[1]
|
Majidinia, M., Sadeghpour, A. and Yousefi, B. (2017) The Roles of Signaling Pathways in Bone Repair and Regeneration. Journal of Cellular Physiology, 233, 2937-2948. https://doi.org/10.1002/jcp.26042
|
[2]
|
Migliorini, F., Cuozzo, F., Torsiello, E., Spiezia, F., Oliva, F. and Maffulli, N. (2021) Autologous Bone Grafting in Trauma and Orthopaedic Surgery: An Evidence-Based Narrative Review. Journal of Clinical Medicine, 10, Article 4347. https://doi.org/10.3390/jcm10194347
|
[3]
|
Miron, R.J., Gruber, R., Hedbom, E., Saulacic, N., Zhang, Y., Sculean, A., et al. (2012) Impact of Bone Harvesting Techniques on Cell Viability and the Release of Growth Factors of Autografts. Clinical Implant Dentistry and Related Research, 15, 481-489. https://doi.org/10.1111/j.1708-8208.2012.00440.x
|
[4]
|
Aoki, K., Ideta, H., Komatsu, Y., Tanaka, A., Kito, M., Okamoto, M., et al. (2024) Bone-Regeneration Therapy Using Biodegradable Scaffolds: Calcium Phosphate Bioceramics and Biodegradable Polymers. Bioengineering, 11, Article 180. https://doi.org/10.3390/bioengineering11020180
|
[5]
|
Abazari, M.F., Soleimanifar, F., Amini Faskhodi, M., Mansour, R.N., Amini Mahabadi, J., Sadeghi, S., et al. (2019) Improved Osteogenic Differentiation of Human Induced Pluripotent Stem Cells Cultured on Polyvinylidene Fluoride/Collagen/Platelet‐Rich Plasma Composite Nanofibers. Journal of Cellular Physiology, 235, 1155-1164. https://doi.org/10.1002/jcp.29029
|
[6]
|
Zhao, Y., Zheng, J., Xiong, Y., Wang, H., Yang, S., Sun, X., et al. (2022) Hierarchically Engineered Artificial Lamellar Bone with High Strength and Toughness. Small Structures, 4, Article ID: 2200256. https://doi.org/10.1002/sstr.202200256
|
[7]
|
Wang, J., Liu, Q., Guo, Z., Pan, H., Liu, Z. and Tang, R. (2021) Progress on Biomimetic Mineralization and Materials for Hard Tissue Regeneration. ACS Biomaterials Science & Engineering, 9, 1757-1773. https://doi.org/10.1021/acsbiomaterials.1c01070
|
[8]
|
Wu, E., Huang, L., Shen, Y., Wei, Z., Li, Y., Wang, J., et al. (2024) Application of Gelatin-Based Composites in Bone Tissue Engineering. Heliyon, 10, e36258. https://doi.org/10.1016/j.heliyon.2024.e36258
|
[9]
|
Sun, W., Xie, W., Hu, K., Yang, Z., Han, L., Li, L., et al. (2024) Three-Dimensional Bioprinting of Strontium-Modified Controlled Assembly of Collagen Polylactic Acid Composite Scaffold for Bone Repair. Polymers, 16, Article 498. https://doi.org/10.3390/polym16040498
|
[10]
|
Hosseini, M., Dadashi‐Noshahr, K., Islami, M., Saburi, E., Nikpoor, A.R., Mellati, A., et al. (2020) A Novel Silk/Pes Hybrid Nanofibrous Scaffold Promotes the in Vitro Proliferation and Differentiation of Adipose‐Derived Mesenchymal Stem Cells into Insulin Producing Cells. Polymers for Advanced Technologies, 31, 1857-1864. https://doi.org/10.1002/pat.4912
|
[11]
|
Kołodziejska, M., Jankowska, K., Klak, M. and Wszoła, M. (2021) Chitosan as an Underrated Polymer in Modern Tissue Engineering. Nanomaterials, 11, Article 3019. https://doi.org/10.3390/nano11113019
|
[12]
|
Tan, Y., Rajoka, M.S.R., Ke, Z., Mehwish, H.M., Deng, W., Li, J., et al. (2022) Effect of Squid Cartilage Chitosan Molecular Structure on the Properties of Its Monofilament as an Absorbable Surgical Suture. Polymers, 14, Article 1306. https://doi.org/10.3390/polym14071306
|
[13]
|
Bauer, S., Schmuki, P., von der Mark, K. and Park, J. (2013) Engineering Biocompatible Implant Surfaces. Progress in Materials Science, 58, 261-326. https://doi.org/10.1016/j.pmatsci.2012.09.001
|
[14]
|
João, C.F.C., Kullberg, A.T., Silva, J.C. and Borges, J.P. (2017) Chitosan Inverted Colloidal Crystal Scaffolds: Influence of Molecular Weight on Structural Stability. Materials Letters, 193, 50-53. https://doi.org/10.1016/j.matlet.2017.01.096
|
[15]
|
Garcia Garcia, C.E., Bossard, F. and Rinaudo, M. (2021) Electrospun Biomaterials from Chitosan Blends Applied as Scaffold for Tissue Regeneration. Polymers, 13, Article 1037. https://doi.org/10.3390/polym13071037
|
[16]
|
Li, M., You, J., Qin, Q., Liu, M., Yang, Y., Jia, K., et al. (2023) A Comprehensive Review on Silk Fibroin as a Persuasive Biomaterial for Bone Tissue Engineering. International Journal of Molecular Sciences, 24, Article 2660. https://doi.org/10.3390/ijms24032660
|
[17]
|
Kim, M.H., Kim, B.S., Lee, J., Cho, D., Kwon, O.H. and Park, W.H. (2017) Silk Fibroin/Hydroxyapatite Composite Hydrogel Induced by γ-Ray Irradiation for Bone Tissue Engineering. Biomaterials Research, 21, Article 12. https://doi.org/10.1186/s40824-017-0098-2
|
[18]
|
Matinong, A.M.E., Pickering, K.L., Waterland, M.R., Chisti, Y. and Haverkamp, R.G. (2024) Gelatin and Collagen from Sheepskin. Polymers, 16, Article 1563. https://doi.org/10.3390/polym16111563
|
[19]
|
Wang, H., Boerman, O.C., Sariibrahimoglu, K., Li, Y., Jansen, J.A. and Leeuwenburgh, S.C.G. (2012) Comparison of Micro Vs. Nanostructured Colloidal Gelatin Gels for Sustained Delivery of Osteogenic Proteins: Bone Morphogenetic Protein-2 and Alkaline Phosphatase. Biomaterials, 33, 8695-8703. https://doi.org/10.1016/j.biomaterials.2012.08.024
|
[20]
|
Codrea, C.I., Baykara, D., Mitran, R., Koyuncu, A.C.Ç., Gunduz, O. and Ficai, A. (2024) 3D-Bioprinted Gelatin Methacryloyl-Strontium-Doped Hydroxyapatite Composite Hydrogels Scaffolds for Bone Tissue Regeneration. Polymers, 16, Article 1932. https://doi.org/10.3390/polym16131932
|
[21]
|
Saska, S., Teixeira, L.N., Tambasco de Oliveira, P., Minarelli Gaspar, A.M., Lima Ribeiro, S.J., Messaddeq, Y., et al. (2012) Bacterial Cellulose-Collagen Nanocomposite for Bone Tissue Engineering. Journal of Materials Chemistry, 22, 22102-22112. https://doi.org/10.1039/c2jm33762b
|
[22]
|
Reakasame, S. and Boccaccini, A.R. (2017) Oxidized Alginate-Based Hydrogels for Tissue Engineering Applications: A Review. Biomacromolecules, 19, 3-21. https://doi.org/10.1021/acs.biomac.7b01331
|
[23]
|
Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P. and Winnicka, K. (2016) Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. International Journal of Polymer Science, 2016, Article ID: 7697031. https://doi.org/10.1155/2016/7697031
|
[24]
|
Chen, X., Wu, T., Bu, Y., Yan, H. and Lin, Q. (2024) Fabrication and Biomedical Application of Alginate Composite Hydrogels in Bone Tissue Engineering: A Review. International Journal of Molecular Sciences, 25, Article 7810. https://doi.org/10.3390/ijms25147810
|
[25]
|
Guo, L., Chen, H., Li, Y., Zhou, J. and Chen, J. (2023) Biocompatible Scaffolds Constructed by Chondroitin Sulfate Microspheres Conjugated 3d-Printed Frameworks for Bone Repair. Carbohydrate Polymers, 299, Article ID: 120188. https://doi.org/10.1016/j.carbpol.2022.120188
|
[26]
|
Fenbo, M., Sijing, L., Ruiz-Ortega, L.I., Yuanjun, Z., Lei, X., Kui, W., et al. (2020) Effects of Alginate/Chondroitin Sulfate-Based Hydrogels on Bone Defects Healing. Materials Science and Engineering: C, 116, Article ID: 111217. https://doi.org/10.1016/j.msec.2020.111217
|
[27]
|
Gong, C., Yang, J., Zhang, X., Wei, Z., Wang, X., Huang, X., et al. (2023) Functionalized Magnesium Phosphate Cement Induces in Situ Vascularized Bone Regeneration via Surface Lyophilization of Chondroitin Sulfate. Biomedicines, 12, Article 74. https://doi.org/10.3390/biomedicines12010074
|
[28]
|
Yoo, D., Oh, M., Kim, M. and Lee, D. (2024) In Vivo Evaluation of Demineralized Bone Matrix with Cancellous Bone Putty Formed Using Hydroxyethyl Cellulose as an Allograft Material in a Canine Tibial Defect Model. Animals, 14, Article 2997. https://doi.org/10.3390/ani14202997
|
[29]
|
Feroz, S., Muhammad, N., Ratnayake, J. and Dias, G. (2020) Keratin-Based Materials for Biomedical Applications. Bioactive Materials, 5, 496-509. https://doi.org/10.1016/j.bioactmat.2020.04.007
|
[30]
|
Huang, R., Zhu, X.M., Tu, H.Y. and Wan, A. (2014) The Crystallization Behavior of Porous PLA Prepared by Modified Solvent Casting/Particulate Leaching Technique for Potential Use of Tissue Engineering Scaffold. Materials Letters, 136, 126-129. https://doi.org/10.1016/j.matlet.2014.08.044
|
[31]
|
Janik, H. and Marzec, M. (2015) A Review: Fabrication of Porous Polyurethane Scaffolds. Materials Science and Engineering: C, 48, 586-591. https://doi.org/10.1016/j.msec.2014.12.037
|
[32]
|
Song, P., Zhou, C., Fan, H., Zhang, B., Pei, X., Fan, Y., et al. (2018) Novel 3D Porous Biocomposite Scaffolds Fabricated by Fused Deposition Modeling and Gas Foaming Combined Technology. Composites Part B: Engineering, 152, 151-159. https://doi.org/10.1016/j.compositesb.2018.06.029
|
[33]
|
Kalluri, L., Duan, Y. and Janorkar, A.V. (2024) Electrospun Polymeric Nanofibers for Dental Applications. Journal of Applied Polymer Science, 141, e55224. https://doi.org/10.1002/app.55224
|
[34]
|
Kam, D., Rulf, O., Reisinger, A., Lieberman, R. and Magdassi, S. (2024) 3D Printing by Stereolithography Using Thermal Initiators. Nature Communications, 15, Article No. 2285. https://doi.org/10.1038/s41467-024-46532-0
|
[35]
|
Norjeli, M.F., Tamchek, N., Osman, Z., Mohd Noor, I.S., Kufian, M.Z. and Ghazali, M.I.B.M. (2024) Correction: Norjeli et al. Additive Manufacturing Polyurethane Acrylate via Stereolithography for 3D Structure Polymer Electrolyte Application. Gels 2022, 8, 589. Gels, 10, Article 423. https://doi.org/10.3390/gels10070423
|
[36]
|
Gnanasagaran, C.L., Ramachandran, K., Jamadon, N.H., Kumar, V.H., Muchtar, A., Pazhani, A., et al. (2023) Microstructural and Mechanical Behaviours of Y-TZP Prepared via Slip-Casting and Fused Deposition Modelling (FDM). Heliyon, 9, e21705. https://doi.org/10.1016/j.heliyon.2023.e21705
|
[37]
|
Hwang, E., Hong, J., Yoon, J. and Hong, S. (2022) Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review. Materials, 15, Article 6006. https://doi.org/10.3390/ma15176006
|
[38]
|
Budharaju, H., Sundaramurthi, D. and Sethuraman, S. (2024) Embedded 3D Bioprinting—An Emerging Strategy to Fabricate Biomimetic & Large Vascularized Tissue Constructs. Bioactive Materials, 32, 356-384. https://doi.org/10.1016/j.bioactmat.2023.10.012
|
[39]
|
Xu, Z., Li, K., Zhou, K., Li, S., Chen, H., Zeng, J., et al. (2023) 3D Printing Silk Fibroin/Hydroxyapatite/Sodium Alginate Composite Scaffolds for Bone Tissue Engineering. Fibers and Polymers, 24, 275-283. https://doi.org/10.1007/s12221-023-00090-2
|
[40]
|
Piaia, L., Silva, S.S., Gomes, J.M., R Franco, A., Fernandes, E.M., Lobo, F.C.M., et al. (2021) Chitosan/β-TCP Composites Scaffolds Coated with Silk Fibroin: A Bone Tissue Engineering Approach. Biomedical Materials, 17, Article ID: 015003. https://doi.org/10.1088/1748-605x/ac355a
|
[41]
|
Peng, K., Chen, S., Senthooran, V., Hu, X., Qi, Y., Zhang, C., et al. (2024) Microporous Polylactic Acid/Chitin Nanocrystals Composite Scaffolds Using In-Situ Foaming 3D Printing for Bone Tissue Engineering. International Journal of Biological Macromolecules, 279, Article ID: 135055. https://doi.org/10.1016/j.ijbiomac.2024.135055
|
[42]
|
Arslan, Y.E., Sezgin Arslan, T., Derkus, B., Emregul, E. and Emregul, K.C. (2017) Fabrication of Human Hair Keratin/Jellyfish Collagen/Eggshell-Derived Hydroxyapatite Osteoinductive Biocomposite Scaffolds for Bone Tissue Engineering: From Waste to Regenerative Medicine Products. Colloids and Surfaces B: Biointerfaces, 154, 160-170. https://doi.org/10.1016/j.colsurfb.2017.03.034
|
[43]
|
Janmohammadi, M., Nazemi, Z., Salehi, A.O.M., Seyfoori, A., John, J.V., Nourbakhsh, M.S., et al. (2023) Cellulose-based Composite Scaffolds for Bone Tissue Engineering and Localized Drug Delivery. Bioactive Materials, 20, 137-163. https://doi.org/10.1016/j.bioactmat.2022.05.018
|
[44]
|
Al-Madhagy, G., Darwich, K., Alghoraibi, I. and Al-Moraissi, E.A. (2023) Radiographic Evaluation of Alveolar Ridge Preservation Using a Chitosan/Polyvinyl Alcohol Nanofibrous Matrix: A Randomized Clinical Study. Journal of Cranio-Maxillofacial Surgery, 51, 772-779. https://doi.org/10.1016/j.jcms.2023.09.020
|
[45]
|
Kawai, T., Suzuki, O., Matsui, K., Tanuma, Y., Takahashi, T. and Kamakura, S. (2015) Octacalcium Phosphate Collagen Composite Facilitates Bone Regeneration of Large Mandibular Bone Defect in Humans. Journal of Tissue Engineering and Regenerative Medicine, 11, 1641-1647. https://doi.org/10.1002/term.2110
|
[46]
|
Lampropoulou-Adamidou, K., Karlafti, E., Argyrou, C., Makris, K., Trovas, G., Dontas, I.A., et al. (2022) Effect of Calcium and Vitamin D Supplementation with and without Collagen Peptides on Volumetric and Areal Bone Mineral Density, Bone Geometry and Bone Turnover in Postmenopausal Women with Osteopenia. Journal of Clinical Densitometry, 25, 357-372. https://doi.org/10.1016/j.jocd.2021.11.011
|
[47]
|
Gabay, E., Katorza, A., Zigdon‐Giladi, H., Horwitz, J. and Machtei, E.E. (2022) Histological and Dimensional Changes of the Alveolar Ridge Following Tooth Extraction When Using Collagen Matrix and Collagen‐Embedded Xenogenic Bone Substitute: A Randomized Clinical Trial. Clinical Implant Dentistry and Related Research, 24, 382-390. https://doi.org/10.1111/cid.13085
|
[48]
|
Balice, G., Paolantonio, M., De Ninis, P., Rexhepi, I., Serroni, M., Frisone, A., et al. (2024) Treatment of Unfavorable Intrabony Defects with Autogenous Bone Graft in Combination with Leukocyte-and Platelet-Rich Fibrin or Collagen Membranes: A Non-Inferiority Study. Medicina, 60, Article 1091. https://doi.org/10.3390/medicina60071091
|
[49]
|
Guillén-Carvajal, K., Valdez-Salas, B., Beltrán-Partida, E., Salomón-Carlos, J. and Cheng, N. (2023) Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers, 15, Article 2762. https://doi.org/10.3390/polym15132762
|
[50]
|
Zheng, A., Wang, X., Xin, X., Peng, L., Su, T., Cao, L., et al. (2023) Promoting Lacunar Bone Regeneration with an Injectable Hydrogel Adaptive to the Microenvironment. Bioactive Materials, 21, 403-421. https://doi.org/10.1016/j.bioactmat.2022.08.031
|
[51]
|
Wang, H., Hu, B., Li, H., Feng, G., Pan, S., Chen, Z., et al. (2022) Biomimetic Mineralized Hydroxyapatite Nanofiber-Incorporated Methacrylated Gelatin Hydrogel with Improved Mechanical and Osteoinductive Performances for Bone Regeneration. International Journal of Nanomedicine, 17, 1511-1529. https://doi.org/10.2147/ijn.s354127
|
[52]
|
Alcântara, C.E.P., Castro, M.A.A., Noronha, M.S.D., Martins-Junior, P.A., Mendes, R.D.M., Caliari, M.V., et al. (2018) Hyaluronic Acid Accelerates Bone Repair in Human Dental Sockets: A Randomized Triple-Blind Clinical Trial. Brazilian Oral Research, 32, e84. https://doi.org/10.1590/1807-3107bor-2018.vol32.0084
|
[53]
|
Guo, X., Zong, X., Song, G., Zhao, J., Lai, C., Zhang, D., et al. (2024) Would Hyaluronic Acid-Induced Mental Bone Resorption Be a Concern? A Prospective Controlled Cohort Study and an Updated Retrospective Cohort Study. International Journal of Surgery, 110, 1502-1510. https://doi.org/10.1097/js9.0000000000000955
|
[54]
|
Li, Y., Tang, S., Luo, Z., Liu, K., Luo, Y., Wen, W., et al. (2024) Chitin Whisker/chitosan Liquid Crystal Hydrogel Assisted Scaffolds with Bone-Like ECM Microenvironment for Bone Regeneration. Carbohydrate Polymers, 332, Article ID: 121927. https://doi.org/10.1016/j.carbpol.2024.121927
|
[55]
|
Kołakowska, A., Kołbuk, D., Chwojnowski, A., Rafalski, A. and Gadomska-Gajadhur, A. (2023) Chitosan-Based High-Intensity Modification of the Biodegradable Substitutes for Cancellous Bone. Journal of Functional Biomaterials, 14, Article 410. https://doi.org/10.3390/jfb14080410
|
[56]
|
Yu, L., Wei, Q., Li, J., Wang, H., Meng, Q., Xie, E., et al. (2023) Engineered Periosteum-Diaphysis Substitutes with Biomimetic Structure and Composition Promote the Repair of Large Segmental Bone Defects. Composites Part B: Engineering, 252, Article ID: 110505. https://doi.org/10.1016/j.compositesb.2023.110505
|
[57]
|
Lu, L., Liu, X., Sun, Y., Wang, S., Liu, J., Ge, S., et al. (2024) Silk‐Fabric Reinforced Silk for Artificial Bones. Advanced Materials, 36, Article ID: 2308748. https://doi.org/10.1002/adma.202308748
|
[58]
|
Wang, H., Leeuwenburgh, S.C.G., Li, Y. and Jansen, J.A. (2012) The Use of Micro-and Nanospheres as Functional Components for Bone Tissue Regeneration. Tissue Engineering Part B: Reviews, 18, 24-39. https://doi.org/10.1089/ten.teb.2011.0184
|
[59]
|
Dong, Z., Meng, X., Yang, W., Zhang, J., Sun, P., Zhang, H., et al. (2021) Progress of Gelatin-Based Microspheres (GMSS) as Delivery Vehicles of Drug and Cell. Materials Science and Engineering: C, 122, Article ID: 111949. https://doi.org/10.1016/j.msec.2021.111949
|
[60]
|
Qayyum, A.S., Jain, E., Kolar, G., Kim, Y., Sell, S.A. and Zustiak, S.P. (2017) Design of Electrohydrodynamic Sprayed Polyethylene Glycol Hydrogel Microspheres for Cell Encapsulation. Biofabrication, 9, Article ID: 025019. https://doi.org/10.1088/1758-5090/aa703c
|
[61]
|
Zhang, Y., Wang, W., Chen, Z., Shi, H., Zhang, W., Zhang, X., et al. (2023) An Artificial Bone Filling Material of Poly L-Lactic Acid/Collagen/Nano-Hydroxyapatite Microspheres: Preparation and Collagen Regulation on the Property. International Journal of Biological Macromolecules, 229, 35-50. https://doi.org/10.1016/j.ijbiomac.2022.12.200
|