[1]
|
Khan, A.A., Lip, G.Y.H. and Shantsila, A. (2019) Heart Rate Variability in Atrial Fibrillation: The Balance between Sympathetic and Parasympathetic Nervous System. European Journal of Clinical Investigation, 49, e13174. https://doi.org/10.1111/eci.13174
|
[2]
|
Capone, F., Sotomayor-Flores, C., Bode, D., Wang, R., Rodolico, D., Strocchi, S., et al. (2022) Cardiac Metabolism in HFpEF: From Fuel to Signalling. Cardiovascular Research, 118, 3556-3575. https://doi.org/10.1093/cvr/cvac166
|
[3]
|
Pandey, A., Shah, S.J., Butler, J., Kellogg, D.L., Lewis, G.D., Forman, D.E., et al. (2021) Exercise Intolerance in Older Adults with Heart Failure with Preserved Ejection Fraction: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 78, 1166-1187. https://doi.org/10.1016/j.jacc.2021.07.014
|
[4]
|
Fedorowski, A., Fanciulli, A., Raj, S.R., Sheldon, R., Shibao, C.A. and Sutton, R. (2024) Cardiovascular Autonomic Dysfunction in Post-Covid-19 Syndrome: A Major Health-Care Burden. Nature Reviews Cardiology, 21, 379-395. https://doi.org/10.1038/s41569-023-00962-3
|
[5]
|
Triposkiadis, F., Briasoulis, A., Kitai, T., Magouliotis, D., Athanasiou, T., Skoularigis, J., et al. (2023) The Sympathetic Nervous System in Heart Failure Revisited. Heart Failure Reviews, 29, 355-365. https://doi.org/10.1007/s10741-023-10345-y
|
[6]
|
Floras, J.S. and Ponikowski, P. (2015) The Sympathetic/Parasympathetic Imbalance in Heart Failure with Reduced Ejection Fraction. European Heart Journal, 36, 1974-1982. https://doi.org/10.1093/eurheartj/ehv087
|
[7]
|
Giallauria, F., Vitale, G., Pacileo, M., Di Lorenzo, A., Oliviero, A., Passaro, F., et al. (2020) Sacubitril/Valsartan Improves Autonomic Function and Cardiopulmonary Parameters in Patients with Heart Failure with Reduced Ejection Fraction. Journal of Clinical Medicine, 9, Article 1897. https://doi.org/10.3390/jcm9061897
|
[8]
|
Simko, F. and Baka, T. (2024) Pharmacological Stimulation of the Parasympathetic System—A Promising Means of Cardioprotection in Heart Failure. Hypertension Research, 47, 2217-2220. https://doi.org/10.1038/s41440-024-01726-3
|
[9]
|
Gentile, F., Orlando, G., Montuoro, S., Ferrari Chen, Y.F., Macefield, V., Passino, C., et al. (2024) Treating Heart Failure by Targeting the Vagus Nerve. Heart Failure Reviews, 29, 1201-1215. https://doi.org/10.1007/s10741-024-10430-w
|
[10]
|
Lala, A., Tayal, U., Hamo, C.E., Youmans, Q., Al-Khatib, S.M., Bozkurt, B., et al. (2022) Sex Differences in Heart Failure. Journal of Cardiac Failure, 28, 477-498. https://doi.org/10.1016/j.cardfail.2021.10.006
|
[11]
|
Scott-Solomon, E., Boehm, E. and Kuruvilla, R. (2021) The Sympathetic Nervous System in Development and Disease. Nature Reviews Neuroscience, 22, 685-702. https://doi.org/10.1038/s41583-021-00523-y
|
[12]
|
Olshansky, B., Sabbah, H.N., Hauptman, P.J. and Colucci, W.S. (2008) Parasympathetic Nervous System and Heart Failure: Pathophysiology and Potential Implications for Therapy. Circulation, 118, 863-871. https://doi.org/10.1161/circulationaha.107.760405
|
[13]
|
Hartupee, J. and Mann, D.L. (2016) Neurohormonal Activation in Heart Failure with Reduced Ejection Fraction. Nature Reviews Cardiology, 14, 30-38. https://doi.org/10.1038/nrcardio.2016.163
|
[14]
|
Triposkiadis, F., Briasoulis, A., Sarafidis, P., Magouliotis, D., Athanasiou, T., Paraskevaidis, I., et al. (2023) The Sympathetic Nervous System in Hypertensive Heart Failure with Preserved LVEF. Journal of Clinical Medicine, 12, Article 6486. https://doi.org/10.3390/jcm12206486
|
[15]
|
Florea, V.G. and Cohn, J.N. (2014) The Autonomic Nervous System and Heart Failure. Circulation Research, 114, 1815-1826. https://doi.org/10.1161/circresaha.114.302589
|
[16]
|
Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J., Louridas, G. and Butler, J. (2009) The Sympathetic Nervous System in Heart Failure. Journal of the American College of Cardiology, 54, 1747-1762. https://doi.org/10.1016/j.jacc.2009.05.015
|
[17]
|
Xu, L., Chen, Y., Chen, S., Wang, G., Fu, Y., Cai, J., et al. (2024) Relationship between Resting Heart Rate and Long-Term Outcomes in Stabilized Patients with Myocardial Infarction: A Prospective Community-Based Cohort Study. International Journal of Cardiology, 400, Article ID: 131811. https://doi.org/10.1016/j.ijcard.2024.131811
|
[18]
|
Grassi, G., Dell’Oro, R., Bombelli, M., Cuspidi, C. and Quarti-Trevano, F. (2023) High Blood Pressure with Elevated Resting Heart Rate: A High Risk “Sympathetic” Clinical Phenotype. Hypertension Research, 46, 2318-2325. https://doi.org/10.1038/s41440-023-01394-9
|
[19]
|
Ostrowska, B., Lind, L. and Blomström‐Lundqvist, C. (2024) An Association between Heart Rate Variability and Incident Heart Failure in an Elderly Cohort. Clinical Cardiology, 47, e24241. https://doi.org/10.1002/clc.24241
|
[20]
|
Baig, M., Moafi-Madani, M., Qureshi, R., Roberts, M.B., Allison, M., Manson, J.E., et al. (2022) Heart Rate Variability and the Risk of Heart Failure and Its Subtypes in Post-Menopausal Women: The Women’s Health Initiative Study. PLOS ONE, 17, e0276585. https://doi.org/10.1371/journal.pone.0276585
|
[21]
|
Saleem, S., Khandoker, A.H., Alkhodari, M., Hadjileontiadis, L.J. and Jelinek, H.F. (2023) Investigating the Effects of Beta-Blockers on Circadian Heart Rhythm Using Heart Rate Variability in Ischemic Heart Disease with Preserved Ejection Fraction. Scientific Reports, 13, Article No. 5828. https://doi.org/10.1038/s41598-023-32963-0
|
[22]
|
Ksela, J., Rupert, L., Djordjevic, A., Antonic, M., Avbelj, V. and Jug, B. (2022) Altered Heart Rate Turbulence and Variability Parameters Predict 1-Year Mortality in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Development and Disease, 9, Article 213. https://doi.org/10.3390/jcdd9070213
|
[23]
|
Zhu, X., Huang, Y., Li, S., Ge, N., Li, T., Wang, Y., et al. (2020) Glucocorticoids Reverse Diluted Hyponatremia through Inhibiting Arginine Vasopressin Pathway in Heart Failure Rats. Journal of the American Heart Association, 9, e014950. https://doi.org/10.1161/jaha.119.014950
|
[24]
|
Leary, P.J., Jenny, N.S., Bluemke, D.A., Kawut, S.M., Kronmal, R.A., Lima, J.A., et al. (2020) Endothelin-1, Cardiac Morphology, and Heart Failure: The MESA Angiogenesis Study. The Journal of Heart and Lung Transplantation, 39, 45-52. https://doi.org/10.1016/j.healun.2019.07.007
|
[25]
|
Mennuni, S., Rubattu, S., Pierelli, G., Tocci, G., Fofi, C. and Volpe, M. (2013) Hypertension and Kidneys: Unraveling Complex Molecular Mechanisms Underlying Hypertensive Renal Damage. Journal of Human Hypertension, 28, 74-79. https://doi.org/10.1038/jhh.2013.55
|
[26]
|
Kox, M., van Eijk, L.T., Zwaag, J., van den Wildenberg, J., Sweep, F.C.G.J., van der Hoeven, J.G., et al. (2014) Voluntary Activation of the Sympathetic Nervous System and Attenuation of the Innate Immune Response in Humans. Proceedings of the National Academy of Sciences of the United States of America, 111, 7379-7384. https://doi.org/10.1073/pnas.1322174111
|
[27]
|
Bellocchi, C., Carandina, A., Montinaro, B., Targetti, E., Furlan, L., Rodrigues, G.D., et al. (2022) The Interplay between Autonomic Nervous System and Inflammation across Systemic Autoimmune Diseases. International Journal of Molecular Sciences, 23, Article 2449. https://doi.org/10.3390/ijms23052449
|
[28]
|
Rosas-Ballina, M., Olofsson, P.S., Ochani, M., Valdés-Ferrer, S.I., Levine, Y.A., Reardon, C., et al. (2011) Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science, 334, 98-101. https://doi.org/10.1126/science.1209985
|
[29]
|
Courties, A., Berenbaum, F. and Sellam, J. (2021) Vagus Nerve Stimulation in Musculoskeletal Diseases. Joint Bone Spine, 88, Article ID: 105149. https://doi.org/10.1016/j.jbspin.2021.105149
|
[30]
|
Campese, V.M., Ye, S., Zhong, H., Yanamadala, V., Ye, Z. and Chiu, J. (2004) Reactive Oxygen Species Stimulate Central and Peripheral Sympathetic Nervous System Activity. American Journal of Physiology-Heart and Circulatory Physiology, 287, H695-H703. https://doi.org/10.1152/ajpheart.00619.2003
|
[31]
|
Joffre, J., Lloyd, E., Wong, E., Chung-Yeh, C., Nguyen, N., Xu, F., et al. (2021) Catecholaminergic Vasopressors Reduce Toll-Like Receptor Agonist-Induced Microvascular Endothelial Cell Permeability but Not Cytokine Production. Critical Care Medicine, 49, e315-e326. https://doi.org/10.1097/ccm.0000000000004854
|
[32]
|
Chignalia, A.Z., Weinberg, G. and Dull, R.O. (2020) Norepinephrine Induces Lung Microvascular Endothelial Cell Death by NADPH Oxidase-Dependent Activation of Caspase-3. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 2563764. https://doi.org/10.1155/2020/2563764
|
[33]
|
Kvadsheim, E., Sørensen, L., Fasmer, O.B., Osnes, B., Haavik, J., Williams, D.P., et al. (2022) Vagally Mediated Heart Rate Variability, Stress, and Perceived Social Support: A Focus on Sex Differences. Stress, 25, 113-121. https://doi.org/10.1080/10253890.2022.2043271
|
[34]
|
Felt, J.M., Russell, M.A., Johnson, J.A., Ruiz, J.M., Uchino, B.N., Allison, M., et al. (2022) Within-Person Associations of Optimistic and Pessimistic Expectations with Momentary Stress, Affect, and Ambulatory Blood Pressure. Anxiety, Stress, & Coping, 36, 636-648. https://doi.org/10.1080/10615806.2022.2142574
|
[35]
|
Koenig, J. and Thayer, J.F. (2016) Sex Differences in Healthy Human Heart Rate Variability: A Meta-Analysis. Neuroscience & Biobehavioral Reviews, 64, 288-310. https://doi.org/10.1016/j.neubiorev.2016.03.007
|
[36]
|
Yeh, C., Kuo, T.B.J., Li, J., Kuo, K., Chern, C., Yang, C.C.H., et al. (2022) Effects of Age and Sex on Vasomotor Activity and Baroreflex Sensitivity during the Sleep-Wake Cycle. Scientific Reports, 12, Article No. 22424. https://doi.org/10.1038/s41598-022-26440-3
|
[37]
|
Barón-Esquivias, G., Díaz Martín, A.J., del Castillo, Á.M., Quintanilla, M., Barón-Solís, C. and Morillo, C.A. (2020) Head-Up Tilt Test Diagnostic Yield in Syncope Diagnosis. Journal of Electrocardiology, 63, 46-50. https://doi.org/10.1016/j.jelectrocard.2020.09.016
|
[38]
|
Jha, R.K., Acharya, A. and Nepal, O. (2018) Autonomic Influence on Heart Rate for Deep Breathing and Valsalva Maneuver in Healthy Subjects. Journal of Nepal Medical Association, 56, 670-673. https://doi.org/10.31729/jnma.3618
|
[39]
|
Arnold, S.V., Silverman, D.N., Gosch, K., Nassif, M.E., Infeld, M., Litwin, S., et al. (2023) Beta-Blocker Use and Heart Failure Outcomes in Mildly Reduced and Preserved Ejection Fraction. JACC: Heart Failure, 11, 893-900. https://doi.org/10.1016/j.jchf.2023.03.017
|
[40]
|
Kaddoura, R., Madurasinghe, V., Chapra, A., Abushanab, D., Al-Badriyeh, D. and Patel, A. (2024) Beta-Blocker Therapy in Heart Failure with Preserved Ejection Fraction (B-HFpEF): A Systematic Review and Meta-Analysis. Current Problems in Cardiology, 49, Article ID: 102376. https://doi.org/10.1016/j.cpcardiol.2024.102376
|
[41]
|
Telesca, M., De Angelis, A., Donniacuo, M., Bellocchio, G., Riemma, M.A., Mele, E., et al. (2024) Effects of Sacubitril-Valsartan on Aging-Related Cardiac Dysfunction. European Journal of Pharmacology, 978, Article ID: 176794. https://doi.org/10.1016/j.ejphar.2024.176794
|
[42]
|
Rossi, F., Mascolo, A. and Mollace, V. (2017) The Pathophysiological Role of Natriuretic Peptide-Raas Cross Talk in Heart Failure. International Journal of Cardiology, 226, 121-125. https://doi.org/10.1016/j.ijcard.2016.03.080
|
[43]
|
Ovaert, P., Elliott, J., Bernay, F., Guillot, E. and Bardon, T. (2010) Aldosterone Receptor Antagonists—How Cardiovascular Actions May Explain Their Beneficial Effects in Heart Failure. Journal of Veterinary Pharmacology and Therapeutics, 33, 109-117. https://doi.org/10.1111/j.1365-2885.2009.01122.x
|
[44]
|
Velliou, M., Polyzogopoulou, E., Ventoulis, I. and Parissis, J. (2023) Clinical Pharmacology of SGLT-2 Inhibitors in Heart Failure. Expert Review of Clinical Pharmacology, 16, 149-160. https://doi.org/10.1080/17512433.2023.2173574
|
[45]
|
Sardu, C., Massimo Massetti, M., Rambaldi, P., Gatta, G., Cappabianca, S., Sasso, F.C., et al. (2022) SGLT2-Inhibitors Reduce the Cardiac Autonomic Neuropathy Dysfunction and Vaso-Vagal Syncope Recurrence in Patients with Type 2 Diabetes Mellitus: The SCAN Study. Metabolism, 137, Article ID: 155243. https://doi.org/10.1016/j.metabol.2022.155243
|
[46]
|
Kittleson, M.M. (2023) Vericiguat in HFrEF: Insights From the GWTG-HF Registry. JACC: Heart Failure, 11, 224-226. https://doi.org/10.1016/j.jchf.2022.11.019
|
[47]
|
Anand, I., Ardell, J.L., Gregory, D., Libbus, I., DiCarlo, L., Premchand, R.K., et al. (2020) Baseline NT-proBNP and Responsiveness to Autonomic Regulation Therapy in Patients with Heart Failure and Reduced Ejection Fraction. IJC Heart & Vasculature, 29, Article ID: 100520. https://doi.org/10.1016/j.ijcha.2020.100520
|
[48]
|
Kong, S., Liu, J., Yu, X., Lu, Y. and Zang, W. (2012) Protection against Ischemia-Induced Oxidative Stress Conferred by Vagal Stimulation in the Rat Heart: Involvement of the AMPK-PKC Pathway. International Journal of Molecular Sciences, 13, 14311-14325. https://doi.org/10.3390/ijms131114311
|
[49]
|
Sant’Anna, L.B., Couceiro, S.L.M., Ferreira, E.A., Sant’Anna, M.B., Cardoso, P.R., Mesquita, E.T., et al. (2021) Vagal Neuromodulation in Chronic Heart Failure with Reduced Ejection Fraction: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 8, Article 766676. https://doi.org/10.3389/fcvm.2021.766676
|
[50]
|
Kumar, H.U., Nearing, B.D., Mittal, S., Premchand, R.K., Libbus, I., DiCarlo, L.A., et al. (2023) Autonomic Regulation Therapy in Chronic Heart Failure with Preserved/Mildly Reduced Ejection Fraction: Anthem-HFpEF Study Results. International Journal of Cardiology, 381, 37-44. https://doi.org/10.1016/j.ijcard.2023.03.030
|
[51]
|
Konstam, M.A., Mann, D.L., Udelson, J.J.E., Ardell, J.L., De Ferrari, G.M., Cowie, M.R., et al. (2022) Advances in Our Clinical Understanding of Autonomic Regulation Therapy Using Vagal Nerve Stimulation in Patients Living with Heart Failure. Frontiers in Physiology, 13, Article 857538. https://doi.org/10.3389/fphys.2022.857538
|
[52]
|
Burgoyne, S., Georgakopoulos, D., Belenkie, I. and Tyberg, J.V. (2014) Systemic Vascular Effects of Acute Electrical Baroreflex Stimulation. American Journal of Physiology-Heart and Circulatory Physiology, 307, H236-H241. https://doi.org/10.1152/ajpheart.00422.2013
|
[53]
|
Singh, J.P., Kandala, J. and John Camm, A. (2013) Non-Pharmacological Modulation of the Autonomic Tone to Treat Heart Failure. European Heart Journal, 35, 77-85. https://doi.org/10.1093/eurheartj/eht436
|
[54]
|
Cai, G., Guo, K., Zhang, D. and Qin, S. (2020) The Efficacy of Baroreflex Activation Therapy for Heart Failure: A Meta-Analysis of Randomized Controlled Trials. Medicine, 99, e22951. https://doi.org/10.1097/md.0000000000022951
|
[55]
|
Aggarwal, M., Bozkurt, B., Panjrath, G., Aggarwal, B., Ostfeld, R.J., Barnard, N.D., et al. (2018) Lifestyle Modifications for Preventing and Treating Heart Failure. Journal of the American College of Cardiology, 72, 2391-2405. https://doi.org/10.1016/j.jacc.2018.08.2160
|
[56]
|
O’Connor, C.M., Whellan, D.J., Lee, K.L., Keteyian, S.J., Cooper, L.S., Ellis, S.J., et al. (2009) Efficacy and Safety of Exercise Training in Patients with Chronic Heart Failure: HF-ACTION Randomized Controlled Trial. JAMA, 301, 1439-1450. https://doi.org/10.1001/jama.2009.454
|
[57]
|
Mueller, S., Winzer, E.B., Duvinage, A., Gevaert, A.B., Edelmann, F., Haller, B., et al. (2021) Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients with Heart Failure with Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA, 325, 542-551. https://doi.org/10.1001/jama.2020.26812
|