ic-Clonic Seizure. Human Brain Mapping, 38, No. 2.[CrossRef] [PubMed]
|
|
[17]
|
Malhi, G. S., Das, P., Outhred, T., Gessler, D., John Mann, J., & Bryant, R. (2019). Cognitive and Emotional Impairments Underpinning Suicidal Activity in Patients with Mood Disorders: An fMRI Study. Acta Psychiatrica Scandinavica, 139, No. 5.[CrossRef] [PubMed]
|
|
[18]
|
Manoliu, A., Meng, C., Brandl, F., Doll, A., Tahmasian, M., Scherr, M., Schwerthöffer, D., Zimmer, C., Förstl, H., Bäuml, J., Riedl, V., Wohlschläger, A. M., & Sorg, C. (2014). Insular Dysfunction within the Salience Network Is Associated with Severity of Symptoms and Aberrant Inter-Network Connectivity in Major Depressive Disorder. Frontiers in Human Neuroscience, 7, 930.[CrossRef] [PubMed]
|
|
[19]
|
Mulders, P. C., van Eijndhoven, P. F., Schene, A. H., Beckmann, C. F., & Tendolkar, I. (2015). Resting-State Functional Connectivity in Major Depressive Disorder: A Review. Neuroscience and Biobehavioral Reviews, 56, 330-344.[CrossRef] [PubMed]
|
|
[20]
|
Price, J. L., & Drevets, W. C. (2012). Neural Circuits Underlying the Pathophysiology of Mood Disorders. Trends in Cognitive Sciences, 16, 61-71.[CrossRef] [PubMed]
|
|
[21]
|
Raichle, M. E. (2015). The Brain’s Default Mode Network. Annual Review of Neuroscience, 15, 433-447.[CrossRef] [PubMed]
|
|
[22]
|
Rashid, B., Arbabshirani, M. R., Damaraju, E., Cetin, M. S., Miller, R., Pearlson, G. D., & Calhoun, V. D. (2016). Classification of Schizophrenia and Bipolar Patients Using Static and Dynamic Resting-State fMRI Brain Connectivity. NeuroImage, 134, 645-657.[CrossRef] [PubMed]
|
|
[23]
|
Rashid, B., Chen, J., Rashid, I., Damaraju, E., Liu, J., Miller, R., Agcaoglu, O., van Erp, T. G. M., Lim, K. O., Turner, J. A., Mathalon, D. H., Ford, J. M., Voyvodic, J., Mueller, B. A., Belger, A., McEwen, S., Potkin, S. G., Preda, A., Bustillo, J. R., et al. (2019). A Framework for Linking Resting-State Chronnectome/Genome Features in Schizophrenia: A Pilot Study. NeuroImage, 184, 843-854.[CrossRef] [PubMed]
|
|
[24]
|
Richter, P., Werner, J., Heerlein, A., Kraus, A., & Sauer, H. (1998). On the Validity of the Beck Depression Inventory. A Review. Psychopathology, 31, 160-168.[CrossRef] [PubMed]
|
|
[25]
|
Rucci, P., Gherardi, S., Tansella, M., Piccinelli, M., Berardi, D., Bisoffi, G., Corsino, M. A., & Pini, S. (2003). Subthreshold Psychiatric Disorders in Primary Care: Prevalence and Associated Cha-racteristics. Journal of Affective Disorders, 76, 171-181.[CrossRef]
|
|
[26]
|
Salman, M. S., Du, Y., Lin, D., Fu, Z., Fedorov, A., Damaraju, E., Sui, J., Chen, J., Mayer, A. R., Posse, S., Mathalon, D. H., Ford, J. M., Van Erp, T., & Calhoun, V. D. (2019). Group ICA for Identifying Biomarkers in Schizophrenia: “Adaptive” Networks via Spatially Constrained ICA Show More Sensitivity to Group Differences than Spatio-Temporal Regression. NeuroImage: Clinical, 22, 101747.[CrossRef] [PubMed]
|
|
[27]
|
Segal, D. L. (2010). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). In: The Corsini Encyclopedia of Psychology.[CrossRef]
|
|
[28]
|
Sexton, C. E., Allan, C. L., Le Masurier, M., McDermott, L. M., Kalu, U. G., Herrmann, L. L., Mäurer, M., Bradley, K. M., Mackay, C. E., & Ebmeier, K. P. (2012). Magnetic reson-ance imaging in late-life depression: Multimodal examination of network disruption. Archives of General Psychiatry, 69, 680-689.[CrossRef] [PubMed]
|
|
[29]
|
Szymkowicz, S. M., Woods, A. J., Dotson, V. M., Porges, E. C., Nissim, N. R., O’Shea, A., Cohen, R. A., & Ebner, N. C. (2019). Associations between Subclinical De-pressive Symptoms and Reduced Brain Volume in Middle-Aged to Older Adults. Aging and Mental Health, 23, 819-830.[CrossRef] [PubMed]
|
|
[30]
|
Tahmasebi, A. M., Abolmaesumi, P., Zheng, Z. Z., Munhall, K. G., & Johnsrude, I. S. (2009). Reducing Inter-Subject Anatomical Variation: Effect of Normalization Method on Sensitivity of Functional Magnetic Resonance Imaging Data Analysis in Auditory Cortex and the Superior Temporal Region. NeuroImage, 47, 1522-1531.[CrossRef] [PubMed]
|
|
[31]
|
Veer, I. M., Beckmann, C. F., van Tol, M. J., Ferrarini, L., Milles, J., Veltman, D. J., Aleman, A., van Buchem, M. A., van der Wee, N. J., & Rombouts, S. A. R. B. (2010). Whole Brain Resting-State Analysis Reveals Decreased Functional Connectivity in Major Depression. Frontiers in Systems Neu-roscience, 4, 41.[CrossRef] [PubMed]
|
|
[32]
|
Wang, L., Liu, Q., Shen, H., Li, H., & Hu, D. (2015). Large-Scale Functional Brain Network Changes in Taxi Drivers: Evidence from Resting-State fMRI. Human Brain Mapping, 36, No. 3.[CrossRef] [PubMed]
|
|
[33]
|
WHO ICD-10. (2016). International Statistical Classification of Diseases and Related Health Problems, 10th Revision (ICD-10). World Health Organization.
|
|
[34]
|
Yan, C. G., Chen, X., Li, L., Castellanos, F. X., Bai, T. J., Bo, Q. J., Cao, J., Chen, G. M., Chen, N. X., Chen, W., Cheng, C., Cheng, Y. Q., Cui, X. L., Duan, J., Fang, Y. R., Gong, Q. Y., Guo, W. Bin, Hou, Z. H., Hu, L. et al. (2019). Reduced Default Mode Network Functional Connectivity in Patients with Recurrent Major Depressive Disorder. Proceedings of the National Academy of Sciences of the United States of America, 116, 9078-9083.[CrossRef] [PubMed]
|
|
[35]
|
Yokoyama, S., Okamoto, Y., Takagaki, K., Okada, G., Takamura, M., Mori, A., Shiota, S., Ichikawa, N., Jinnin, R., & Yamawaki, S. (2018). Effects of Behavioral Activation on Default Mode Network Connectivity in Subthreshold Depression: A Preliminary Resting-State fMRI Study. Journal of Affective Disorders, 227, 156-163.[CrossRef] [PubMed]
|
|
[36]
|
Zhi, D., Calhoun, V. D., Lv, L., Ma, X., Ke, Q., Fu, Z., Du, Y., Yang, Y., Yang, X., Pan, M., Qi, S., Jiang, R., Yu, Q., & Sui, J. (2018). Aberrant Dynamic Functional Network Connectivity and Graph Properties in Major Depressive Disorder. Frontiers in Psychiatry, 9, 1-11.[CrossRef] [PubMed]
|