[1]
|
Rahmanifar, M.S., Hesari, H., Noori, A., Masoomi, M.Y., Morsali, A. and Mousavi, M.F. (2018) A Dual Ni/Co-MOF- Reduced Graphene Oxide Nanocomposite as a High Performance Supercapacitor Electrode Material. Electrochimica Acta, 275, 76-86. https://doi.org/10.1016/j.electacta.2018.04.130
|
[2]
|
Xie, M., Zhou, M., Zhang, Y., Du, C., Chen, J. and Wan, L. (2022) Freestanding Trimetallic Fe-Co-Ni Phosphide Nanosheet Arrays as an Advanced Electrode for High‐Performance Asymmetric Supercapacitors. Journal of Colloid and Interface Science, 608, 79-89. https://doi.org/10.1016/j.jcis.2021.09.159
|
[3]
|
Gao, X., Wang, P., Pan, Z., Claverie, J.P. and Wang, J. (2020) Re-cent Progress in Two‐Dimensional Layered Double Hydroxides and Their Derivatives for Supercapacitors. ChemSus-Chem, 13, 1226-1254.
https://doi.org/10.1002/cssc.201902753
|
[4]
|
Zhang, X., Lu, W., Tian, Y., Yang, S., Zhang, Q., Lei, D. and Zhao, Y. (2022) Nanosheet-Assembled NiCo-LDH Hollow Spheres as High-performance Electrodes for Supercapacitors. Journal of Colloid and Interface Science, 606, 1120-1127. https://doi.org/10.1016/j.jcis.2021.08.094
|
[5]
|
Wang, M., Feng, Y., Zhang, Y., Li, S., Wu, M., Xue, L. and Mi, J. (2022) Ion Regulation of Hollow Nickel Cobalt Layered Double Hydroxide Nanocages Derived from ZIF-67 for High-Performance Supercapacitors. Applied Surface Science, 596, Article ID: 153582. https://doi.org/10.1016/j.apsusc.2022.153582
|
[6]
|
Mukhiya, T., Tiwari, A.P., Chhetri, K., Kim, T., Dahal, B., Muthurasu, A. and Kim, H.Y. (2021) A Metal-Organic Framework Derived Cobalt Ox-ide/Nitrogen-Doped Carbon Nanotube Nanotentacles on Electrospun Carbon Nanofiber for Electrochemical Energy Storage. Chemical Engineering Journal, 420, Article ID: 129679.
https://doi.org/10.1016/j.cej.2021.129679
|
[7]
|
Liu, Y., Wang, Y., Shi, C., Chen, Y., Li, D., He, Z. and Ma, J. (2020) Co-ZIF Derived Porous NiCo-LDH Nanosheets/N Doped Carbon Foam for High-Performance Supercapacitor. Carbon, 165, 129-138.
https://doi.org/10.1016/j.carbon.2020.04.084
|
[8]
|
Li, L., Zhang, M., Zhang, X. and Zhang, Z. (2017) New Ti3C2 Aerogel as Promising Negative Electrode Materials for Asymmetric Supercapacitors. Journal of Power Sources, 364, 234-241. https://doi.org/10.1016/j.jpowsour.2017.08.029
|
[9]
|
Yang, Q., Liu, Y., Xiao, L., Yan, M., Bai, H., Zhu, F. and Shi, W. (2018) Self-Templated Transformation of MOFs Into Layered Double Hydroxide Nanoarrays with Selec-tively Formed Co9S8 for High-Performance Asymmetric Supercapacitors. Chemical Engineering Journal, 354, 716-726. https://doi.org/10.1016/j.cej.2018.08.091
|
[10]
|
Luo, W., Chen, W., Quan, H., Zhang, Z.X., Zeng, Y., Wang, Y. and Chen, D. (2022) Strongly Coupled Carbon Quantum Dots/NiCo-LDHs Nanosheets on Carbon Cloth as Electrode for High Performance Flexible Supercapacitors. Applied Surface Science, 591, Article ID: 153161. https://doi.org/10.1016/j.apsusc.2022.153161
|
[11]
|
Yao, J., Xu, D., Ma, X., Xiao, J., Zhang, M. and Gao, H. (2022) Trimetallic CoNiFe-Layered Double Hydroxides: Electronic Coupling Effect and Oxygen Vacancy for Boosting Water Splitting. Journal of Power Sources, 524, Article ID: 231068. https://doi.org/10.1016/j.jpowsour.2022.231068
|
[12]
|
He, Y., Zhang, X., Wang, J., Sui, Y., Qi, J., Chen, Z. and Liu, W. (2021) Constructing Co(OH)F Nanorods@ NiCo‐LDH Nanocages Derived from ZIF‐67 for High‐Performance Su-percapacitors. Advanced Materials Interfaces, 8, Article ID: 2100642. https://doi.org/10.1002/admi.202100642
|
[13]
|
Shi, C., Du, Y., Guo, L., Yang, J. and Wang, Y. (2022) Construction of Interconnected NiCo Layered Double Hydroxides/Metal-Organic Frameworks Hybrid Nanosheets for High-Performance Supercapacitor. Journal of Energy Storage, 48, Article ID: 103961. https://doi.org/10.1016/j.est.2022.103961
|
[14]
|
Li, X., Li, Z., Lu, L., Huang, L., Xiang, L., Shen, J. and Xiao, D.R. (2017) The Solvent Induced Inter‐Dimensional Phase Transformations of Cobalt Zeolitic‐Imidazolate Frameworks. Chemistry—A European Journal, 23, 10638-10643.
https://doi.org/10.1002/chem.201701721
|
[15]
|
Wang, G., Li, Y., Zhao, T. and Jin, Z. (2021) Phosphatized Mild-Prepared-NiCo LDHs Cabbage-Like Spheres Exhibit Excellent Performance as a Supercapacitor Electrode. New Journal of Chemistry, 45, 251-261.
https://doi.org/10.1039/D0NJ03070H
|
[16]
|
Ma, M., Cai, W., Chen, Y., Li, Y., Tan, F. and Zhou, J. (2021) Flow-er-Like NiMn-Layered Double Hydroxide Microspheres Coated on Biomass-Derived 3D Honeycomb Porous Carbon for High-Energy Hybrid Supercapacitors. Industrial Crops and Products, 166, Article ID: 113472. https://doi.org/10.1016/j.indcrop.2021.113472
|
[17]
|
Chen, Y., Guo, H., Yang, F., Wu, N., Zhang, J., Peng, L., et al. (2022) Ni@NC@NiCo-LDH Nanocomposites from a Sacrificed Template Ni@NC@ZIF-67 for High Performance Su-percapacitor. International Journal of Hydrogen Energy, 47, 29636-29647.
|
[18]
|
Du, Q., Su, L., Hou, L., Sun, G., Feng, M., Yin, X. and Gao, W. (2018) Rationally Designed Ultrathin Ni-Al Layered Double Hydroxide and Graphene Hetero-structure for High-Performance Asymmetric Supercapacitor. Journal of Alloys and Compounds, 740, 1051-1059. https://doi.org/10.1016/j.jallcom.2018.01.069
|
[19]
|
Zou, J., Xie, D., Xu, J., Song, X., Zeng, X., Wang, H. and Zhao, F. (2022) Rational Design of Honeycomb Ni-Co LDH/Graphene Composite for Remarkable Supercapacitor via Ultrafast Microwave Synthesis. Applied Surface Science, 571, Article ID: 151322. https://doi.org/10.1016/j.apsusc.2021.151322
|
[20]
|
Zang, Y., Luo, H., Zhang, H. and Xue, H. (2021) Polypyrrole Nanotube-Interconnected NiCo-LDH Nanocages Derived by ZIF-67 for Supercapacitors. ACS Applied Energy Materials, 4, 1189-1198. https://doi.org/10.1021/acsaem.0c02465
|