急性心肌梗死合并心源性休克相关预后模型研究进展
Progress in Prognostic Model Research for Acute Myocardial Infarction Complicated by Cardiogenic Shock
摘要: 急性心肌梗死(Acute Myocardial Infarction, AMI)是由于冠状动脉粥样硬化、血栓形成、冠状动脉痉挛等原因导致的局部心肌细胞坏死和心脏收缩功能下降的疾病,是心血管疾病中的一种常见严重疾病。尽管近年来,随着早期血运重建的使用,AMI的治疗已经取得较大进展,但其死亡率仍较高不下,其中,AMI并发心源性休克(Cardiogenic Shock, CS)是导致患者死亡的一个主要原因。因此,早期对AMI合并CS患者进行准确的危险程度评估及风险分层显得尤为关键。目前,已有多种评分系统用于预测AMI合并CS患者的预后,本文旨在综述与AMI合并CS相关的预后模型,以期为临床决策提供更为科学的依据。
Abstract: Acute Myocardial Infarction (AMI) is a disease characterized by localized necrosis of cardiac myocytes and a decrease in cardiac contractile function due to atherosclerosis of the coronary arteries, thrombosis formation, coronary artery spasm, and other causes. It represents a common and serious condition within the spectrum of cardiovascular diseases. Despite significant advancements in the treatment of AMI in recent years, especially with the advent of early revascularization, mortality rates remain high. A major contributor to patient mortality is the development of cardiogenic shock (CS) as a complication of AMI. Therefore, early and accurate risk assessment and stratification of patients with AMI complicated by CS is crucial. Currently, several scoring systems are available to predict the prognosis of patients with AMI complicated by CS. This article aims to review prognostic models related to AMI with concurrent CS, in order to provide a more scientific basis for clinical decision-making.
文章引用:姬红梅, 王甲莉. 急性心肌梗死合并心源性休克相关预后模型研究进展[J]. 临床医学进展, 2024, 14(6): 1120-1126. https://doi.org/10.12677/acm.2024.1461887

1. 前言

急性心肌梗死(Acute Myocardial Infarction, AMI)是由于冠状动脉粥样硬化、血栓形成、冠状动脉痉挛等原因导致的局部心肌细胞坏死和心脏收缩功能下降的疾病,是心血管疾病中的一种常见严重疾病[1]。尽管近年来,随着早期血运重建的使用,AMI的治疗已经取得较大进展,但其死亡率仍较高不下,其中AMI并发心源性休克(Cardiogenic Shock, CS)是导致患者死亡的一个主要原因,据统计,约有5%~15%的AMI患者会出现CS [2],占全部CS死亡患者的80%左右[3]。随着医疗水平的提高,先进的生命支持(如机械通气和机械循环辅助设备)使CS患者的死亡率有所下降,但CS仍然是世界范围内导致患者死亡主要原因[2] [4],在过去二十年中,其死亡率保持在40%~70% [5] [6]。除了高死亡率外,CS患者的重症监护病房(Intensive Care Unit, ICU)住院花费也在增加,ICU患者的花费比非ICU患者高2.5倍[7],医疗成本的增加给有限的医疗资源带来了挑战。

在临床实践中,AMI合并CS患者的病情严重程度及临床结局存在显著差异,其死亡率的异质性主要由患者的临床特征所决定[8]。因此,早期对患者进行准确的危险程度评估及风险分层显得尤为关键[9]。通过精准的风险评估,能够及时识别出高风险患者,这对于指导临床决策、提升患者生存率具有至关重要的作用[10]。鉴于此,开发并验证高效的评分系统以预测心源性休克患者的预后,对于指导临床治疗决策及改善患者预后有着重要的意义。

目前,已有多种评分系统用于预测AMI合并CS患者的预后,包括但不限于急性生理与慢性健康评估评分(Acute Physiology and Chronic Health Evaluation, APACHE) [11]、序贯器官衰竭评分(Sequential Organ Failure Assessment, SOFA)评分系统[12]、心血管血管造影和介入学会(Society for Cardiovascular Angiography and Interventions, SCAI)休克分级[13]、第二代简化急性生理评分(Simplified Acute Physiological Score, SAPS II) [14]、IABP SHOCK II评分[15]和CardShock风险评分[3]等。这些评分系统在众多研究中被应用于评估AMI合并CS或冠状动脉介入治疗患者的预后,并已证实取得了良好的效果。本文旨在综述与AMI合并CS相关的预后模型,以期为临床决策提供更为科学的依据。

2. AMI合并CS患者相关预后模型

2.1. APACHE评分模型

APACHE评分系统是在1981年由Knaus等人建立的,旨在评估危重症患者病情严重程度,该评分系统自1981年首次提出以来,经历了多次更新和改进,从最初的APACHE I到最新的APACHE IV。APACHE II评分是原始APACHE评分的改进版[16],它包括急性生理参数和慢性健康状况,其综合考虑了12项生理指标、年龄及既往疾病史情况,评分范围从0~71分不等,分数越高,表示患者病情越严重,院内死亡风险越大。它被广泛认为是判断ICU患者病情严重程度和预后的重要标准之一[17] [18]。APACHE III提供了更精细的风险评估模型,其包括更多的生理参数和对慢性健康状况的更详细评估[19]。APACHE III评分系统还提供了一个数据库,用于与患者的实际结果进行比较,以提高预测的准确性[20]。APACHE IV于2006年推出,是最新的版本[21],其包括对一些新变量的评估,旨在提高对特定患者群体死亡风险预测的准确性。APACHE II评分是目前全球最广泛使用且最具权威的危重症患者评分方法,研究表明,APACHE II评分相比于其他指标更能预测危重患者预后[17] [22] [23],它不仅能够评估患者群体的整体预后,也能够对个体患者的死亡率进行预测,具有重要的临床价值和科学意义[17] [24]

2.2. SOFA评分系统

SOFA评分系统旨在以客观和定量的方式,追踪并描述ICU中脓毒症患者器官功能障碍的演变情况及其严重度,并对患者的预后进行评估[25] [26]。该评分覆盖了呼吸功能、凝血功能、肝脏功能、心脏功能、中枢神经系统和肾脏功能六个方面,每个方面都有0到4分的评分范围,总分越高,表明器官衰竭的程度越重,预后可能越差[27],例如,当患者的SOFA评分在7至9分之间时,其院内死亡率大约在15%至20%之间。尽管SOFA评分在临床预后评估中具有重要价值,但其应用的复杂性限制了其在临床场景中的使用[28]。针对这一局限性,SOFA评分衍生出来了更加便捷的快速SOFA评分(Quick Sequential Organ Failure Assessment, qSOFA),旨在提供一种更为便捷的评估工具[29]。qSOFA通过评估三个容易观察到的临床指标——意识状态改变、呼吸频率 ≥ 22次/分钟、收缩压 ≤ 100 mmHg,简化了评分过程。与原始的SOFA评分相比,qSOFA更加简便实用,适用于快速评估患者的病情严重程度和预后风险[30]

2.3. SCAI休克分级

为了可以简单的评估CS患者病情状态,并允许临床试验适当地区分患者,2019年,SCAI的一个多学科委员会,制定了一种无需计算的简单工具,描述了从A到E的休克阶段[31]。A期是心源性休克的“风险期”,B期是“开始”休克,C期是“经典”心源性休克,D期是“恶化期”,E期是“终末期”。SCAI休克分级标准包括体格检查、实验室检验结果和血流动力学指标,由于期简单易行,并可用于各种临床环境,所以自2019年以来,SCAI SHOCK分期分类已被广泛采用,并在多个临床试验中被验证[32] [33] [34]

2.4. SAPS II评分

SAPS II由Le Gall等在1993年通过分析152例重症监护病房(Intensive Care Unit, ICU)患者的入院数据而构建,是目前临床上较常用的疾病严重程度评分系统之一。在一项多中心的大型临床研究中,SAPS II评分准确性较好[35],但是由于其计算的复杂性,限制了该评分的正确应用及临床推广程度。

2.5. IABP SHOCK II评分

该评分系统是基于IABP SHOCK II试验的一个亚研究推导出来的[36],该评分共包括年龄、卒中史、入院时血糖、血肌酐、动脉血乳酸水平和PCI后冠状动脉血流量等6个不同的变量,每个变量根据危险程度被赋予1~2分,总分共9分,根据总分的不同的分值,将AMI合并CS患者分成了三组:0~2分低风险组(死亡率为29%),3~4分中风险组(死亡率为68%),5~9分高风险组(死亡率为80%) [15]。但是该评分系统只在欧洲CardShock试验的患者群体中进行了外部验证,并不能很好的说明其在更广泛应用中的有效性和可靠性。所以该评分模型还需要更多的临床研究去验证其预测价值。

2.6. CardShock风险评分

CardShock风险评分是基于是一项欧洲视角、观察性、多中心和跨国研究推导出来的,其包括七个项目:年龄、既往心肌梗死或搭桥手术后、急性冠脉综合征、左心室射血分数 < 40%、动脉血乳酸、肾小球滤过率等七个变量,总分为9分,其中0~3为低风险,4~5为中等风险,6~9为高风险[37]。在Rivas-Lasarte等人的验证研究中,证实CardShock评分对AMI合并CS患者的院内死亡风险具有良好的预测作用[38]

3. 结论与展望

由于人口老龄化,引起AMI合并CS的发病率在过去十年中显着增加,从2003年的6.5%增加到2010年的10.1% [39]。随着血运重建和机械循环等支持性治疗的重大进展,AMI合并CS患者是死亡率稍有下降,但仍在40%以上[40]。这种高死亡率不仅反映了心源性休克的严重程度,也突显了对AMI合并CS患者进行早期危险分层的重要性[41]。然而由于AMI合并CS患者病情的复杂性,AMI合并CS患者的管理仍然充满挑战[42]。风险评分有助于对疾病的严重程度进行分类,并识别有较高不良后果风险的患者[43]。它们不仅可以帮助临床医生早期识别高危患者,还可以向患者、家属和其他团队成员传达不良后果的风险,并有潜力被用于评估患者死亡或临床恶化的风险[44]。此外,准确的风险分层可以促进共同决策,帮助临床医生选择合适的管理策略[45] [46]。有效的预测评分可以帮助医生评估AMI合并CS患者的死亡风险,从而指导治疗决策,优化资源分配,并最终改善患者的临床结果[3] [47]。与传统的重症评分、心血管系统特异性评分相比,IABP SHOCK II评分和CardShock风险评分更受研究人员的青睐。然而,目前国外甚至涉及CardShock风险评分和IABP SHOCK II评分的外部验证研究很少,其中大部分是回顾性研究,其结果需要通过大量的多中心和前瞻性研究进一步验证。此外,随着肌钙蛋白、BNP、白蛋白、肌酐等分子组学的发展,以及CS诊断率的提高,迫切需要一种更符合临床和研究需求的CS预后模型。

NOTES

*通讯作者。

参考文献

[1] Thygesen, K., Alpert, J.S., Jaffe, A.S., Chaitman, B.R., Bax, J.J., Morrow, D.A., et al. (2018) Fourth Universal Definition of Myocardial Infarction (2018). Circulation, 138, e618-e651.
https://doi.org/10.1161/cir.0000000000000617
[2] Aissaoui, N., Puymirat, E., Tabone, X., Charbonnier, B., Schiele, F., Lefevre, T., et al. (2012) Improved Outcome of Cardiogenic Shock at the Acute Stage of Myocardial Infarction: A Report from the USIK 1995, USIC 2000, and FAST-MI French Nationwide Registries. European Heart Journal, 33, 2535-2543.
https://doi.org/10.1093/eurheartj/ehs264
[3] Harjola, V., Lassus, J., Sionis, A., Køber, L., Tarvasmäki, T., Spinar, J., et al. (2015) Clinical Picture and Risk Prediction of Short-Term Mortality in Cardiogenic Shock. European Journal of Heart Failure, 17, 501-509.
https://doi.org/10.1002/ejhf.260
[4] Goldberg, R.J., Makam, R.C.P., Yarzebski, J., McManus, D.D., Lessard, D. and Gore, J.M. (2016) Decade-long Trends (2001-2011) in the Incidence and Hospital Death Rates Associated with the In-Hospital Development of Cardiogenic Shock after Acute Myocardial Infarction. Circulation: Cardiovascular Quality and Outcomes, 9, 117-125.
https://doi.org/10.1161/circoutcomes.115.002359
[5] Thiele, H., Ohman, E.M., de Waha-Thiele, S., Zeymer, U. and Desch, S. (2019) Management of Cardiogenic Shock Complicating Myocardial Infarction: An Update 2019. European Heart Journal, 40, 2671-2683.
https://doi.org/10.1093/eurheartj/ehz363
[6] Rathod, K.S., Koganti, S., Iqbal, M.B., Jain, A.K., Kalra, S.S., Astroulakis, Z., et al. (2017) Contemporary Trends in Cardiogenic Shock: Incidence, Intra-Aortic Balloon Pump Utilisation and Outcomes from the London Heart Attack Group. European Heart Journal: Acute Cardiovascular Care, 7, 16-27.
https://doi.org/10.1177/2048872617741735
[7] Valley, T.S., Iwashyna, T.J., Cooke, C.R., Sinha, S.S., Ryan, A.M., Yeh, R.W., et al. (2019) Intensive Care Use and Mortality among Patients with ST Elevation Myocardial Infarction: Retrospective Cohort Study. BMJ, 365, L1927.
https://doi.org/10.1136/bmj.l1927
[8] Helgestad, O.K.L., Josiassen, J., Hassager, C., Jensen, L.O., Holmvang, L., Udesen, N.L.J., et al. (2020) Contemporary Trends in Use of Mechanical Circulatory Support in Patients with Acute MI and Cardiogenic Shock. Open Heart, 7, e001214.
https://doi.org/10.1136/openhrt-2019-001214
[9] Li, X., Sousa-Casasnovas, I., Devesa, C., Juárez, M., Fernández-Avilés, F. and Martínez-Sellés, M. (2016) Predictors of In-Hospital Mortality among Cardiogenic Shock Patients. Prognostic and Therapeutic Implications. International Journal of Cardiology, 224, 114-118.
https://doi.org/10.1016/j.ijcard.2016.09.019
[10] Papolos, A.I., Kenigsberg, B.B., Berg, D.D., Alviar, C.L., Bohula, E., Burke, J.A., et al. (2021) Management and Outcomes of Cardiogenic Shock in Cardiac Icus with versus without Shock Teams. Journal of the American College of Cardiology, 78, 1309-1317.
https://doi.org/10.1016/j.jacc.2021.07.044
[11] Knaus, W.A., Zimmerman, J.E., Wagner, D.P., Draper, E.A. and Lawrence, D.E. (1981) APACHE—Acute Physiology and Chronic Health Evaluation: A Physiologically Based Classification System. Critical Care Medicine, 9, 591-597.
https://doi.org/10.1097/00003246-198108000-00008
[12] Vincent, J.L., Moreno, R., Takala, J., Willatts, S., De Mendonça, A., Bruining, H., et al. (1996) The SOFA (Sepsis-Related Organ Failure Assessment) Score to Describe Organ Dysfunction/Failure. Intensive Care Medicine, 22, 707-710.
https://doi.org/10.1007/bf01709751
[13] Naidu, S.S., Baran, D.A., Jentzer, J.C., Hollenberg, S.M., van Diepen, S., Basir, M.B., et al. (2022) SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies: This Statement Was Endorsed by the American College of Cardiology (ACC), American College of Emergency Physicians (ACEP), American Heart Association (AHA), European Society of Cardiology (ESC) Association for Acute Cardiovascular Care (ACVC), International Society for Heart and Lung Transplantation (ISHLT), Society of Critical Care Medicine (SCCM), and Society of Thoracic Surgeons (STS) in December 2021. Journal of the American College of Cardiology, 79, 933-946.
https://doi.org/10.1016/j.jacc.2022.01.018
[14] Le Gall, J. (1993) A New Simplified Acute Physiology Score (SAPS II) Based on a European/north American Multicenter Study. JAMA: The Journal of the American Medical Association, 270, 2957-2963.
https://doi.org/10.1001/jama.1993.03510240069035
[15] Pöss, J., Köster, J., Fuernau, G., Eitel, I., de Waha, S., Ouarrak, T., et al. (2017) Risk Stratification for Patients in Cardiogenic Shock after Acute Myocardial Infarction. Journal of the American College of Cardiology, 69, 1913-1920.
https://doi.org/10.1016/j.jacc.2017.02.027
[16] Knaus, W.A., Draper, E.A., Wagner, D.P. and Zimmerman, J.E. (1985) APACHE II: A Severity of Disease Classification System. Critical Care Medicine, 13, 818-829.
https://doi.org/10.1097/00003246-198510000-00009
[17] Zou, X., Li, S., Fang, M., Hu, M., Bian, Y., Ling, J., et al. (2020) Acute Physiology and Chronic Health Evaluation II Score as a Predictor of Hospital Mortality in Patients of Coronavirus Disease 2019. Critical Care Medicine, 48, e657-e665.
https://doi.org/10.1097/ccm.0000000000004411
[18] Laczynski, D., Gallop, J., Sicard, G., Sidawy, A., Rowse, J., Lyden, S., et al. (2023) Benchmarking a Center of Excellence in Vascular Surgery: Using Acute Physiology and Chronic Health Evaluation II to Validate Outcomes in a Tertiary Care Institute. Vascular and Endovascular Surgery, 57, 856-862.
https://doi.org/10.1177/15385744231183744
[19] Wagner, D., Draper, E. and Knaus, W. (1989) APACHE III Study Design: Analytic Plan for Evaluation of Severity and Outcome in Intensive Care Unit Patients. Critical Care Medicine, 17, S199-S203.
[20] Zimmerman, J.E., Wagner, D.P., Draper, E.A., Wright, L., Alzola, C. and Knaus, W.A. (1998) Evaluation of Acute Physiology and Chronic Health Evaluation III Predictions of Hospital Mortality in an Independent Database. Critical Care Medicine, 26, 1317-1326.
https://doi.org/10.1097/00003246-199808000-00012
[21] Zimmerman, J.E., Kramer, A.A., McNair, D.S. and Malila, F.M. (2006) Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital Mortality Assessment for Today’s Critically Ill Patients. Critical Care Medicine, 34, 1297-1310.
https://doi.org/10.1097/01.ccm.0000215112.84523.f0
[22] Kahraman, F., Yılmaz, A.S., Demir, M. and Beşiroğlu, F. (2022) APACHE II Score Predicts In-Hospital Mortality More Accurately than Inflammatory Indices in Patients with Acute Coronary Syndrome. Kardiologiia, 62, 54-59.
https://doi.org/10.18087/cardio.2022.9.n1979
[23] Richards, G., Levy, H., Laterre, P., Feldman, C., Woodward, B., Bates, B.M., et al. (2011) CURB-65, PSI, and APACHE II to Assess Mortality Risk in Patients with Severe Sepsis and Community Acquired Pneumonia in Prowess. Journal of Intensive Care Medicine, 26, 34-40.
https://doi.org/10.1177/0885066610383949
[24] Ho, K.M., Lee, K.Y., Williams, T., Finn, J., Knuiman, M. and Webb, S.A.R. (2007) Comparison of Acute Physiology and Chronic Health Evaluation (APACHE) II Score with Organ Failure Scores to Predict Hospital Mortality. Anaesthesia, 62, 466-473.
https://doi.org/10.1111/j.1365-2044.2007.04999.x
[25] Vincent, J., de Mendonca, A., Cantraine, F., Moreno, R., Takala, J., Suter, P.M., et al. (1998) Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/failure in Intensive Care Units. Critical Care Medicine, 26, 1793-1800.
https://doi.org/10.1097/00003246-199811000-00016
[26] Seymour, C.W., Liu, V.X., Iwashyna, T.J., Brunkhorst, F.M., Rea, T.D., Scherag, A., et al. (2016) Assessment of Clinical Criteria for Sepsis. JAMA, 315, 762-774.
https://doi.org/10.1001/jama.2016.0288
[27] Marshall, J.C., Cook, D.J., Christou, N.V., Bernard, G.R., Sprung, C.L. and Sibbald, W.J. (1995) Multiple Organ Dysfunction Score. Critical Care Medicine, 23, 1638-1652.
https://doi.org/10.1097/00003246-199510000-00007
[28] Tallgren, M., Bäcklund, M. and Hynninen, M. (2008) Accuracy of Sequential Organ Failure Assessment (SOFA) Scoring in Clinical Practice. Acta Anaesthesiologica Scandinavica, 53, 39-45.
https://doi.org/10.1111/j.1399-6576.2008.01825.x
[29] Vincent, J. and Grimaldi, D. (2016) Quick Sequential Organ Failure Assessment: Big Databases vs. Intelligent Doctors. Journal of Thoracic Disease, 8, E996-E998.
https://doi.org/10.21037/jtd.2016.07.78
[30] Kumar, R., Kattimani, B., Ojha, P.R. and Khasage, U.J. (2023) Quick Sequential Organ Failure Assessment Score, Lactate, and Neutrophil-Lymphocyte Ratio Help in Diagnosis and Mortality Prediction during Golden Hour of Sepsis in Emergency Department. Journal of Emergencies, Trauma, and Shock, 16, 161-166.
https://doi.org/10.4103/jets.jets_37_23
[31] Baran, D.A., Grines, C.L., Bailey, S., Burkhoff, D., Hall, S.A., Henry, T.D., et al. (2019) SCAI Clinical Expert Consensus Statement on the Classification of Cardiogenic Shock. Catheterization and Cardiovascular Interventions, 94, 29-37.
https://doi.org/10.1002/ccd.28329
[32] Jentzer, J.C., van Diepen, S., Barsness, G.W., Henry, T.D., Menon, V., Rihal, C.S., et al. (2019) Cardiogenic Shock Classification to Predict Mortality in the Cardiac Intensive Care Unit. Journal of the American College of Cardiology, 74, 2117-2128.
https://doi.org/10.1016/j.jacc.2019.07.077
[33] Serrao, G. and Dangas, G. (2023) SCAI Stage Reclassification at 24 H Predicts Outcome of Cardiogenic Shock: Insights from the Altshock-2 Registry. Catheterization and Cardiovascular Interventions, 101, 676-676.
https://doi.org/10.1002/ccd.30566
[34] Luo, D., Huang, R., Wang, X., Zhang, J., Cai, X., Liu, F., et al. (2023) Intra-Aortic Balloon Pump Reduces 30-Day Mortality in Early-Stage Cardiogenic Shock Complicating Acute Myocardial Infarction According to SCAI Classification. Shock, 60, 385-391.
https://doi.org/10.1097/shk.0000000000002184
[35] Poncet, A., Perneger, T.V., Merlani, P., Capuzzo, M. and Combescure, C. (2017) Determinants of the Calibration of SAPS II and SAPS 3 Mortality Scores in Intensive Care: A European Multicenter Study. Critical Care, 21, Article No. 85.
https://doi.org/10.1186/s13054-017-1673-6
[36] Thiele, H., Zeymer, U., Neumann, F., Ferenc, M., Olbrich, H., Hausleiter, J., et al. (2012) Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. New England Journal of Medicine, 367, 1287-1296.
https://doi.org/10.1056/nejmoa1208410
[37] Ortega-Hernández, J., González-Pacheco, H., Nieto, R.G., Araiza-Garaygordobil, D., Lara-Martínez, D.S., De La Cruz, J.L.B., et al. (2023) Comparison of the Predictive Performance of Cardiogenic Shock Scores in a Real-World Latin America Country. Shock, 59, 576-582.
https://doi.org/10.1097/shk.0000000000002091
[38] Rivas-Lasarte, M., Sans-Roselló, J., Collado-Lledó, E., González-Fernández, V., Noriega, F.J., Hernández-Pérez, F.J., et al. (2020) External Validation and Comparison of the CardShock and IABP-SHOCK II Risk Scores in Real-World Cardiogenic Shock Patients. European Heart Journal. Acute Cardiovascular Care, 10, 16-24.
https://doi.org/10.1177/2048872619895230
[39] Iborra-Egea, O., Montero, S. and Bayes-Genis, A. (2020) An Outlook on Biomarkers in Cardiogenic Shock. Current Opinion in Critical Care, 26, 392-397.
https://doi.org/10.1097/mcc.0000000000000739
[40] Mebazaa, A., Combes, A., van Diepen, S., Hollinger, A., Katz, J.N., Landoni, G., et al. (2018) Management of Cardiogenic Shock Complicating Myocardial Infarction. Intensive Care Medicine, 44, 760-773.
https://doi.org/10.1007/s00134-018-5214-9
[41] Auffret, V., Cottin, Y., Leurent, G., Gilard, M., Beer, J., Zabalawi, A., et al. (2018) Predicting the Development of In-Hospital Cardiogenic Shock in Patients with St-Segment Elevation Myocardial Infarction Treated by Primary Percutaneous Coronary Intervention: The ORBI Risk Score. European Heart Journal, 39, 2090-2102.
https://doi.org/10.1093/eurheartj/ehy127
[42] van Diepen, S., Katz, J.N., Albert, N.M., Henry, T.D., Jacobs, A.K., Kapur, N.K., et al. (2017) Contemporary Management of Cardiogenic Shock: A Scientific Statement from the American Heart Association. Circulation, 136, e232-e268.
https://doi.org/10.1161/cir.0000000000000525
[43] Jeong, J.H., Kook, H., Lee, S.H., Joo, H.J., Park, J.H., Hong, S.J., et al. (2024) Prediction of In-hospital Mortality for Ischemic Cardiogenic Shock Requiring Venoarterial Extracorporeal Membrane Oxygenation. Journal of the American Heart Association, 13, e32701.
https://doi.org/10.1161/jaha.123.032701
[44] Yamga, E., Mantena, S., Rosen, D., Bucholz, E.M., Yeh, R.W., Celi, L.A., et al. (2023) Optimized Risk Score to Predict Mortality in Patients with Cardiogenic Shock in the Cardiac Intensive Care Unit. Journal of the American Heart Association, 12, e29232.
https://doi.org/10.1161/jaha.122.029232
[45] Bhat, A.G., van Diepen, S., Katz, J.N., Islam, A., Tehrani, B.N., Truesdell, A.G., et al. (2022) A Comprehensive Appraisal of Risk Prediction Models for Cardiogenic Shock. Shock, 57, 617-629.
https://doi.org/10.1097/shk.0000000000001921
[46] Damluji, A.A., Forman, D.E., van Diepen, S., Alexander, K.P., Page, R.L., Hummel, S.L., et al. (2020) Older Adults in the Cardiac Intensive Care Unit: Factoring Geriatric Syndromes in the Management, Prognosis, and Process of Care: A Scientific Statement from the American Heart Association. Circulation, 141, e6-e32.
https://doi.org/10.1161/cir.0000000000000741
[47] Popat, A., Yadav, S., Patel, S.K., Baddevolu, S., Adusumilli, S., Rao Dasari, N., et al. (2023) Artificial Intelligence in the Early Prediction of Cardiogenic Shock in Acute Heart Failure or Myocardial Infarction Patients: A Systematic Review and Meta-Analysis. Cureus, 15, e50395.
https://doi.org/10.7759/cureus.50395