基于网络药理学探究四神汤干预伴有抑郁症的腹泻型肠易激综合征的机制
Exploring the Mechanism of Sishen Decoction in Intervening Diarrhea-Predominant Irritable Bowel Syndrome with Depression Based on Network Pharmacology
摘要: 目的:基于网络药理学和分子对接技术探讨四神汤干预伴有抑郁症(Depression)的腹泻型肠易激综合征(Diarrhea-predominant irritable bowel syndrome, IBS-D)的分子机制。方法:通过TCMSP、GeneCards、TTD、OMIM数据库预测活性成分和疾病靶点;使用Cytoscape 3.10.2软件构建“四神汤–活性成分–潜在靶点–伴有抑郁症的腹泻型肠易激综合征”网络和构建蛋白质相互作用(PPI)网络图;通过R 4.1.1软件进行基因本体(GO)和京东基因与基因组百科全书(KEGG)信号通路富集分析;最后,采用PyMOL 3.0.4和AutoDock 1.5.7软件进行分子对接,验证关键成分与靶点结合的稳定性。结果:筛选出四神汤中24个活性成分和111个干预伴有抑郁症的IBS-D的靶点,GO和KEGG富集分析显示这些靶点与炎症、氧化应激、细胞增殖等生物过程相关,主要涉及磷脂酰肌3–激酶–蛋白激酶B (Phosphatidylinositol 3-kinase-protein kinase B, PI3K-AKT)等信号通路。分子对接数据显示结合能均小于−5 kcal/mol,表明从四神汤中筛选的活性成分与伴有抑郁症的IBS-D的核心靶点有较强的亲和力。结论:四神汤可能通过槲皮素、木犀草素、荷叶碱、薯蓣皂苷元等关键成分作用于白细胞介素-6 (Interleukin-6, IL-6)、丝氨酸/苏氨酸蛋白激酶1 (Akt Serine/Threonine-protein Kinase 1, AKT1)、肿瘤蛋白p53 (Tumor Protein p53, TP53)、5-羟色胺受体2A (5-Hydroxytryptamine Receptor 2A, HTR2A)、5-羟色胺受体3A (5-Hydroxytryptamine Receptor 3A, HTR3A)等核心靶点,与PI3K-AKT和5-羟色胺(5-hydroxytryptamine, 5-HT)等信号通路相关,通过调控炎症、氧化应激、细胞增殖等生物过程干预伴有抑郁症的IBS-D。
Abstract: Objective: To explore the molecular mechanism of Sishen Decoction in intervening diarrhea-predominant irritable bowel syndrome with depression based on network pharmacology and molecular docking techniques. Methods: Active ingredients and disease targets were predicted by accessing TCMSP, GeneCards, TTD, and OMIM, databases. Next, Cytoscape 3.10.2 software was used to construct the “Sishen Decoction-active ingredients-potential targets-diarrhea-predominant irritable bowel syndrome with depression” network and protein-protein interaction network diagram. R 4.11 software was used to carry out GO and KEGG pathways enrichment analysis. Finally, the above results were validated by molecular docking using PyMOL 3.0.4 and AutoDock 1.5.7 software. Results: 24 active ingredients and 111 targets for intervention in IBS-D with depression were screened out from Sishen Decoction. GO and KEGG analyses showed that these targets were related to biological processes such as inflammation, oxidative stress, and cell proliferation, mainly involving signaling pathways such as phosphatidylinositol PI3K-AKT. Molecular docking data showed that the binding energy was less than −5 kcal/mol, indicating that the active ingredients screened from Sishen Decoction had a strong affinity with the core targets of IBS-D with depression. Conclusion: Sishen Decoction may exert therapeutic effects through key ingredients including quercetin, luteolin, nuciferine, and diosgenin targeting core proteins such as IL-6, AKT1, TP53, HTR2A and HTR3A. These interactions are related to the PI3K-AKT and 5-HT signaling pathways, and intervenes in IBS-D accompanied with depression by regulating biological processes such as inflammation, oxidative stress, and cell proliferation.
文章引用:谢小萍, 相晨晴, 张志君. 基于网络药理学探究四神汤干预伴有抑郁症的腹泻型肠易激综合征的机制[J]. 临床医学进展, 2025, 15(1): 622-633. https://doi.org/10.12677/acm.2025.151085

1. 引言

腹泻型肠易激综合征(Diarrhea-predominant irritable bowel syndrome, IBS-D),是一种以腹痛、腹泻为主要表现的慢性肠道功能紊乱疾病,肠易激综合征(IBS)全球发病率为11.2%,IBS-D患者中抑郁症(Depression)患病率达到37.1% [1]。抑郁症与IBS-D存在明显关联,抑郁症患者的常伴有胃肠道功能紊乱的症状[2],据《肠易激综合征中医治疗共识意见》以及相关文献报道,IBS-D主要为肝郁脾虚型,主要病因为肝失疏泄、脾失健运[3] [4],情志不畅则肝失条达,肝气郁结,横逆克脾,引发疏泄[5],中医“脾藏意”理论分析,脾主忧愁,意不能藏,则郁病健忘,脾虚湿盛是腹泻发病原因[6]。现代医学研究表明,抑郁症脑肠轴的功能失调可能导致肠道动力学的改变,从而加重腹泻型肠易激综合征[7] [8],这与肠神经与中枢神经的双向调节机制“脑肠轴”相关[9]

四神汤是中国东南一带传统食疗方,由茯苓、莲子、芡实、淮山药组成,具有健脾益气、健胃止泻等功效,用于消化不良、大便溏泻、免疫力低下[10] [11]。其中,茯苓补中益气,健脾养胃,对于因脾虚导致的泄泻、带下、消化不良等症状改善[12];莲子安神养心、交通心肾,虚烦失眠[13];芡实健脾止泻,祛湿止带[14];山药补脾养胃,生津益肺,补肾益精,敛阴止泻[15] [16]。四神汤对IBS-D肝郁脾虚症患者有改善病状的作用[17],四神汤针对抑郁症与IBS-D肝郁脾虚的共同病机,通过调理肝脾、疏解情志的方式,双向调节脑肠轴,改善肠道和抑郁的双重症状,达到“异病同治”效果。

本研究将采用R语言以及分子对接等方法技术,结合网络药理学,筛选四神汤中关键成分与伴有抑郁症的IBS-D的靶点,探讨四神汤干预伴有抑郁症的IBS-D的潜在机制,为四神汤的开发应用提供理论依据。

2. 资料与方法

2.1. 四神汤化合物的筛选

通过TCMSP (https://old.tcmsp-e.com/tcmsp.php)检索茯苓、莲子、芡实、山药中有效组分,从中获取符合口服生物利用度(OB) ≥ 30%、类药性(DL) ≥ 0.18两个指标的化合物,并确定其靶点基因。通过Uniport数据库(https://www.uniprot.org/)标准化基因名称。

2.2. 疾病靶点的获取

在GeneCards数据库(https://www.genecards.org/)、TDD数据库(https://db.idrblab.net/ttd/)和OMIM数据库(https://www.omim.org/)中,IBS-D以“Diarrhea-predominant irritable bowel syndrome”或“Diarrhea irritable bowel syndrome”为关键词,抑郁症以“Depression”或“Depressive disorder”为关键词,对这两种疾病的相关基因进行查找,获取score中位数以上基因,去除重复基因,利用R4.1.1软件数据处理,疾病基因与成分靶基因取交集,绘制韦恩图。

2.3. 复方与疾病靶点网络构建

使用Cytoscape3.10.2软件构建四神汤–成分–靶点–伴有抑郁症的IBS-D三者之间网络,节点代表中药、成分与靶点,边的条数代表它们的关系紧密程度,拓扑计算其度中心度(degree centrality, DC)值,对节点的关系进行分析。

2.4. 蛋白互作网络(PPI)建立

将四神汤干预抑郁症与IBS-D的靶点,输入蛋白互作网络STRING (https://cn.string-db.org/),设置高置信度“>0.7”,获取蛋白互作网络(protein-protein interaction network, PPI),借助Cytoscape平台绘制PPI网络图,通过CytnNCA计算介数中心度(betweenness centrality, BC)、接近中心度(closeness centrality, CC)、DC、特征向量中心度(eigenvector centrality, EC)、局部平均连通性(local average connectivity, LAC)、网络整体分析(network characteristics, NC),通过数值进一步筛选核心基因。

2.5. 核心靶点基因GO和KEGG分析

使用R4.4.1软件中enrichplot 1.2和clusterProfiler 4.12等工具对四神汤干预抑郁症与IBS-D作用靶点进行基因本体(gene ontology, GO)和京东基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)信号通路分析,设置p < 0.05与q < 0.05为检验显著性的筛选条件,GO生物学过程(BP),细胞组成(CC),分子功能(MF)分别取前10条目,KEGG通路取前20条目,分别用R语言中ggplot2 3.5.1工具作图。

2.6. 成分–靶点–信号通路网络构建

四神汤成分、靶点、信号通路进行信息整合后,通过Cytoscape建立四神汤成分与靶蛋白与信号传导途径之间的网络。

2.7. 分子对接及可视化

根据上述PPI网络筛选出3个重要靶点,分别与相关成分进行分子对接。考虑网络药理学具有网络属性,缺乏成分对蛋白靶点实际治疗作用,临床治疗焦虑抑郁型IBS-D与5-羟色胺(5-HT)水平直接显著相关[18],所以结合与5-HT相关的核心靶点,对其分子对接。在Uniprot数据库中查找靶点对应的“Homo”蛋白名称,并通过RCSB Protein Data Bank数据库(https://www.rcsb.org/)获得蛋白结构,使用PyMOL 3.0.4程序进行蛋白去水、去配体的处理,借助Autodock tool工具对蛋白加氢。运用Pubchem数据库(https://pubchem.ncbi.nlm.nih.gov/)获取各成分结构后,通过Chem3D22.0.0处理配体。在Autodock vina中结合R语言采用了分子配对技术,以分析靶蛋白与特定分子之间的作用方式,通过PyMOL程序实现可视化。

3. 结果

3.1. 四神汤化合物的筛选

在TCMSP数据库中,除去无靶点的成分,从四神汤中得到29个活性成分(茯苓6个,莲子9个,芡实2个,山药12个)和与活性成分相关的靶点225个(表1)。

Table 1. The active compounds in Sishen decoction

1. 四神汤的活性化合物表

Mol ID

Molecule Name

OB (%)

DL

来源

MOL000273

16α-羟基松苓新酸

30.93

0.81

茯苓

MOL000275

3-羟基羊毛甾-8,24-二烯-21-酸

38.71

0.8

茯苓

MOL000279

啤酒甾醇

37.96

0.77

茯苓

MOL000282

星鱼甾醇

43.51

0.72

茯苓

MOL000283

5Α,8Α-表二氧-(22E,24R)-麦角甾-6,22-二烯-3Β-醇

40.36

0.81

茯苓

MOL000296

常春藤皂苷元

36.91

0.75

茯苓

MOL000006

木犀草素

36.16

0.25

莲子

MOL007206

亚美罂粟碱

69.31

0.29

莲子

MOL007213

荷叶碱

34.43

0.4

莲子

MOL009156

4'-甲基-D-甲基乌药碱

55.35

0.26

莲子

MOL009157

日本蟾蜍毒苷元

36.32

0.8

莲子

MOL009160

龙血素A

40.43

0.19

莲子

MOL009167

(1R)-6,7-dimethoxy-1-(4-methoxybenzyl)-2-methyl-3,4-dihydro-1H-isoquinoline

52.96

0.32

莲子

MOL009172

Pronuciferin

32.75

0.37

莲子

MOL000098

槲皮素

46.43

0.28

莲子

MOL002773

β-胡萝卜素

37.18

0.58

芡实

MOL007180

维生素E

32.29

0.7

芡实

MOL001559

荜茇宁

30.71

0.18

山药

MOL001736

(-)-二氢槲皮素

60.51

0.27

山药

MOL000322

海风藤酮

54.72

0.38

山药

MOL005430

hancinone C

59.05

0.39

山药

MOL005435

24-Methylcholest-5-enyl-3belta-O-glucopyranoside_qt

37.58

0.72

山药

MOL005438

菜油甾醇

37.58

0.71

山药

MOL005440

Isofucosterol

43.78

0.76

山药

MOL000449

豆甾醇

43.83

0.76

山药

MOL005458

黄山药皂苷C

36.38

0.87

山药

MOL000546

薯蓣皂苷元

80.88

0.81

山药

MOL005465

AIDS180907

45.33

0.77

山药

MOL000953

胆固醇

37.87

0.68

山药

3.2. 疾病靶点的获取

获得IBS-D靶点2561个,抑郁症靶点4007个,这两种疾病的共同靶点为1797个。通过交集四神汤的作用靶点与IBS-D与抑郁症的靶点,获得111个共同靶点,作为四神汤治疗伴有抑郁症的IBS-D的靶点,详见韦恩图(图1)。

Figure 1. Venn diagram of common targets of Sishen decoction ingredients and IBS-D with depression

1. 四神汤成分与伴有抑郁症的IBS-D的共同靶点韦恩图

3.3. 复方与疾病靶点网络构建

使用Cytoscape平台构建四神汤成分和靶点的交互网络,如图2所示,其包含139点与291条边,经degree值知其中关键化合物为槲皮素(quercetin, MOL000098)、木犀草素(luteolin, MOL000006)、β-胡萝卜素(beta-carotene, MOL002773)、荷叶碱(nuciferin, MOL007213)、薯蓣皂苷元(diosgenin, MOL000546)多种活性成分。

注:FL代表茯苓,LZ部分代表莲子,QS代表芡实,SY代表山药。颜色越深,Degree值越大,该节点越关键。

Figure 2. Sishen decoction-active ingredients targets-disease network diagram

2. 四神汤–活性成分–作用靶点–疾病网络图

3.4. 蛋白互作网络(PPI)建立

四神汤干预抑郁症与IBS-D的PPI,详细见图3A,根据degree值排列网络,见图3B,包含104个点,852条边。筛选出大于对应的中位值的靶点(BC > 522.553 221 3, CC > 0.565 951 152, DC > 44, EC > 0.197 936 803, LAC > 19.1, NC > 34.936 672 623),得到前3位核心靶点为白细胞介素-6 (Interleukin-6, IL-6)、AKT丝氨酸/苏氨酸激酶1 (AKT serine/threonine kinase 1, AKT1)、肿瘤蛋白p53 (Tumor protein p53, TP53) (表2)。

注:A为PPI网络图;B为按degree值排列PPI网络图,颜色越深,degree值越大,靶点越关键。

Figure 3. Intersection gene PPI network diagram

3. 交集基因PPI网络图

Table 2. Topological parameters of the top three targets of the PPI network of the intersection genes of Sishen decoction in the intervention of IBS-D and depression

2. 四神汤干预抑郁症与IBS-D的交集基因的PPI网络的前3位靶点的拓扑参数

Name

Betweenness

Closeness

Degree

Eigenvector

LAC

Network

IL-6

748.68

0.60

52.00

0.22

19.77

43.88

AKT1

650.89

0.57

50.00

0.21

19.20

40.12

TP53

686.81

0.58

49.00

0.21

19.63

40.46

3.5. 核心靶点基因GO和KEGG分析

注:q值越小颜色越深,富集相关程度越大;柱状条越长,气泡越大,富集数量越多。

Figure 4. GO analysis of Sishen decoction on the targets of IBS-D with depression (A) and KEGG pathway enrichment analysis of Sishen decoction on the targets of IBS-D with depression (B)

4. 四神汤对伴有抑郁症的IBS-D的靶点的GO分析(A)及四神汤对伴有抑郁症的IBS-D的靶点的KEGG通路富集分析(B)

根据GO柱状图与KEGG的气泡图(图4)可知,四神汤干预抑郁症与IBS-D的生物过程主要与氧化应激反应(response to oxidative stress)、氧气水平变化反应(response to oxygen levels)、活性氧反应(response to reactive oxygen species response)相关;细胞组成包括膜阀(membrane raft)、突触膜(synaptic membrane)、膜微区(membrane microdomains)等;分子功能主要有泛素蛋白连接酶结合(ubiquitin protein ligase binding)、DNA结合转录因子结合(DNA-binding transcription factor binding)、RNA聚合酶Ⅱ-DNA-转录因子结合(RNA polymerase Ⅱ-DNA-transcription factor complex binding)等。四神汤干预伴有抑郁症型IBS-D的KEGG通路前20条涉及到炎症、免疫相关通路,主要涉及PI3K-AKT (磷脂酰肌3–激酶–蛋白激酶B,hsa04151)等。

3.6. 成分–靶点–信号通路网络构建

借助Cytoscape3.10.2应用程序,构建出四神汤的成分与靶点与通路与疾病的网络,详细见图5。其中,涉及24种成分,111个靶点,20条通路,提示四神汤协同多种成分、多个靶点和多条通路,发挥干预伴有抑郁症的IBS-D的效应。

Figure 5. Network diagram of Sishen decoction ingredients-targets-signalling pathways

5. 四神汤成分–靶点–信号通路网络图

3.7. 分子对接及可视化

将PPI网络中前3个靶点IL-6、AKT1、TP53以及伴有抑郁症抑郁型IBS-D与5-HT显著相关的2个靶点HTR2A、HTR3A与对应的活性成分之间展开分子对接。其结合能数据及部分可视化图,如表3图6所示,结合能 < −5 kcal/mol,表明对接均结合稳定。其中活性成分亚荷叶碱、美罂粟碱及pronuciferin配体对接HTR3A蛋白受体,荷叶碱、pronuciferin配体对接HTR2A蛋白受体,薯蓣皂苷元配体对接AKT1受体和TP53受体的结合能 < −8 kcal/mol,具有强的亲和力。

Table 3. Docking scores of Sishen decoction and core target molecules

3. 四神汤和核心靶点分子对接分值表

关键成分

靶点蛋白

PDB ID

结合自由能(kcal/mol)

luteolin

IL-6

1ALU

−7.1

quercetin

IL-6

1ALU

−6.9

luteolin

AKT1

1H 10

−5.9

quercetin

AKT1

1H 10

−6.1

beta-carotene

AKT1

1H 10

−6.8

diosgenin

AKT1

1H 10

−8.2

luteolin

TP53

3A06

−7.8

quercetin

TP53

3A06

−7.7

diosgenin

TP53

3A06

−8.4

armepavine

HTR2A

7WC8

−6.8

nuciferin

HTR2A

7WC8

−9.0

pronuciferin

HTR2A

7WC8

−8.2

armepavine

HTR3A

8AXD

−9.3

pronuciferin

HTR3A

8AXD

−8.6

nuciferin

HTR3A

8AXD

−8.2

注:A为木犀草素与IL-6;B为槲皮素与IL-6;C为槲皮素与AKT1;D为薯蓣皂苷元与AKT1;E为木犀草素与TP53;F槲皮素与TP53;G薯蓣皂苷元与TP53;H为荷叶碱与HTR2A;I为荷叶碱与HTR3A。

Figure 6. Visualization results of docking of Sishen decoction with target molecules of depression IBS-D with depression

6. 四神汤与伴有抑郁症的IBS-D靶点分子对接可视化结果图

4. 讨论

Bai C等[19]对临床试验数据进行Meta分析,发现槲皮素、木犀草素等对伴有焦虑和抑郁的IBS-D有显著的治疗效果。木犀草素、槲皮素具有抗炎作用,通过抑制血清及组织中的促炎因子,缓解肠道炎症[20]β-胡萝卜素具有清除活性氧,降低氧化应激水平,维持肠道屏障稳态的作用[21]。荷叶碱作为一种5-羟色胺受体拮抗剂,对情绪有调节作用[22]。薯蓣皂苷元则通过抑制炎症因子的产生,能够缓解多种与炎症相关的疾病[23]。以上研究报道与我们筛选出的核心成分和分子对接数据相吻合,表明槲皮素、木犀草素、β-胡萝卜素、荷叶碱、薯蓣皂苷元是治疗抑郁症与IBS-D的关键成分。

PPI网络图显示,四神汤干预伴有抑郁症的IBS-D的核心蛋白为IL-6、AKT1、TP53等。这些核心靶点主要涉及PI3K-AKT信号通路,其激活可降低炎症因子水平、促进海马神经发生、并调控突触可塑性等,在抑郁症和腹泻型肠炎中有关键作用[24]。IL-6在炎症反应中通过参与PI3K-AKT信号通路的转导,发挥着核心作用[25],且IL-6作为炎症标志物之一,与抑郁症的发生相关[26]。AKT1是PI3K-AKT信号通路的核心激酶,被列为治疗IBS潜在的靶点[27]。TP53转录因子负调节细胞生长,调控细胞周期停滞、细胞衰老、DNA修复、代谢适应和细胞死亡,并在炎症应激反应有重要作用[28] [29]。5-HT是脑肠轴关键的信号媒介,其中HTR2A调节5-HT信号传导和神经元活动,HTR3A则参与中枢神经、交感及副交感神经,调节焦虑情绪和肠胃蠕动等[30] [31]。IL-6、AKT1、TP53、HTR2A和HTR3A是调控抑郁症与IBS-D的关键蛋白。

GO富集分析提示四神汤可能通过作用于泛素连接酶、DNA结合转录因子,参与肠道炎症、氧化应激等生物过程,从而保护肠神经免受应激和炎症产生的活性氧引起的受损[32]。KEGG通路富集分析也揭示了四神汤可能干预伴有抑郁症的IBS-D相关的PI3K-AKT信号通路,推测槲皮素、木犀草素、β-胡萝卜素能够激活该通路的AKT1激酶,调控磷酸化过程,抑制下游丝裂原活化蛋白激酶–细胞外调节蛋白激酶(MAPK- ERK)信号通路磷酸化,并上调Nrf2 (Nuclear factor erythroid 2-related factor 2)表达,从而恢复肠道功能,来缓解抑郁与肠道症状[33] [34]。槲皮素和木犀草素可能通过抑制IL-6、AKT1蛋白,降低血清中IL-6、IL-1β、TNF-α促炎因子水平,以缓解肠道炎症,还可以调节肠道代谢物如短链脂肪酸的表达,进而影响脑肠轴的功能[35];槲皮素可能通过作用TP53,调节细胞周期停滞和细胞死亡,从而帮助恢复肠道屏障功能[36] [37]β-胡萝卜素作用AKT1,调控BDNF (Brain-derived neurotrophic factor)的mRNA 表达,促进突触可塑性[38],推测能改善抑郁症;薯蓣皂苷元作用TP53,从而减缓或抑制肠上皮细胞的过度增殖[39],并且能抑制由脂多糖/干扰素γ引发的c-Jun氨基末端激酶、核因子-κB激活,减少炎症反应[40];荷叶碱可能通过5-HT信号通路调节肠脑轴稳态,抑制肠道中HTR3A蛋白受体,减少IBS-D患者的内脏高敏反应[41]。四神汤成分–靶点–信号通路网络展现出多成分、多靶点、多通路协同作用的特点,推测四神汤能够通过调节肠道炎症、氧化应激和肠脑平衡来治疗抑郁症与腹泻型肠炎,实现“异病同治”。

综上所述,本研究系统探讨了四神汤成分–病因机制–信号通路之间关系。通过网络药理和分析对接初步地阐明了IBS-D的潜在机制,提示四神汤干预伴有抑郁症的IBS-D,潜在成分为槲皮素、木犀草素、荷叶碱、薯蓣皂苷元等;调控靶点为IL-6、AKT1、TP53、HTR2A、HTR3A;作用方式和炎症、氧化应激、细胞增殖密切相关,影响病理的通路涉及PI3K-AKT和5-HT等。四神汤治疗的确切作用机制需药理实验进行验证。

基金项目

咸宁市科技计划重点项目(2023SFYF069)。

NOTES

*通讯作者。

参考文献

[1] Zamani, M., Alizadeh‐Tabari, S. and Zamani, V. (2019) Systematic Review with Meta‐Analysis: The Prevalence of Anxiety and Depression in Patients with Irritable Bowel Syndrome. Alimentary Pharmacology & Therapeutics, 50, 132-143.
https://doi.org/10.1111/apt.15325
[2] Huang, J., Cai, Y., Su, Y., Zhang, M., Shi, Y., Zhu, N., et al. (2021) Gastrointestinal Symptoms during Depressive Episodes in 3256 Patients with Major Depressive Disorders: Findings from the NSSD. Journal of Affective Disorders, 286, 27-32.
https://doi.org/10.1016/j.jad.2021.02.039
[3] 张声生, 魏玮, 杨俭勤. 肠易激综合征中医诊疗专家共识意见(2017) [J]. 中医杂志, 2017, 58(18): 1614-1620.
[4] 梁士兵, 张英英, 王志婕, 等. 斯坦福治疗期望量表的汉化及在肝郁脾虚证腹泻型肠易激综合征患者中医治疗中的应用评价[J]. 中医杂志, 2024, 65(19): 1994-2001.
[5] 沈全鱼, 吴玉华. 泄泻[M]. 太原: 山西科学教育出版社, 1986.
[6] 王伟, 孙轸, 邓华亮. 从“脾藏意”探讨五加减正气散治疗腹泻型肠易激综合征的理论依据[J]. 中国医学创新, 2024, 21(27): 175-179.
[7] Liang, S., Wu, X., Hu, X., Niu, Y. and Jin, F. (2018) The Development and Tendency of Depression Researches: Viewed from the Microbiota-Gut-Brain Axis. Chinese Science Bulletin, 63, 2010-2025.
https://doi.org/10.1360/n972017-01182
[8] Wu, J., Masuy, I., Biesiekierski, J.R., Fitzke, H.E., Parikh, C., Schofield, L., et al. (2022) Gut‐Brain Axis Dysfunction Underlies Fodmap‐Induced Symptom Generation in Irritable Bowel Syndrome. Alimentary Pharmacology & Therapeutics, 55, 670-682.
https://doi.org/10.1111/apt.16812
[9] 王艳, 高田田, 王子颖, 等. 越鞠丸干预CUMS小鼠对抑郁样行为、功能性消化不良及PACAP/PAC1-R表达的影响[J]. 南京中医药大学学报, 2024, 40(3): 261-267.
[10] 刘庭妤. 台湾省经典药膳——四神汤[C]//2021中国药膳学术研讨会论文集. 2021: 3.
[11] 王珊娜. 四神汤加减治疗脾虚泄泻的疗效观察[J]. 中国疗养医学, 2019, 28(7): 769-770.
[12] Guo, P., Zhang, B., Zhao, J., Wang, C., Wang, Z., Liu, A., et al. (2022) Medicine-Food Herbs against Alzheimer’s Disease: A Review of Their Traditional Functional Features, Substance Basis, Clinical Practices and Mechanisms of Action. Molecules, 27, Article No. 901.
https://doi.org/10.3390/molecules27030901
[13] Hu, P., Ge, X., Gao, M., Wang, X., Zhang, Y., Li, Y., et al. (2022) Nelumbo nucifera Gaertn: An Updated Review of the Antitumor Activity and Mechanisms of Alkaloids. Pharmacological ResearchModern Chinese Medicine, 5, Article ID: 100167.
https://doi.org/10.1016/j.prmcm.2022.100167
[14] 郝瑞, 张莉莉, 顾成娟, 等. 薏苡仁、莲子、芡实治疗脾虚泄泻经验——仝小林三味小方撷萃[J]. 吉林中医药, 2020, 40(8): 992-994.
[15] 李锐平. 中医药治疗非小细胞肺癌EGFR-TKIs相关性腹泻的研究进展[J]. 中医学, 2023, 12(11): 3317-3322.
[16] Xie, X.W., Zhong, J.C., Li, D.P., et al. (2022) Research Progress of Dioscin in Prevention and Treatment of Primary Osteoporosis. Basic & Clinical Medicine, 42, 960.
[17] 徐蔚飞, 张建强. 痛泻四神汤联合西药治疗腹泻型肠易激综合征疗效观察及对胃肠激素水平的影响[J]. 新中医, 2020, 52(24): 84-87.
[18] Balmus, I., Ilie, O., Ciobica, A., Cojocariu, R., Stanciu, C., Trifan, A., et al. (2020) Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise—Searching for Gap Fillers in the Oxidative Stress Way of Thinking. Medicina, 56, Article No. 38.
https://doi.org/10.3390/medicina56010038
[19] Bai, C., Wang, J., Wang, Y., Liu, H., Li, J., Wang, S., et al. (2024) Exploration of the Mechanism of Traditional Chinese Medicine for Anxiety and Depression in Patients with Diarrheal Irritable Bowel Syndrome Based on Network Pharmacology and Meta-Analysis. Frontiers in Pharmacology, 15, Article ID: 1404738.
https://doi.org/10.3389/fphar.2024.1404738
[20] Wang, Y., Chen, S., Ma, T., Long, Q., Chen, L., Xu, K., et al. (2024) Promotion of Apoptosis in Melanoma Cells by Taxifolin through the PI3K/AKT Signaling Pathway: Screening of Natural Products Using WGCNA and CMAP Platforms. International Immunopharmacology, 138, Article ID: 112517.
https://doi.org/10.1016/j.intimp.2024.112517
[21] Honarbakhsh, M., Malta, K., Ericsson, A., Holloway, C., Kim, Y., Hammerling, U., et al. (2022) Β-Carotene Improves Fecal Dysbiosis and Intestinal Dysfunctions in a Mouse Model of Vitamin a Deficiency. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1867, Article ID: 159122.
https://doi.org/10.1016/j.bbalip.2022.159122
[22] Montazeri, M., Fakhar, M. and Keighobadi, M. (2022) The Potential Role of the Serotonin Transporter as a Drug Target against Parasitic Infections: A Scoping Review of the Literature. Recent Advances in Anti-Infective Drug Discovery, 17, 23-33.
https://doi.org/10.2174/1574891x16666220304232301
[23] Semwal, P., Painuli, S., Abu-Izneid, T., Rauf, A., Sharma, A., Daştan, S.D., et al. (2022) Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 1035441.
https://doi.org/10.1155/2022/1035441
[24] Guo, N., Wang, X., Xu, M., Bai, J., Yu, H. and Zhang, L. (2024) PI3K/AKT Signaling Pathway: Molecular Mechanisms and Therapeutic Potential in Depression. Pharmacological Research, 206, Article ID: 107300.
https://doi.org/10.1016/j.phrs.2024.107300
[25] Zegeye, M.M., Lindkvist, M., Fälker, K., Kumawat, A.K., Paramel, G., Grenegård, M., et al. (2018) Activation of the JAK/STAT3 and PI3K/AKT Pathways Are Crucial for IL-6 Trans-Signaling-Mediated Pro-Inflammatory Response in Human Vascular Endothelial Cells. Cell Communication and Signaling, 16, Article No. 55.
https://doi.org/10.1186/s12964-018-0268-4
[26] Maydych, V. (2019) The Interplay between Stress, Inflammation, and Emotional Attention: Relevance for Depression. Frontiers in Neuroscience, 13, Article No. 384.
https://doi.org/10.3389/fnins.2019.00384
[27] Bhuiyan, P., Al Mahtab, M. and Akbar, S.M.F. (2023) Unrevealing of Dysregulated Hub Genes Linked with Immune System and Inflammatory Signaling Pathways in the Pathogenesis of Irritable Bowel Syndrome by System Biology Approaches. Informatics in Medicine Unlocked, 39, Article ID: 101241.
https://doi.org/10.1016/j.imu.2023.101241
[28] Soussi, T. and Wiman, K.G. (2015) TP53: An Oncogene in Disguise. Cell Death & Differentiation, 22, 1239-1249.
https://doi.org/10.1038/cdd.2015.53
[29] Cooks, T., Harris, C.C. and Oren, M. (2014) Caught in the Cross Fire: P53 in Inflammation. Carcinogenesis, 35, 1680-1690.
https://doi.org/10.1093/carcin/bgu134
[30] Brunetti, L., Francavilla, F., Leopoldo, M. and Lacivita, E. (2024) Allosteric Modulators of Serotonin Receptors: A Medicinal Chemistry Survey. Pharmaceuticals, 17, Article No. 695.
https://doi.org/10.3390/ph17060695
[31] Layunta, E., Buey, B., Mesonero, J.E. and Latorre, E. (2021) Crosstalk between Intestinal Serotonergic System and Pattern Recognition Receptors on the Microbiota-Gut-Brain Axis. Frontiers in Endocrinology, 12, Article ID: 748254.
https://doi.org/10.3389/fendo.2021.748254
[32] Balmus, I., Ciobica, A., Cojocariu, R., Luca, A. and Gorgan, L. (2020) Irritable Bowel Syndrome and Neurological Deficiencies: Is There a Relationship? The Possible Relevance of the Oxidative Stress Status. Medicina, 56, Article No. 175.
https://doi.org/10.3390/medicina56040175
[33] Huang, J., Chen, L., Wu, J., Ai, D., Zhang, J., Chen, T., et al. (2022) Targeting the PI3K/AKT/mTOR Signaling Pathway in the Treatment of Human Diseases: Current Status, Trends, and Solutions. Journal of Medicinal Chemistry, 65, 16033-16061.
https://doi.org/10.1021/acs.jmedchem.2c01070
[34] Sun, L., Xu, G., Dong, Y., Li, M., Yang, L. and Lu, W. (2020) Quercetin Protects against Lipopolysaccharide-Induced Intestinal Oxidative Stress in Broiler Chickens through Activation of Nrf2 Pathway. Molecules, 25, Article No. 1053.
https://doi.org/10.3390/molecules25051053
[35] Jazvinšćak Jembrek, M., Oršolić, N., Karlović, D. and Peitl, V. (2023) Flavonols in Action: Targeting Oxidative Stress and Neuroinflammation in Major Depressive Disorder. International Journal of Molecular Sciences, 24, Article No. 6888.
https://doi.org/10.3390/ijms24086888
[36] 周阿成, 金黑鹰. 槲皮素对结肠癌作用及其机制的研究进展[J]. 世界华人消化杂志, 2011, 19(9): 936-939.
[37] Aubrey, B.J., Kelly, G.L., Janic, A., Herold, M.J. and Strasser, A. (2017) How Does P53 Induce Apoptosis and How Does This Relate to P53-Mediated Tumour Suppression? Cell Death & Differentiation, 25, 104-113.
https://doi.org/10.1038/cdd.2017.169
[38] Gite, S., Ross, R.P., Kirke, D., Guihéneuf, F., Aussant, J., Stengel, D.B., et al. (2018) Nutraceuticals to Promote Neuronal Plasticity in Response to Corticosterone-Induced Stress in Human Neuroblastoma Cells. Nutritional Neuroscience, 22, 551-568.
https://doi.org/10.1080/1028415x.2017.1418728
[39] Li, L., Rao, J.N., Guo, X., Liu, L., Santora, R., Bass, B.L., et al. (2001) Polyamine Depletion Stabilizes P53 Resulting in Inhibition of Normal Intestinal Epithelial Cell Proliferation. American Journal of Physiology-Cell Physiology, 281, C941-C953.
https://doi.org/10.1152/ajpcell.2001.281.3.c941
[40] Jung, D., Park, H., Byun, H., Park, Y., Kim, T., Kim, B., et al. (2010) Diosgenin Inhibits Macrophage-Derived Inflammatory Mediators through Downregulation of CK2, JNK, NF-κB and AP-1 Activation. International Immunopharmacology, 10, 1047-1054.
https://doi.org/10.1016/j.intimp.2010.06.004
[41] Crowell, M.D. and Wessinger, S.B. (2007) 5-HT and the Brain-Gut Axis: Opportunities for Pharmacologic Intervention. Expert Opinion on Investigational Drugs, 16, 761-765.
https://doi.org/10.1517/13543784.16.6.761