基于CT相关数据测量的术前规划在全髋关节置换中的临床应用
Clinical Application of Preoperative Planning Based on CT-Related Data Measurement in Total Hip Arthroplasty
DOI: 10.12677/acm.2024.14112866, PDF, HTML, XML,   
作者: 姜胜强, 张 杰:青岛大学青岛医学院,山东 青岛;金鹏宇, 孟 晔*:青岛市市立医院运动医学科,山东 青岛
关键词: 全髋关节置换CT术前规划Total Hip Arthroplasty CT Preoperative Planning
摘要: 目的:探讨基于CT相关数据测量的术前规划在全髋关节置换术中的临床应用。方法:收集2022年10月至2023年3月76例初次行单侧非骨水泥全髋关节置换患者进行回顾性分析,将其分为两组,研究组39例通过术前螺旋CT三维重建技术测量髋臼横径,髋臼前倾角、外展角,两侧髋关节旋转中心垂直差值,两侧偏心距差值,双下肢长度差值,股骨颈截面髓腔长径及股骨干峡部的最小髓腔内径数值行术前规划预测假体型号及其位置,对照组37例不进行CT术前规划。比较两组患者术后CT相关参数,手术相关指标(手术时间、术中出血量、术后引流量),术后1年髋关节Harris评分、VAS评分有无差异。结果:两组术前临床指标及一般资料不存在统计学差异(P > 0.05);两组术后双下肢长度差值、两侧旋转中心差值、两侧偏心距差值均小于术前,且研究组小于对照组(P < 0.05)。两组术后1年髋关节Harris评分均大于术前,且研究组大于对照组(P < 0.05)。研究组患者的手术时间、术中出血量、术后引流量均小于对照组(P < 0.05);两组术后1年VAS评分均小于术前(P < 0.05),但两组之间差异无统计学意义(P > 0.05)。结论:基于CT相关数据测量的术前规划对全髋关节置换术具有极大指导意义。
Abstract: Objective: To investigate the clinical application of preoperative planning based on CT-related data measurements in total hip arthroplasty (THA). Methods: A retrospective analysis was conducted on 76 patients who underwent unilateral non-cemented THA for the first time between October 2022 and March 2023. The patients were divided into two groups: the study group (n = 39) underwent preoperative planning, including measurements of acetabular transverse diameter, acetabular anteversion angle, abduction angle, vertical difference in rotational centers of both hips, difference in offset between hips, difference in bilateral limb lengths, femoral neck cross-section medullary canal length, and minimum medullary canal diameter at the femoral isthmus through spiral CT three-dimensional reconstruction technology to predict the prosthesis size and position; the control group (n = 37) did not undergo CT-based preoperative planning. The postoperative CT-related parameters, surgical indicators (operative time, intraoperative blood loss, postoperative drainage volume), and Harris hip score and VAS score at 1 year postoperatively were compared between the two groups. Results: There were no statistically significant differences in preoperative clinical indicators and general information between the two groups (P > 0.05). Postoperatively, the differences in bilateral limb lengths, rotational center values, and offsets were all reduced compared to preoperative values, and these reductions were more pronounced in the study group compared to the control group (P < 0.05). The Harris hip scores at 1 year postoperatively were significantly higher than preoperative scores in both groups, with higher scores observed in the study group compared to the control group (P < 0.05). The study group had shorter operative times, lower intraoperative blood loss, and reduced postoperative drainage volumes compared to the control group (P < 0.05). The VAS scores at 1 year postoperatively were lower than preoperative scores in both groups (P < 0.05), but there was no statistically significant difference between the two groups (P > 0.05). Conclusion: Preoperative planning based on CT-related data measurements provides significant guidance for THA.
文章引用:姜胜强, 张杰, 金鹏宇, 孟晔. 基于CT相关数据测量的术前规划在全髋关节置换中的临床应用[J]. 临床医学进展, 2024, 14(11): 211-220. https://doi.org/10.12677/acm.2024.14112866

1. 引言

全髋关节置换术(Total Hip Arthroplasty, THA)作为一种治疗严重髋关节疾病的有效手段,对重度髋关节骨关节炎、晚期股骨头坏死、股骨颈骨折以及发育性髋关节发育不良(DDH)等病症效果显著。此手术旨在缓解患者髋关节的剧烈疼痛,显著提升髋关节的活动功能,并从根本上改善患者的生活质量[1]-[3]。术后植入的假体通常具有18~20年的使用寿命。植入假体的安装位置和匹配程度不佳、假体的磨损以及假体间的撞击,会导致假体关节松动、脱位、肢体缩短及疼痛等并发症,其并发症的发生率在10%左右[4]-[7]。因此,应术前做好充分准备和规划,选择适宜的假体,精准定位假体植入位置,以尽可能地恢复人体正常的解剖学和生物力学结构。而多层螺旋CT可避免X线放大率等因素的影响,更好地在术前反映出髋臼及股骨的解剖结构,从而指导假体的准确安放[8]-[10]。而目前的计算机导航技术(computer-assisted orthopedic surgery, CAOS)早期投入昂贵,操作复杂,不适合大部分医院使用。AI人工智能规划需单独上传相关数据,耗费时间,且只能用于某些特定假体的规划,假体的选择较少,基层医院普及率并不高。本文通过对比有无CT术前规划的THA治疗效果,从而分析基于CT相关数据测量的术前规划对THA的影响及指导意义。

2. 资料与方法

2.1. 一般资料及术前临床指标

回顾性分析青岛市市立医院2022年10月~2023年3月需行单侧非骨水泥全髋关节置换患者的临床病例资料。其中,未行术前规划患者37例设为对照组,行CT术前规划患者39例设为研究组。对照组男性19例,女性18例;年龄52~70岁,平均(59.1 ± 6.6)岁,其中股骨头坏死18例、股骨颈骨折14例、先天性髋关节发育不良5例。研究组男性21例,女性18例;年龄在48~70岁,平均(60.2 ± 6.1)岁,其中股骨头坏死23例、股骨颈骨折13例、先天性髋关节发育不良3例。两组资料对比,差异无统计学意义(P > 0.05),见表1

2.2. 病例纳入与排除标准

2.2.1. 纳入标准

1) 患有髋关节骨性关节炎、股骨头坏死、股骨颈骨折、发育性髋关节发育不良且初次行非骨水泥全髋关节置换术的患者;2) 美国麻醉师协会(American Society of Anesthesiologist, ASA)分级小于Ⅲ级。

2.2.2. 排除标准

1) 不符合上述标准的患者;2) 骨肿瘤、化脓性髋关节炎、骨髓炎、髋关节结核、病理性骨折患者;3) 既往有髋关节手术史;4) 有出血性、溶血性病史患者;5) 患有严重的心、肝、肾、肺功能不全的患者、下肢静脉血栓患者;6) 交流困难或无法配合;7) 患有重大神经和精神系统疾病;8) 资料缺失或随访缺失患者。

Table 1. Comparison of general information and preoperative clinical indicators between the two groups

1. 两组患者一般资料及术前临床指标对比

指标

研究组(n = 39)

对照组(n = 37)

t/χ2

P

年龄(岁, x ¯ ±s )

60.2 ± 6.1

59.1 ± 6.6

0.733

0.466

性别

0.047

0.828

21

19

18

18

类型

1.095

0.578

股骨头坏死

23

18

股骨颈骨折

13

14

先天性髋关节

发育不良

3

5

方法

对照组术前行双侧髋关节CT扫描,测量其双下肢长度差值、两侧偏心距差值、两侧髋关节旋转中心垂直差值。

研究组即CT三维重建测量法患者,术前行双侧髋关节的螺旋CT扫描。通过螺旋CT的三维重建得到立体及断层图像,测量其髋臼横径,健侧髋臼前倾角、外展角,两侧髋关节旋转中心垂直差值,两侧偏心距差值,双下肢长度差值,患侧股骨颈截面髓腔长径、股骨干峡部的最小髓腔内径预测假体的型号及位置。

全部患者术后1月复查时均行CT检查进行相关参数测量。

2.3.1. 手术方法

全部患者经腰硬联合麻醉后,被置于健侧卧位。利用骨盆固定托固定耻骨联合及骶骨,同时前后托板分别置于胸骨及肩胛骨处,确保患者躯体稳定,并且骨盆保持垂直于床面的姿态。此手术均由同一组经验丰富的医师团队共同完成,统一采用后外侧入路方式,切口长度精确控制在13 cm至15 cm之间。手术过程中,钝性分离臀大肌,随后通过内旋股骨,使短外旋肌群处于紧张状态,以便在紧贴股骨止点处精确地切除这些外旋短肌群。整个手术流程严格遵循医学规范,以确保手术效果和患者的安全。十字切开关节囊,暴露髋臼。术者采用髋臼切记解剖标记及定位针确认髋臼前倾角和外展角,预先在髋臼上打入定位针,根据导向杆与人体纵轴的角度调整髋臼外展角与前倾角。

对照组按照术者经验以及术中情况以传统方式使用髋臼锉由小到大以外展45˚前倾15˚角度打磨髋臼软骨面,选择合适髋臼假体及内衬。研究组根据术前制定的计划,精确地对股骨颈进行截骨,切除关节囊及部分髋臼横韧带,去除髋臼周围多余的骨赘,依据术前规划中的髋臼假体位置,先磨锉髋臼顶部,从较小号开始磨锉,逐步递增至术前规划的髋臼假体型号,同时严格保持髋臼前倾角与术前规划一致,随后安装髋臼试模,评估其适配程度,从而确定使用的髋臼假体型号,然后挫磨股骨近端髓腔直至术前测量的型号,同时根据术前规划中确定的股骨髓腔形态选择假体,并评估股骨侧假体的匹配度。

完成上述操作后进行复位,并检查股骨颈长度是否适配,据此选取并植入合适的股骨颈假体,复位完成后,对髋关节各向稳定性进行全面评估。对手术区域进行彻底冲洗、确保止血完全、并放置引流管以助于术后引流,最后逐层关闭切口,确保整个手术过程严格遵循医学规范。随后透视髋关节正位及侧位,触摸足背动脉搏动情况,若情况良好在麻醉师和手术医师陪同下送往麻醉恢复室。

2.3.2. 术后处理及康复

手术后回到病房,将患侧下肢垫高并在患者两腿中间放一枕头将髋关节置于外展外旋位予以心电监护。常规给予补液、抗凝、抗生素抗感染、镇痛等治疗。复查血常规,肝肾功、凝血常规等实验室检查。术后第1天,患者应开始进行足踝的主动功能锻炼以及股四头肌的等长收缩活动以增强其下肢肌力及防止下肢静脉血栓形成。术后48 h拔出伤口引流管。拔出引流管后可拄拐下地部分负重行走,但需注意患侧髋关节屈曲不超过60˚。术后8周内患者应继续拄拐保护部分负重行走,以确保髋关节逐步适应日常活动。术后8周后根据患者自身情况可逐渐去拐,开始完全负重活动并继续进行肌肉训练,增强股四头肌肌力以提高下肢稳定性。

2.4. 评价指标

记录两组患者的手术相关指标。记录两组术前术后双下肢长度差值、髋关节旋转中心差值、偏心距差值、Harris评分、VAS评分。

2.5. 统计学方法

采用SPSS22.0统计软件进行数据分析。计量资料用 x ¯ ±s 表示,采用t检验评估是否存在统计学差异;计数资料采用卡方检验评估是否存在统计学差异。P < 0.05为差异有统计学意义。

3. 结果

3.1. 手术相关指标及评分比较

所有患者手术均顺利完成,且均无术后并发症。研究组的手术时间,术中出血量及术后引流量均低于对照组,差异有统计学意义(P < 0.05)。

两组患者术前Harris评分、VAS评分差异无统计学意义(P > 0.05)。两组患者术后Harris评分均较术前有所提升,差异有统计学意义(P < 0.05),但研究组术后Harris评分提升更显著,且大于对照组,差异有统计学意义(P < 0.05)。两组术后VAS评分均小于术前,差异有统计学意义(P < 0.05),但两组比较差异无统计学意义(P > 0.05)。见表2

Table 2. Comparison of surgical-related indicators and scores between the two groups

2. 两组手术相关指标及评分比较

指标

研究组(n = 39)

对照组(n = 37)

t

P

手术时间(min, x ¯ ±s )

60.0 ± 5.8

84.2 ± 7.2

−16.318

0.000

术中出血量(mL, x ¯ ±s )

241.8 ± 17.1

315 ± 33.5

−12.166

0.000

术后24 h引流量(mL, x ¯ ±s )

236.7 ± 12.5

285.6 ± 26.0

−10.551

0.000

术后48 h引流量(mL, x ¯ ±s )

53.8 ± 2.1

61.7 ± 2.7

−14.459

0.000

Harris评分(分, x ¯ ±s )

术前

44.9 ± 4.1

44.1 ± 2.7

1.020

0.311

术后

86.8 ± 1.5*

80.1 ± 3.6*

10.651

0.001

VAS评分(分, x ¯ ±s )

术前

4.49 ± 1.0

4.24 ± 0.8

1.216

0.228

术后

1.1 ± 0.4*

1.0 ± 0.5*

0.750

0.455

*P < 0.05,与术前比较。

3.2. CT相关参数比较

术前双下肢长度差值、偏心距差值、髋关节旋转中心差值两组之间差异无统计学意义(P > 0.05)。两组患者术后双下肢长度差值、偏心距差值、髋关节旋转中心差值较术前均有所减小,差异有统计学意义(P < 0.05),且研究组患者术后双下肢长度差值、偏心距差值、髋关节旋转中心差值小于对照组,差异有统计学意义(P < 0.05)。见表3

Table 3. Comparison of CT-related parameters between the two groups

3. 两组CT相关参数比较

指标

研究组

对照组

t

P

双下肢长度差值(mm, x ¯ ±s )

术前

12.9 ± 1.1

13.0 ± 1.7

−0.289

0.773

术后

3.0 ± 0.7*

11.3 ± 1.5*

−30.765

0.000

偏心距差(mm, x ¯ ±s )

术前

6.2 ± 1.8

6.1 ± 0.5

0.391

0.697

术后

2.2 ± 0.7*

4.7 ± 0.7*

−15.634

0.000

髋关节旋转中心差(mm, x ¯ ±s )

术前

7.1 ± 1.2

7.0 ± 0.3

0.890

0.377

术后

2.2 ± 0.6*

5.4 ± 0.8*

−20.205

0.000

*P < 0.05,与术前比较。

3.3. 研究组相关参数

其相关数据具体见表4。研究组术前规划及术后见图1图2

Table 4. Parameters related to the study group

4. 研究组相关参数

指标

数值

健侧髋臼外展角

(46.1 ± 2.2)˚

健侧髋臼前倾角

(13.1 ± 2.7)˚

患侧髋臼横径

(52.6 ± 2.8) mm

术前双下肢长度差值

(12.9 ± 1.1) mm

术前髋关节旋转中心差值

(7.1 ± 1.2) mm

术前偏心距差值

(6.2 ± 1.8) mm

患侧股骨颈截面髓腔长径

(24.2 ± 2.1) mm

患侧股骨干峡部的最小髓腔内径

(12.1 ± 1.4) mm

Figure 1. The patient in the study group is 59 years old with left femoral head necrosis. Relevant parameters include: A: Anterior inclination angle of the healthy acetabulum (∠A); B: Abduction angle of the healthy acetabulum (∠B); C: Difference in femoral offset between the two sides (|OQ-oq|) and difference in the centers of rotation of the hip joints on both sides (oE); D: Minimum diameter of the medullary canal at the isthmus of the femoral shaft (AB); E: Transverse diameter of the affected acetabulum (CD); F: Long diameter of the medullary canal in the cross-section of the affected femoral neck (EF)

1. 研究组患者59岁,左侧股骨头坏死。A:健侧髋臼前倾角(∠A);B:健侧髋臼外展角(∠B);C:两侧偏心距差值(|OQ-oq|)两侧髋关节旋转中心差值(oE);D:股骨干峡部的最小髓腔内径(AB);E:患侧髋臼横径(CD);F:患侧股骨颈截面髓腔长径(EF)

Figure 2. A, B: Postoperative fluoroscopy findings of the patient; C: Preoperative comparison of both lower limbs of the patient; D, E: Postoperative comparison of both lower limbs of the patient

2. A、B:患者术后透视所见;C:患者术前双下肢对比;D、E:患者术后双下肢对比

4. 讨论

全髋关节置换术成功的关键在于植入假体安装的位置及匹配程度,以获得稳定、功能良好的髋关节。测量相关参数,预测假体型号及位置、股骨颈截骨高度、髋臼磨锉深度等详细的术前规划,可以减少术中试模、测量时间及并发症,从而延长假体使用寿命[11] [12]。因此,THA术前规划是患者获得良好预后的重要步骤[13] [14]。近年来行THA手术的老年患者增多,由于其身体状况及手术耐受度较差,因此基于快速康复外科(Enhanced recovery after surgery, ERAS)理念,做好充分的术前规划,减少术中对患者的创伤及手术时间,更有利于老年患者的快速康复[15]

本研究结果显示,研究组手术时间(60.0 ± 5.8) min、出血量(241.8 ± 17.1) mL、术后24 h引流量(236.7 ± 12.5) mL,48 h引流量(53.8 ± 2.1) mL对比不进行CT术前规划的对照组手术时间(84.2 ± 7.2) min、出血量(315 ± 33.5) mL、术后24 h引流量(61.7 ± 2.7) mL,48 h引流量(61.7 ± 2.7) mL大大减少(P < 0.05)。通过文献得知,髋臼外展角、前倾角反映了髋臼与股骨头的关系,与髋关节关节炎及植入假体的磨损、松动脱位等并发症密切相关[16] [17]。Lewinnek [18]等在报道中指出髋臼前倾角安全范围为5˚~25˚,外展角为30˚~50˚,在这个范围内的假体的脱位率为1.5%,在这个范围以外脱位率为6.1%。Widmer和Zurfluh [19]在研究中提出髋臼外展角为40˚~45˚,前倾角为20˚~28˚时髋关节最稳定。若髋臼前倾角和外展过小,其髋臼后方股骨覆盖率偏低,则髋关节在屈曲时容易发生后方脱位,而髋臼外展角和前倾角过大时,股骨前外侧覆盖率过低,股骨头更容易发生外侧脱位,因此适宜的髋臼外展角、前倾角有助于较少术后并发症的发生。笔者通过术中利用髋臼切记解剖标记及定位针调整髋臼外展角及前倾角,准确定位假体位置。假体与骨组织之间良好的匹配是骨长入多孔表面的先决条件,关键在于控制其股骨假体表面与骨面的接触缝隙,确保小于1 mm且保证假体微动幅度在20 um以下,这样才能促进假体与周围骨组织紧密结合[20]。因此匹配良好的股骨假体对于维持其长期稳定性有着至关重要的作用[21]。同时CT三维重建可清楚显示出股骨髓腔形态,可进一步提高其假体匹配程度。本研究通过术前髋关节CT三维重建,准确测量出患者的髋臼横径、外展角、前倾角,股骨颈截面髓腔长径及股骨干峡部最小髓腔内径等信息,从而对假体的位置及大小进行规划,缩短了手术过程中过多的磨锉及试模,从而减少了手术过程过多操作及手术操作时间。出血量及术后引流量也随着对患者创伤的减少而减少。

既往研究显示,由于X线仅能提供一个平面及受放大率等因素的影响,术者无法全面而准确地获得髋臼及股骨的解剖结构[8] [22]-[25]。在Viceconti [26]实验中利用X线片与厂家提供的模板进行对比预测假体型号,其假体优秀率在34.5%。这主要是由于股骨髓腔的异常旋转会使X线片显示的股骨髓腔形态产生差异[27]。从而致使假体匹配度及安放位置产生较大偏差。

本研究结果显示研究组术后1年Harris评分(86.8 ± 1.5)分对比对照组Harri评分(80.1 ± 3.6)分,差异有统计学意义(P < 0.05),研究组VAS评分(1.1 ± 0.4)对比对照组VAS评分(1.0 ± 0.5)分,差异无统计学意义(P > 0.05)。Harris评分是目前评估髋关节功能的常用评分量表,该量表从疼痛、功能、关节活动度、肢体畸形四个方面对髋关节功能进行全面的评估。VAS评分即视觉模拟评分,根据患者的主观感受评估其疼痛强度。两组患者术后疼痛均得到较大缓解,但研究组术前通过CT精确测量其髋臼及股骨的相关参数,进行术前规划,预测假体的型号及位置,减少术中出血时间及术中对髋臼及股骨的伤害,从而使其髋关节功能得到更大改善。

研究组术后偏心距差值、髋关节旋转中心差值及双下肢长度差值较术前均减小,差异有统计学意义(P < 0.05)。且与对照组相比较,研究组术后偏心距差值、髋关节旋转中心差值及双下肢长度差值更小,差异有统计学意义(P < 0.05)。反映出CT术前规划对髋关节旋转中心和偏心距的重建具有更好的指导意义。既往研究显示,股骨偏心距的重建是全髋关节置换术获得良好功能的重要因素[28]-[31],有助于恢复外展肌力,减轻假体的磨损、松动及髋关节的退行性变,有利于髋关节的稳定性。此外,股骨偏心距与股骨应力传导有着密切关系,对股骨近端骨折有着重要影响[32]。髋关节的稳定性还受髋关节旋转中心的影响[33]。若旋转中心向内上移,则会出现患肢短缩畸形,臀中肌无力,假体磨损。旋转中心向外下移时,则会增加外展肌力,增加肌肉挛缩屈曲畸形的可能性,过度牵拉坐骨神经,可致坐骨神经损伤,出现腰痛等并发症[34]。当其并发症发生时,通常对患肢进行制动,以尽可能减少假体间的活动并进行康复治疗来缓解症状。双下肢不等长为THA术后常见的并发症之一,一般认为大于1 cm视为不等长,1 cm以内一般不会引起不良后果。当双下肢长度差值 > 2 cm,可出现疼痛、跛行等并发症。本研究中研究组术后双下肢长度差值均在1 cm以内,总体优于对照组。

本研究病例数量较少,随访时间较短,未对年龄进行分组分别进行研究比较,可能会出现偏移,影响研究结果。下一步将加大样本量,结合前瞻性研究。

5. 结论

综上所述,基于CT相关数据测量的术前规划在全髋关节置换术中假体的匹配度及位置、髋关节旋转中心及偏心距的重建等具有更好的临床指导价值。

NOTES

*通讯作者。

参考文献

[1] Iguchi, T., Kurihara, A., Nakayama, J., Sato, K., Kurosaka, M. and Yamasaki, K. (2000) Minimum 10-Year Outcome of Decompressive Laminectomy for Degenerative Lumbar Spinal Stenosis. Spine, 25, 1754-1759.
https://doi.org/10.1097/00007632-200007150-00003
[2] 邓昶, 李盛华, 周明旺. SuperPATH入路微创全髋关节置换术的研究进展[J]. 中国微创外科杂志, 2018, 18(2): 169-172.
[3] 丁冉, 王淇, 刘烨, 等. 人工智能三维术前规划在全髋关节置换术中的应用和准确性分析[J]. 生物骨科材料与临床研究, 2022, 19(2): 33-38.
[4] Sculco, P.K., Cottino, U., Abdel, M.P. and Sierra, R.J. (2016) Avoiding Hip Instability and Limb Length Discrepancy after Total Hip Arthroplasty. Orthopedic Clinics of North America, 47, 327-334.
https://doi.org/10.1016/j.ocl.2015.09.006
[5] Licini, D.J., Burnikel, D.J., Meneghini, R.M. and Ochsner, J.L. (2013) Comparison of Limb-Length Discrepancy after THA: With and without Computer Navigation. Orthopedics, 36, e543-e547.
https://doi.org/10.3928/01477447-20130426-13
[6] Sato, T., Nakashima, Y., Akiyama, M., Yamamoto, T., Mawatari, T., Itokawa, T., et al. (2012) Wear Resistant Performance of Highly Cross‐linked and Annealed Ultra‐high Molecular Weight Polyethylene against Ceramic Heads in Total Hip Arthroplasty. Journal of Orthopaedic Research, 30, 2031-2037.
https://doi.org/10.1002/jor.22148
[7] Hernigou, P., Ratte, L., Roubineau, F., Pariat, J., Mirouse, G., Guissou, I., et al. (2013) The Risk of Dislocation after Total Hip Arthroplasty for Fractures Is Decreased with Retentive Cups. International Orthopaedics, 37, 1219-1223.
https://doi.org/10.1007/s00264-013-1911-8
[8] 徐征宇, 杜俊炜, 姜瑶, 等. 全髋关节置换术术前模板测量与规划研究进展[J]. 中华关节外科杂志(电子版), 2021, 15(1): 83-91.
[9] Rubin, P., Leyvraz, P., Aubaniac, J., Argenson, J., Esteve, P. and de Roguin, B. (1992) The Morphology of the Proximal Femur. A Three-Dimensional Radiographic Analysis. The Journal of Bone and Joint Surgery. British volume, 74, 28-32.
https://doi.org/10.1302/0301-620x.74b1.1732260
[10] 李毅中, 李建龙, 林金矿, 等. 股骨近段CT扫描与全髋关节置换的术前计划[J]. 中国组织工程研究与临床康复, 2011, 15(9): 1536-1540.
[11] Tseng, T., Chen, Y., Yeh, Y., Kuo, C., Fan, T. and Lin, Y. (2022) Automatic Prosthetic‐Parameter Estimation from Anteroposterior Pelvic Radiographs after Total Hip Arthroplasty Using Deep Learning‐Based Keypoint Detection. The International Journal of Medical Robotics and Computer Assisted Surgery, 18, e2394.
https://doi.org/10.1002/rcs.2394
[12] Lazic, I., Hinterwimmer, F., Langer, S., Pohlig, F., Suren, C., Seidl, F., et al. (2022) Prediction of Complications and Surgery Duration in Primary Total Hip Arthroplasty Using Machine Learning: The Necessity of Modified Algorithms and Specific Data. Journal of Clinical Medicine, 11, Article 2147.
https://doi.org/10.3390/jcm11082147
[13] Bono, J.V. (2004) Digital Templating in Total Hip Arthroplasty. The Journal of Bone & Joint Surgery, 86, 118-122.
https://doi.org/10.2106/00004623-200412002-00016
[14] Eggli, S., Pisan, M. and Müller, M.E. (1998) The Value of Preoperative Planning for Total Hip Arthroplasty. The Journal of Bone and Joint Surgery British Volume, 80, 382-390.
https://doi.org/10.1302/0301-620x.80b3.0800382
[15] 欧阳鹏辉, 黄宇, 刘文辉, 等. 快速康复外科理念在老年患者全髋关节置换术中的应用效果探讨[J]. 中国临床新医学, 2020, 13(3): 244-249.
[16] Lazennec, J., Boyer, P., Gorin, M., Catonné, Y. and Rousseau, M.A. (2011) Acetabular Anteversion with CT in Supine, Simulated Standing, and Sitting Positions in a THA Patient Population. Clinical Orthopaedics & Related Research, 469, 1103-1109.
https://doi.org/10.1007/s11999-010-1732-7
[17] Marchetti, E., Krantz, N., Berton, C., Bocquet, D., Fouilleron, N., Migaud, H., et al. (2011) Component Impingement in Total Hip Arthroplasty: Frequency and Risk Factors. A Continuous Retrieval Analysis Series of 416 Cup. Orthopaedics & Traumatology: Surgery & Research, 97, 127-133.
https://doi.org/10.1016/j.otsr.2010.12.004
[18] Lewinnek, G.E., Lewis, J.L., Tarr, R., Compere, C.L. and Zimmerman, J.R. (1978) Dislocations after Total Hip-Replacement Arthroplasties. The Journal of Bone & Joint Surgery, 60, 217-220.
https://doi.org/10.2106/00004623-197860020-00014
[19] Widmer, K. and Zurfluh, B. (2004) Compliant Positioning of Total Hip Components for Optimal Range of Motion. Journal of Orthopaedic Research, 22, 815-821.
https://doi.org/10.1016/j.orthres.2003.11.001
[20] De Thomasson, E., Mazel, C., Guingand, O., et al. (2002) Value of Preoperative Planning in Total Hip Arthroplasty. Revue de Chirurgie Orthopedique et Reparatrice de lAppareil Moteur, 88, 229-235.
[21] Crooijmans, H.J.A., Laumen, A.M.R.P., van Pul, C. and van Mourik, J.B.A. (2008) A New Digital Preoperative Planning Method for Total Hip Arthroplasties. Clinical Orthopaedics and Related Research, 467, 909-916.
https://doi.org/10.1007/s11999-008-0486-y
[22] 霍佳邦, 赵畅, 黄广鑫, 等. CT数据三维规划预测全髋关节置换假体型号及截骨的准确性与可复性[J]. 中国组织工程研究, 2021, 25(27): 4294-4299.
[23] White, S., Bainbridge, J. and Smith, E. (2008) Assessment of Magnification of Digital Pelvic Radiographs in Total Hip Arthroplasty Using Templating Software. The Annals of The Royal College of Surgeons of England, 90, 592-596.
https://doi.org/10.1308/003588408x318101
[24] Shichman, I., Factor, S., Shaked, O., Morgan, S., Amzallag, N., Gold, A., et al. (2020) Effects of Surgeon Experience and Patient Characteristics on Accuracy of Digital Pre-Operative Planning in Total Hip Arthroplasty. International Orthopaedics, 44, 1951-1956.
https://doi.org/10.1007/s00264-020-04733-4
[25] Olmedo-Garcia, N.I., Martínez Vergara, J.L., Aparici Miralles, T.L., Sánchez Andrés, J.V., Mesado Vives, A., Cruz Renovell, E., et al. (2018) Assessment of Magnification of Digital Radiographs in Total HIP Arthroplasty. Journal of Orthopaedics, 15, 931-934.
https://doi.org/10.1016/j.jor.2018.08.024
[26] Viceconti, M., Lattanzi, R., Antonietti, B., Paderni, S., Olmi, R., Sudanese, A., et al. (2003) CT-Based Surgical Planning Software Improves the Accuracy of Total Hip Replacement Preoperative Planning. Medical Engineering & Physics, 25, 371-377.
https://doi.org/10.1016/s1350-4533(03)00018-3
[27] 李毅中, 李建龙, 林金矿, 等. 股骨峡部在非骨水泥型全髋关节置换中的作用[J]. 中国组织工程研究与临床康复, 2010, 14(9): 1586-1590.
[28] Malhotra, R., Kannan, A., Kancherla, R., Khatri, D. and Kumar, V. (2012) Femoral Head-Neck Offset in the Indian Population: A CT Based Study. Indian Journal of Orthopaedics, 46, 212-215.
https://doi.org/10.4103/0019-5413.93681
[29] Woolson, S.T., Hartford, J.M. and Sawyer, A. (1999) Results of a Method of Leg-Length Equalization for Patients Undergoing Primary Total Hip Replacement. The Journal of Arthroplasty, 14, 159-164.
https://doi.org/10.1016/s0883-5403(99)90119-5
[30] Mahmood, S.S., Mukka, S.S., Crnalic, S., Wretenberg, P. and Sayed-Noor, A.S. (2015) Association between Changes in Global Femoral Offset after Total Hip Arthroplasty and Function, Quality of Life, and Abductor Muscle Strength. Acta Orthopaedica, 87, 36-41.
https://doi.org/10.3109/17453674.2015.1091955
[31] Sariali, E., Klouche, S., Mouttet, A. and Pascal-Moussellard, H. (2014) The Effect of Femoral Offset Modification on Gait after Total Hip Arthroplasty. Acta Orthopaedica, 85, 123-127.
https://doi.org/10.3109/17453674.2014.889980
[32] Ferris, B., Kennedy, C., Bhamra, M. and Muirhead-Allwood, W. (1989) Morphology of the Femur in Proximal Femoral Fractures. The Journal of Bone and Joint Surgery British Volume, 71, 475-477.
https://doi.org/10.1302/0301-620x.71b3.2722943
[33] 张翀, 郭开今, 辛兵, 等. 全髋关节置换术髋臼旋转中心的回顾性研究[J]. 中国矫形外科杂志, 2006, 14(18): 1391-1392.
[34] Johnston, R.C., Brand, R.A. and Crowninshield, R.D. (1979) Reconstruction of the Hip. A Mathematical Approach to Determine Optimum Geometric Relationships. The Journal of Bone & Joint Surgery, 61, 639-652.
https://doi.org/10.2106/00004623-197961050-00001