[1]
|
Zhou, Y., Tao, L., Qiu, J., Xu, J., Yang, X., Zhang, Y., et al. (2024) Tumor Biomarkers for Diagnosis, Prognosis and Targeted Therapy. Signal Transduction and Targeted Therapy, 9, Article No. 132. https://doi.org/10.1038/s41392-024-01823-2
|
[2]
|
Nair, M., Sandhu, S.S. and Sharma, A.K. (2018) Cancer Molecular Markers: A Guide to Cancer Detection and Management. Seminars in Cancer Biology, 52, 39-55. https://doi.org/10.1016/j.semcancer.2018.02.002
|
[3]
|
Miyamura, S., Oe, R., Nakahara, T., Koresawa, H., Okada, S., Taue, S., et al. (2023) Rapid, High-Sensitivity Detection of Biomolecules Using Dual-Comb Biosensing. Scientific Reports, 13, Article No. 14541. https://doi.org/10.1038/s41598-023-41436-3
|
[4]
|
Swanson, D.M., Pearson, J.M. and Evans-Nguyen, T. (2021) Comparing ELISA and LC-MS-MS: A Simple, Targeted Postmortem Blood Screen. Journal of Analytical Toxicology, 46, 797-802. https://doi.org/10.1093/jat/bkab104
|
[5]
|
Hosseini, S., Vázquez-Villegas, P., Rito-Palomares, M. and Martinez-Chapa, S.O. (2017) Advantages, Disadvantages and Modifications of Conventional Elisa. In: Springer Briefs in Applied Sciences and Technology, Springer, 67-115. https://doi.org/10.1007/978-981-10-6766-2_5
|
[6]
|
Jin, Z., Yim, W., Retout, M., Housel, E., Zhong, W., Zhou, J., et al. (2024) Colorimetric Sensing for Translational Applications: From Colorants to Mechanisms. Chemical Society Reviews, 53, 7681-7741. https://doi.org/10.1039/d4cs00328d
|
[7]
|
Pinheiro, T., Marques, A.C., Carvalho, P., Martins, R. and Fortunato, E. (2021) Paper Microfluidics and Tailored Gold Nanoparticles for Nonenzymatic, Colorimetric Multiplex Biomarker Detection. ACS Applied Materials & Interfaces, 13, 3576-3590. https://doi.org/10.1021/acsami.0c19089
|
[8]
|
Mazur, F., Han, Z., Tjandra, A.D. and Chandrawati, R. (2024) Digitalization of Colorimetric Sensor Technologies for Food Safety. Advanced Materials, 36, Article 240274. https://doi.org/10.1002/adma.202404274
|
[9]
|
Balbach, S., Jiang, N., Moreddu, R., Dong, X., Kurz, W., Wang, C., et al. (2021) Smartphone-Based Colorimetric Detection System for Portable Health Tracking. Analytical Methods, 13, 4361-4369. https://doi.org/10.1039/d1ay01209f
|
[10]
|
Meng, R., Yu, Z., Fu, Q., Fan, Y., Fu, L., Ding, Z., et al. (2024) Smartphone-Based Colorimetric Detection Platform Using Color Correction Algorithms to Reduce External Interference. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 316, Article 124350. https://doi.org/10.1016/j.saa.2024.124350
|
[11]
|
Celikbas, E., Ceylan, A.E. and Timur, S. (2020) Paper-Based Colorimetric Spot Test Utilizing Smartphone Sensing for Detection of Biomarkers. Talanta, 208, Article 120446. https://doi.org/10.1016/j.talanta.2019.120446
|
[12]
|
Krishnan, T., Wang, H. and Vo-Dinh, T. (2021) Smartphone-Based Device for Colorimetric Detection of Microrna Biomarkers Using Nanoparticle-Based Assay. Sensors, 21, Article 8044. https://doi.org/10.3390/s21238044
|
[13]
|
Park, J. (2024) Smartphone Based Lateral Flow Immunoassay Quantifications. Journal of Immunological Methods, 533, Article 113745. https://doi.org/10.1016/j.jim.2024.113745
|
[14]
|
Ramírez-Coronel, A.A., Alameri, A.A., Altalbawy, F., Sanaan Jabbar, H., Lateef Al-Awsi, G.R., Iswanto, A.H., et al. (2023) Smartphone-Facilitated Mobile Colorimetric Probes for Rapid Monitoring of Chemical Contaminations in Food: Advances and Outlook. Critical Reviews in Analytical Chemistry, 54, 2290-2308. https://doi.org/10.1080/10408347.2022.2164173
|
[15]
|
Cole, K. and Levine, B.S. (2020) Ultraviolet-Visible Spectrophotometry. In: Principles of Forensic Toxicology, Springer International Publishing, 127-134. https://doi.org/10.1007/978-3-030-42917-1_10
|
[16]
|
Myers, F.B., Moffatt, B., El Khaja, R., Chatterjee, T., Marwaha, G., McGee, M., et al. (2022) A Robust, Low-Cost Instrument for Real-Time Colorimetric Isothermal Nucleic Acid Amplification. PLOS ONE, 17, e0256789. https://doi.org/10.1371/journal.pone.0256789
|
[17]
|
Monogarova, O.V., Oskolok, K.V. and Apyari, V.V. (2018) Colorimetry in Chemical Analysis. Journal of Analytical Chemistry, 73, 1076-1084. https://doi.org/10.1134/s1061934818110060
|
[18]
|
Bao, X., Jiang, S., Wang, Y., Yu, M. and Han, J. (2018) A Remote Computing Based Point-of-Care Colorimetric Detection System with a Smartphone under Complex Ambient Light Conditions. The Analyst, 143, 1387-1395. https://doi.org/10.1039/c7an01685a
|
[19]
|
Cardozo, J.C., Barbosa Segundo, I.D., de Medeiros Leandro, M.E., Gondim, A.D., Cavalcanti, L.N., dos Santos, E.V., et al. (2024) Decentralized and Cost-Effective Colorimetry Analysis by Smartphone-Based Method Digital Image for Monitoring Electrochemical Elimination of Dye from Water Matrices. Journal of Solid State Electrochemistry, 29, 873-885. https://doi.org/10.1007/s10008-024-06146-4
|
[20]
|
Ciaccheri, L., Adinolfi, B., Mencaglia, A.A. and Mignani, A.G. (2023) Colorimetry by a Smartphone. In: Lecture Notes in Electrical Engineering, Springer, 88-93. https://doi.org/10.1007/978-3-031-25706-3_15
|
[21]
|
Coleman, B., Coarsey, C. and Asghar, W. (2019) Cell Phone Based Colorimetric Analysis for Point-of-Care Settings. The Analyst, 144, 1935-1947. https://doi.org/10.1039/c8an02521e
|
[22]
|
Feng, J., Jiang, H., Jin, Y., Rong, S., Wang, S., Wang, H., et al. (2023) A Device-Independent Method for the Colorimetric Quantification on Microfluidic Sensors Using a Color Adaptation Algorithm. Microchimica Acta, 190, Article No. 148. https://doi.org/10.1007/s00604-023-05731-0
|
[23]
|
Liu, J., Geng, Q. and Geng, Z. (2024) A Route to the Colorimetric Detection of Alpha-Fetoprotein Based on a Smartphone. Micromachines, 15, Article 1116. https://doi.org/10.3390/mi15091116
|
[24]
|
Wang, Y., Gao, W., Feng, B., Shen, H., Chen, X. and Yu, S. (2024) Surface Protein Analysis of Breast Cancer Exosomes Using Visualized Strategy on Centrifugal Disk Chip. International Journal of Biological Macromolecules, 280, Article 135651. https://doi.org/10.1016/j.ijbiomac.2024.135651
|
[25]
|
Liu, J., Li, Z., Zhang, J., Wang, G. and Su, X. (2022) A Dual-Signal Fluorometric-Colorimetric Sensing Platform and Visual Detection with a Smartphone for the Determination of Β-Galactosidase Activity Based on Fluorescence Silicon Nanoparticles. Talanta, 240, Article 123165. https://doi.org/10.1016/j.talanta.2021.123165
|
[26]
|
Liu, P., Sun, Q., Gai, Z., Yang, F. and Yang, Y. (2024) Dual-Mode Fluorescence and Colorimetric Smartphone-Based Sensing Platform with Oxidation-Induced Self-Assembled Nanoflowers for Sarcosine Detection. Analytica Chimica Acta, 1306, Article 342586. https://doi.org/10.1016/j.aca.2024.342586
|
[27]
|
Liu, X., Fang, Y., Liu, J., Chen, X., Teng, F. and Li, C. (2024) Nanozyme-Based Pump-Free Microfluidic Chip for Colorectal Cancer Diagnosis via Circulating Cancer Stem Cell Detection. ACS Sensors, 9, 5090-5098. https://doi.org/10.1021/acssensors.4c00774
|
[28]
|
Mojumdar, A., B S, U. and Packirisamy, G. (2024) A Simple and Effective Method for Smartphone-Based Detection of Polyamines in Oral Cancer. Biomedical Materials, 19, Article 045044. https://doi.org/10.1088/1748-605x/ad581a
|
[29]
|
Liu, H., Tian, Y., Xue, C., Niu, Q., Chen, C. and Yan, X. (2022) Analysis of Extracellular Vesicle DNA at the Single-Vesicle Level by Nano-Flow Cytometry. Journal of Extracellular Vesicles, 11, e12206. https://doi.org/10.1002/jev2.12206
|
[30]
|
Odiwuor, N., Li, J., He, P., Wang, N., Murtaza, A., Jiang, M., et al. (2025) Facilitating Self-Testing with a Fast, Accurate, and Simplified Shelf-Stable Colorimetric LAMP System for Mpox and Sars-Cov-2 Detection. Talanta, 283, Article 127119. https://doi.org/10.1016/j.talanta.2024.127119
|
[31]
|
Li, Q., Li, J., Yang, D., Xiang, C. and Yang, Y. (2025) Dual-Mode Colorimetric-Fluorescence Biosensor for Endotoxin Detection Based on Cs@Fe,Cu/CDs-MnO2 Nanomaterials. Talanta, 285, Article 127330. https://doi.org/10.1016/j.talanta.2024.127330
|
[32]
|
Zhou, X., Wu, H., Chen, X., Li, W., Zhang, J., Wang, M., et al. (2024) Glucose-Metabolism-Triggered Colorimetric Sensor Array for Point-of-Care Differentiation and Antibiotic Susceptibility Testing of Bacteria. Food Chemistry, 438, Article 137983. https://doi.org/10.1016/j.foodchem.2023.137983
|
[33]
|
Duan, H., Qi, W., Wang, S., Zheng, L., Yuan, J. and Lin, J. (2022) Sample-in-Answer-out Colorimetric Detection of Salmonella Typhimurium Using Non-Enzymatic Cascade Amplification. Analytica Chimica Acta, 1218, Article 339850. https://doi.org/10.1016/j.aca.2022.339850
|
[34]
|
Celik, C., Demir, N.Y., Duman, M., Ildiz, N. and Ocsoy, I. (2023) Red Cabbage Extract-Mediated Colorimetric Sensor for Swift, Sensitive and Economic Detection of Urease-Positive Bacteria by Naked Eye and Smartphone Platform. Scientific Reports, 13, Article No. 2056. https://doi.org/10.1038/s41598-023-28604-1
|
[35]
|
Deng, R., Chao, X., Li, H., Li, X., Yang, Z. and Yu, H. (2023) Smartphone-Based Microplate Reader for High-Throughput Quantitation of Disease Markers in Serum. The Analyst, 148, 735-741. https://doi.org/10.1039/d2an01571d
|
[36]
|
Yeasmin, S., Ammanath, G., Ali, Y., Boehm, B.O., Yildiz, U.H., Palaniappan, A., et al. (2020) Colorimetric Urinalysis for On-Site Detection of Metabolic Biomarkers. ACS Applied Materials & Interfaces, 12, 31270-31281. https://doi.org/10.1021/acsami.0c09179
|
[37]
|
Cai, Z., Jiang, M., Chuang, Y. and Kuo, J. (2024) Paper-Based Microfluidic Analytical Device Patterned by Label Printer for Point-of-Care Blood Glucose and Hematocrit Detection Using 3D-Printed Smartphone Cassette. Sensors, 24, Article 4792. https://doi.org/10.3390/s24154792
|
[38]
|
Flaucher, M., Nissen, M., Jaeger, K.M., Titzmann, A., Pontones, C., Huebner, H., et al. (2022) Smartphone-Based Colorimetric Analysis of Urine Test Strips for At-Home Prenatal Care. IEEE Journal of Translational Engineering in Health and Medicine, 10, 1-9. https://doi.org/10.1109/jtehm.2022.3179147
|
[39]
|
Li, S., Chen, Z., Yang, F. and Yue, W. (2023) Self-Template Sacrifice and in Situ Oxidation of a Constructed Hollow MnO2 Nanozymes for Smartphone-Assisted Colorimetric Detection of Liver Function Biomarkers. Analytica Chimica Acta, 1278, Article 341744. https://doi.org/10.1016/j.aca.2023.341744
|
[40]
|
Ulloa-Gomez, A.M., Agredo, A., Lucas, A., Somvanshi, S.B. and Stanciu, L. (2023) Smartphone-Based Colorimetric Detection of Cardiac Troponin T via Label-Free Aptasensing. Biosensors and Bioelectronics, 222, Article 114938. https://doi.org/10.1016/j.bios.2022.114938
|
[41]
|
Yuan, K., Sun, Y., Liang, F., Pan, F., Hu, M., Hua, F., et al. (2022) Tyndall-Effect-Based Colorimetric Assay with Colloidal Silver Nanoparticles for Quantitative Point-of-Care Detection of Creatinine Using a Laser Pointer Pen and a Smartphone. RSC Advances, 12, 23379-23386. https://doi.org/10.1039/d2ra03598g
|
[42]
|
Chen, M., Yang, Y., Chen, Q., Tang, L., Liu, J., Sun, Y., et al. (2024) Pt, p-Codoped Carbon Nitride Nanoenzymes for Fluorescence and Colorimetric Dual-Mode Detection of Cholesterol. Analytica Chimica Acta, 1297, Article 342351. https://doi.org/10.1016/j.aca.2024.342351
|
[43]
|
Chunta, S., Jarujamrus, P., Prakobkij, A., Khongwichit, S., Ditcharoen, N., Pencharee, S., et al. (2024) Point-of-Care Blood Tests Using a Smartphone-Based Colorimetric Analyzer for Health Check-Up. Microchimica Acta, 191, Article No. 402. https://doi.org/10.1007/s00604-024-06463-5
|
[44]
|
Azizi, N., Hallaj, T. and Samadi, N. (2021) A Turn Off-On Fluorometric and Paper-Based Colorimetric Dual-Mode Sensor for Isoniazid Detection. Luminescence, 37, 153-160. https://doi.org/10.1002/bio.4156
|
[45]
|
Abd el-Aziz, M.O., Nadim, A.H., Monir, H.H., Nebsen, M. and Younis, S.E. (2023) Smartphone Based Colorimetric Point-of-Care Sensor for Abused Drugs: Case of Baclofen Determination in Urine. BMC Chemistry, 17, Article No. 179. https://doi.org/10.1186/s13065-023-01093-z
|
[46]
|
Tan, P., Chen, Y., Chang, H., Liu, T., Wang, J., Lu, Z., et al. (2024) Deep Learning Assisted Logic Gates for Real-Time Identification of Natural Tetracycline Antibiotics. Food Chemistry, 454, Article 139705. https://doi.org/10.1016/j.foodchem.2024.139705
|
[47]
|
Woodburn, E.V., Long, K.D. and Cunningham, B.T. (2019) Analysis of Paper-Based Colorimetric Assays with a Smartphone Spectrometer. IEEE Sensors Journal, 19, 508-514. https://doi.org/10.1109/jsen.2018.2876631
|
[48]
|
Mutlu, A.Y., Kılıç, V., Özdemir, G.K., Bayram, A., Horzum, N. and Solmaz, M.E. (2017) Smartphone-Based Colorimetric Detection via Machine Learning. The Analyst, 142, 2434-2441. https://doi.org/10.1039/c7an00741h
|