心力衰竭患者合并心血管自主神经障碍的研究进展
Research Progress in Cardiovascular Autonomic Dysfunction in Patients with Heart Failure
摘要: 心力衰竭(HF)是全球发病率和死亡率的主要原因之一,其中射血分数保留型心衰(HFpEF)占比逐渐增加。近年来,心血管自主神经功能障碍(CVAD)在HF的病理生理机制中的作用备受关注。交感神经系统(SNS)的过度激活和副交感神经系统(PNS)的功能减退是HF的重要特征,导致心率变异性(HRV)降低、神经激素激活、炎症和氧化应激加剧,进一步加重心脏负担。本文综述了CVAD在HF中的作用机制,并探讨了药物治疗、器械治疗以及运动干预等治疗策略。未来的研究方向应聚焦于自主神经功能障碍的分子机制,开发个体化治疗方案,以改善HF患者的预后和生活质量。
Abstract: Heart failure (HF) is one of the leading causes of global morbidity and mortality, with heart failure with preserved ejection fraction (HFpEF) accounting for an increasing proportion. In recent years, the role of cardiovascular autonomic dysfunction (CVAD) in the pathophysiology of HF has garnered significant attention. Overactivation of the sympathetic nervous system (SNS) and decreased function of the parasympathetic nervous system (PNS) are key features of HF, leading to reduced heart rate variability (HRV), neurohormonal activation, inflammation, and oxidative stress, which further exacerbate cardiac burden. This review summarizes the mechanisms of CVAD in HF and explores treatment strategies such as pharmacological therapy, device-based interventions (e.g., vagus nerve stimulation and baroreflex activation therapy), and exercise interventions. Future research should focus on the molecular mechanisms of autonomic dysfunction and develop personalized treatment approaches to improve the prognosis and quality of life for HF patients.
文章引用:刘敏, 朱珠, 王立. 心力衰竭患者合并心血管自主神经障碍的研究进展[J]. 临床医学进展, 2025, 15(4): 2777-2785. https://doi.org/10.12677/acm.2025.1541240

1. 引言

心力衰竭(Heart Failure, HF)的临床综合征一个是全球发病率和死亡率的主要原因,其中有15%~50%的HF患者属于射血分数保留型心衰(HF with preserved (≥50%) Ejection Fraction, HFpEF),已经成为HF的主要类型[1] [2]。HF发病率的升高引发了研究者对其病理生理学理论的关注,近年来发现心血管自主神经功能障碍(Cardiovascular Autonomic Dysfunction, CVAD)在HF的病理生理机制中有重要作用,但HF涉及多器官功能障碍,对于HF相关机制仍不明确,因此缺少进一步针对CVAD的临床治疗方法[3] [4]

长期以来,血流动力学改变导致的交感神经系统(Sympathetic Nervous System, SNS)的激活和副交感神经系统(Parasympathetic Nervous System, PNS)的抑制被认为是HF临床综合征的特点,长期的临床实践证明了抑制β受体对HF的确切疗效[1] [5]。已有的研究观察到HF中主要的病理生理学特征之一是自主神经系统(Autonomic Nervous System, ANS)心血管调节的功能障碍[6],部分研究者进行适当的干预措施可能有助于HF患者ANS功能恢复,有望改善临床预后[7]-[9]。因此分析CVAD对理解HF的发病机制有积极作用[10]。因此本综述总结了近年来针对HF中CVAD的研究进展,并总结了病理生理学机制,以期为临床研究提供理论总结。

2. 心血管自主神经功能障碍的生理基础

2.1. 交感神经系统

SNS是ANS的重要组成部分,是机体应对应激和维持内环境稳定的关键系统,它通过调节心血管、呼吸、代谢等多个系统的功能,帮助机体适应内外环境的变化[5] [11]。心血管交感神经系统是交感神经系统的重要组成部分,专门负责调节心脏和血管的功能,以确保血液循环能够满足机体的需求[5] [11]。交感神经节前神经元位于脊髓胸段,发出的节前纤维在颈交感神经节和胸交感神经节中换元,发出节后纤维分布到心血管上,对心脏具有正性变时、正性变力、正性变传导作用,交感神经持续激活以维持心输出量,但长期过度激活会导致心肌肥厚、纤维化和心律失常,导致和加重心力衰竭[1] [5] [11]

2.2. 副交感神经系统

PNS同样是ANS的重要组成部分,主要负责调节心脏功能,尤其是在静息状态下维持心率和心肌活动的平衡[1] [12]。副交感神经节前神经元位于脑干(迷走神经背核和疑核)和骶髓(S2~S4),心血管副交感神经主要来自迷走神经,节前纤维在靶器官附近或内部的神经节中换元,发出节后纤维分布在心脏,对心脏具有负性变时、负性变力、负性变传导作用。心力衰竭患者常伴有副交感神经活性降低,是心力衰竭的独立危险因素[9]

3. 心血管自主神经功能障碍在HF中的作用

3.1. 交感神经过度激活

SNS激活是HF进程的重要机制之一,心输出量减少导致SNS激活,在短期内对维持正常心功能有益,但持续的SNS激活对心脏造成不良影响[13]。SNS的激活可以导致水钠潴留、收缩外周血管等来维持心输出量[14] [15]。SNS活动增加导致传入肾动脉的外周血管收缩和流向肾脏肾小球旁器官的血流量减少,导致肾素通过肾小球旁器官释放到传入小动脉中,导致水钠潴留,增加心脏前负荷[16]。肾上腺素能神经系统的活动增加导致α1-肾上腺素能受体的刺激,从而导致外周动脉血管收缩,虽然对重要脏器的灌注有利,但引起心脏后负荷升高;并且去甲肾上腺素系统的激活可以导致心肌细胞坏死,引起进一步的组织损伤和细胞坏死[16]

3.2. 副交感神经功能减退

衰竭的心脏表现出β受体介导的腺苷酸环化酶刺激和收缩反应减少,在HF中,副交感神经节传递减少,毒蕈碱受体密度和组成改变,乙酰胆碱酯酶活性降低[12]。静息心率在正常心脏中通常由PNS机制控制,流行病学数据显示,作为迷走神经功能的指标,静息心率可以预测死亡率,迷走神经活动性越高,心率越慢,心率变异性中副交感成分的增加越大,预后越好[12] [17]。在HF中,心率受PNS的调节较少。关于静息心率和心血管疾病的数据总结表明,心率增加与不良预后之间存在牢固的关系[18]。副交感神经功能可以通过非侵入性的间接方法测量,例如评估心率变异性、运动后心率恢复以及频谱湍流。

3.3. 心率变异性的变化

心率变异性(Heart Rate Variability, HRV)可作为评估自主神经功能的标志物,可以预测HF的发生,是心率衰竭预测模型的新兴危险因素[19]。HF患者的HRV通常表现为整体降低,主要由于交感神经活性增强、副交感神经活性减弱以及心脏重构导致自主神经调节功能受损,频域指标(如LF、HF)和时域指标(如SDNN、RMSSD)均显示下降,LF/HF比值可能升高,提示交感神经相对活跃。HRV降低与HF患者的不良预后相关,如心源性猝死风险增加,同时可作为治疗效果的监测指标[20] [21]。年龄、病情严重程度和合并症(如糖尿病、高血压)会进一步影响HRV [22]。总体而言,HRV变化对HF患者的预后评估和治疗监测具有重要意义。

4. 影响心血管自主神经功能障碍的相关机制

4.1. 激素水平

HF中存在多种神经激素激活[13]。在HF中,SNS的激活导致去甲肾上腺素水平升高,进而引起心肌细胞肥大、凋亡和纤维化,进一步损害心脏功能[13]。肾素–血管紧张素–醛固酮系统(Renin Aniotension Aldosterone System, RAAS)的激活导致血管紧张素II和醛固酮水平升高,引起血管收缩、钠水潴留和心肌纤维化,进一步加重心脏负担。包括精氨酸加压素(Arginine Vasopressin, AVP)和内皮素(Endothelin, ET)等,也在HF中发挥作用,导致血管收缩和液体潴留[23] [24]

神经激素激活对心脏和循环系统的影响。肾脏功能:SNS和RAAS的激活导致肾血管收缩,减少肾血流,进而增加钠和水潴留,导致肺和外周水肿[13]。外周血管:神经激素激活引起外周血管收缩,增加心脏后负荷,进一步损害心脏功能[25]。左心室重塑:长期的神经激素激活导致左心室肥大、心肌细胞凋亡和坏死,以及细胞外基质的改变,最终导致左心室扩张和功能下降[13]

4.2. 炎症与氧化应激

CVAD与炎症和氧化应激之间存在密切的相互关系。一方面,炎症激活SNS,炎症因子,如肿瘤坏死因子-α (TNF-α)、白细胞介素-6 (IL-6)和C反应蛋白(CRP),可以直接刺激中枢神经系统,特别是下丘脑和脑干,导致交感神经输出增加[26] [27]。炎症还可以通过激活外周化学感受器和压力感受器,进一步增强交感神经活性[27]。另一方面,交感神经激活促进炎症;交感神经释放的去甲肾上腺素(NE)可以激活免疫细胞(如巨噬细胞和T细胞),促进炎症因子的释放[27] [28]

PNS的抗炎作用。副交感神经通过释放乙酰胆碱,可以抑制炎症因子的释放(如通过胆碱能抗炎通路),另有研究表明,副交感神经活性降低会减弱这种抗炎作用,导致炎症反应的加剧[28] [29]

氧化应激可以直接刺激激活SNS。活性氧(Reactive Oxygen Species, ROS)可以直接刺激中枢神经系统,导致交感神经输出增加,还可以通过激活外周化学感受器和压力感受器,进一步增强交感神经活性[30]。另一方面,交感神经释放的去甲肾上腺素可以增加心肌细胞和血管内皮细胞中的ROS产生,并且交感神经激活还会导致线粒体功能障碍,进一步加重氧化应激[31] [32]

CVAD、炎症和氧化应激之间存在着复杂的相互作用,形成了一个恶性循环,推动心血管疾病的进展(图1)。通过调节自主神经功能、抑制炎症和减少氧化应激,有望打破这一恶性循环,为心血管疾病的治疗提供新的策略。

Figure 1. Interactions among cardiovascular autonomic dysfunction (CVAD), inflammation, and oxidative stress

1. CVAD、炎症和氧化应激之间的相互作用

4.3. 心理因素

CVAD与心理因素之间存在一定的关系。长期的压力会导致交感神经持续激活和副交感神经抑制,进而引起自主神经功能障碍,表现为心率变异性(Heart Rate Variability, HRV)降低、血压波动和心血管系统的高反应性[33] [34]。焦虑症患者通常表现出交感神经过度激活和副交感神经活性降低,导致心率加快、血压升高和心血管系统的高反应性,焦虑还会通过增加儿茶酚胺(如去甲肾上腺素和肾上腺素)的释放,进一步加剧自主神经功能障碍。抑郁症患者通常表现出副交感神经活性降低和交感神经活性相对增强,导致HRV降低和心血管系统的高反应性。抑郁还会通过影响下丘脑–垂体–肾上腺轴(HPA轴),增加皮质醇的释放,进一步加剧自主神经功能障碍。

5. 心血管自主神经功能障碍的评估方法

自主神经功能失衡的评估是心血管疾病诊断和管理中的重要环节,临床常用的评估方法主要有以下:

5.1. 心率变异性分析

HRV是指心跳间期的微小变化,反映交感神经和副交感神经对心脏的调节平衡。分析方法:时域分析,通过计算RR间期的标准差(SDNN)、均方根差(RMSSD)等指标,评估自主神经功能;频域分析:通过快速傅里叶变换(FFT)或自回归模型(AR),将心率信号分解为低频(LF,主要反映交感神经活性)和高频(HF,主要反映副交感神经活性)成分。HRV降低通常提示自主神经功能失衡[35]

5.2. 压力感受器敏感性测试

压力感受器敏感性反映动脉血压变化时心率调节的能力,是评估自主神经功能的重要指标。临床应用主要有,药物法:通过注射血管活性药物(如去氧肾上腺素或硝普钠)诱发血压变化,观察心率的相应变化;自发法:通过连续记录血压和心率,分析血压和心率之间的相关性(如序列法)。BRS降低提示自主神经功能受损[36]

5.3. 其他评估方法

直立倾斜试验(Head-Up Tilt Test, HUTT),目前主要用于诊断自主神经功能障碍相关的晕厥[37]。深呼吸心率反应(Deep breathing heart rate response),反应副交感神经活性,常见于糖尿病神经病变、心力衰竭等[38];Valsalva动作(Valsalva maneuver),Valsalva比值降低提示自主神经功能受损,常见于糖尿病神经病变、心力衰竭等[38]

6. 心力衰竭合并心血管自主神经功能障碍的治疗策略

6.1. 药物治疗

β受体阻滞剂能降低HF患者的发病率和死亡率,是抑制交感神经过度激活的常用药物,可以进一步降低心率、心肌耗氧量,改善心功能[39]。但针对HFpEF患者获益证据不足,β受体阻滞剂治疗有可能降低HFpEF患者的全因死亡率,然而,它并没有影响因心力衰竭再次住院或其与全因死亡率复合,临床治疗仍然存在一定局限性[40]。肾素–血管紧张素–醛固酮系统(RAAS)抑制剂在治疗HF和动脉高血压方面,有确切的疗效证据,可以通过降低心脏负荷、减少心脏纤维化,进一步改善自主神经功能,但单纯应用RAAAS抑制剂不能逆转炎症、内皮激活和氧化应激[41] [42]。盐皮质激素受体拮抗剂(MRAs)被推荐用于治疗心力衰竭,作用机制包括减少血管平滑肌细胞和心肌细胞的重塑,以及改善心力衰竭中的内皮细胞功能障碍,并减缓了左心室功能障碍和终末器官损伤的进展,此外,醛固酮受体阻断还恢复了压力感受器反射,改善了心力衰竭患者的心率变异性[43]。钠–葡萄糖协同转运蛋白2 (SGLT2)抑制剂已经成为治疗HF的新策略,虽然对心血管系统的潜在机制仍不清楚,但大规律研究表明SGLT2有望改善自主神经功能[44] [45]。可溶性鸟苷酸环化酶抑制剂(维立西呱),影响HF中的重要神经激素通路,可以通过增加细胞内环状鸟苷酸单磷酸盐的产生,以促进血管平滑肌松弛和血管扩张,对自主神经功能的影响还需要进一步的研究[46]。总体来讲,药物治疗以神经激素拮抗和容量控制为核心,兼顾代谢调节和合并症管理,针对自主神经调节药物仍需探索。需综合评估交感活性、肾功能、药物耐受性及经济因素进行个体化治疗。

6.2. 器械治疗

迷走神经刺激(Vagus Nerve Stimulation, VNS)是一种神经调节疗法,通过调节自主神经活性,拮抗交感神经的过度兴奋治疗心力衰竭。VNS可以改善HFrEF患者的左心室功能[47]。此外,VNS通过减少氧化应激、调节NO释放、降低心率以保护心肌细胞,从而减缓心率衰竭的进展,减轻自主神经功能障碍[48]。现有研究表明,VNS对HFpEF和HFrEF患者均会产生益处[49] [50]。在一项大规模随机临床对照实验中明确了VNS对心力衰竭患者的治疗效果:其VNS治疗患者的6 min步行实验、LVEF、生活质量均较基线水平有所改善,并且超过了联合药物治疗的效果[51]。目前VNS研究方案没有明确的标准剂量,仍需大规模随机对照试验试验来优化VNS剂量。

压力感受性反射激活疗法(Baroreflex Activation Therapy, BAT)也是治疗心衰的潜在疗法之一,其通过刺激颈动脉窦压力感受器,使交感神经兴奋性受到抑制,副交感神经兴奋性增强,降低血管阻力和增加静脉容量[52],改善HF的神经激素变化[53],改善心肌缺血和心脏重构。一项荟萃分析显示,在纳入的474例患者数据中,255例接受BAT治疗。对HFrEF患者在提高生活质量、提升活动能力、改善症状、降低NTproBNP水平方面有显著优势[54]。而BAT治疗HFpEF目前尚缺乏临床证据支持,仍需进一步的研究。此外BAT治疗在卫生经济学、不同医疗器械相互作用等方面还存在一定争论。仍需更广泛的临床研究待进一步证实。

6.3. 运动干预

运动疗法在HF的预防和治疗中具有重要作用。通过增加体力活动和进行规律的运动训练,可以显著降低HF的发生风险,并改善HF患者的运动能力、生活质量和预后[55]。尽管运动疗法在HFrEF患者中的证据较为充分,但在HFpEF患者中的应用仍需进一步研究[56] [57]

7. 展望

神经激素激活在心力衰竭(HF)的进展中扮演着核心角色。尽管短期的神经激素激活有助于维持心血管系统的稳态,但长期的激活会导致心脏和循环系统的进一步损害。目前的治疗策略主要基于对神经激素系统的拮抗,虽然这些治疗能够改善症状并延缓疾病进展,但心力衰竭的“缓解”仍然是有限的,疾病最终会复发。因此,未来的研究需要进一步探索左心室重塑的分子机制,以开发新的治疗策略。

未来的研究方向应包括深入理解自主神经功能障碍(CVAD)在HF中的具体作用机制。此外,针对交感神经过度激活和副交感神经抑制的干预措施,如迷走神经刺激和新型药物疗法,可能为HF患者提供新的治疗选择。同时,炎症和氧化应激在CVAD中的作用也应得到更多关注,通过调节这些过程可能打破心血管疾病的恶性循环。

总之,未来的研究应致力于开发更为精准和个体化的治疗方案,以改善HF患者的预后和生活质量。通过多学科合作和新技术应用,有望在HF的治疗领域取得突破性进展。

NOTES

*第一作者。

参考文献

[1] Khan, A.A., Lip, G.Y.H. and Shantsila, A. (2019) Heart Rate Variability in Atrial Fibrillation: The Balance between Sympathetic and Parasympathetic Nervous System. European Journal of Clinical Investigation, 49, e13174.
https://doi.org/10.1111/eci.13174
[2] Capone, F., Sotomayor-Flores, C., Bode, D., Wang, R., Rodolico, D., Strocchi, S., et al. (2022) Cardiac Metabolism in HFpEF: From Fuel to Signalling. Cardiovascular Research, 118, 3556-3575.
https://doi.org/10.1093/cvr/cvac166
[3] Pandey, A., Shah, S.J., Butler, J., Kellogg, D.L., Lewis, G.D., Forman, D.E., et al. (2021) Exercise Intolerance in Older Adults with Heart Failure with Preserved Ejection Fraction: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 78, 1166-1187.
https://doi.org/10.1016/j.jacc.2021.07.014
[4] Fedorowski, A., Fanciulli, A., Raj, S.R., Sheldon, R., Shibao, C.A. and Sutton, R. (2024) Cardiovascular Autonomic Dysfunction in Post-Covid-19 Syndrome: A Major Health-Care Burden. Nature Reviews Cardiology, 21, 379-395.
https://doi.org/10.1038/s41569-023-00962-3
[5] Triposkiadis, F., Briasoulis, A., Kitai, T., Magouliotis, D., Athanasiou, T., Skoularigis, J., et al. (2023) The Sympathetic Nervous System in Heart Failure Revisited. Heart Failure Reviews, 29, 355-365.
https://doi.org/10.1007/s10741-023-10345-y
[6] Floras, J.S. and Ponikowski, P. (2015) The Sympathetic/Parasympathetic Imbalance in Heart Failure with Reduced Ejection Fraction. European Heart Journal, 36, 1974-1982.
https://doi.org/10.1093/eurheartj/ehv087
[7] Giallauria, F., Vitale, G., Pacileo, M., Di Lorenzo, A., Oliviero, A., Passaro, F., et al. (2020) Sacubitril/Valsartan Improves Autonomic Function and Cardiopulmonary Parameters in Patients with Heart Failure with Reduced Ejection Fraction. Journal of Clinical Medicine, 9, Article 1897.
https://doi.org/10.3390/jcm9061897
[8] Simko, F. and Baka, T. (2024) Pharmacological Stimulation of the Parasympathetic System—A Promising Means of Cardioprotection in Heart Failure. Hypertension Research, 47, 2217-2220.
https://doi.org/10.1038/s41440-024-01726-3
[9] Gentile, F., Orlando, G., Montuoro, S., Ferrari Chen, Y.F., Macefield, V., Passino, C., et al. (2024) Treating Heart Failure by Targeting the Vagus Nerve. Heart Failure Reviews, 29, 1201-1215.
https://doi.org/10.1007/s10741-024-10430-w
[10] Lala, A., Tayal, U., Hamo, C.E., Youmans, Q., Al-Khatib, S.M., Bozkurt, B., et al. (2022) Sex Differences in Heart Failure. Journal of Cardiac Failure, 28, 477-498.
https://doi.org/10.1016/j.cardfail.2021.10.006
[11] Scott-Solomon, E., Boehm, E. and Kuruvilla, R. (2021) The Sympathetic Nervous System in Development and Disease. Nature Reviews Neuroscience, 22, 685-702.
https://doi.org/10.1038/s41583-021-00523-y
[12] Olshansky, B., Sabbah, H.N., Hauptman, P.J. and Colucci, W.S. (2008) Parasympathetic Nervous System and Heart Failure: Pathophysiology and Potential Implications for Therapy. Circulation, 118, 863-871.
https://doi.org/10.1161/circulationaha.107.760405
[13] Hartupee, J. and Mann, D.L. (2016) Neurohormonal Activation in Heart Failure with Reduced Ejection Fraction. Nature Reviews Cardiology, 14, 30-38.
https://doi.org/10.1038/nrcardio.2016.163
[14] Triposkiadis, F., Briasoulis, A., Sarafidis, P., Magouliotis, D., Athanasiou, T., Paraskevaidis, I., et al. (2023) The Sympathetic Nervous System in Hypertensive Heart Failure with Preserved LVEF. Journal of Clinical Medicine, 12, Article 6486.
https://doi.org/10.3390/jcm12206486
[15] Florea, V.G. and Cohn, J.N. (2014) The Autonomic Nervous System and Heart Failure. Circulation Research, 114, 1815-1826.
https://doi.org/10.1161/circresaha.114.302589
[16] Triposkiadis, F., Karayannis, G., Giamouzis, G., Skoularigis, J., Louridas, G. and Butler, J. (2009) The Sympathetic Nervous System in Heart Failure. Journal of the American College of Cardiology, 54, 1747-1762.
https://doi.org/10.1016/j.jacc.2009.05.015
[17] Xu, L., Chen, Y., Chen, S., Wang, G., Fu, Y., Cai, J., et al. (2024) Relationship between Resting Heart Rate and Long-Term Outcomes in Stabilized Patients with Myocardial Infarction: A Prospective Community-Based Cohort Study. International Journal of Cardiology, 400, Article ID: 131811.
https://doi.org/10.1016/j.ijcard.2024.131811
[18] Grassi, G., Dell’Oro, R., Bombelli, M., Cuspidi, C. and Quarti-Trevano, F. (2023) High Blood Pressure with Elevated Resting Heart Rate: A High Risk “Sympathetic” Clinical Phenotype. Hypertension Research, 46, 2318-2325.
https://doi.org/10.1038/s41440-023-01394-9
[19] Ostrowska, B., Lind, L. and Blomström‐Lundqvist, C. (2024) An Association between Heart Rate Variability and Incident Heart Failure in an Elderly Cohort. Clinical Cardiology, 47, e24241.
https://doi.org/10.1002/clc.24241
[20] Baig, M., Moafi-Madani, M., Qureshi, R., Roberts, M.B., Allison, M., Manson, J.E., et al. (2022) Heart Rate Variability and the Risk of Heart Failure and Its Subtypes in Post-Menopausal Women: The Women’s Health Initiative Study. PLOS ONE, 17, e0276585.
https://doi.org/10.1371/journal.pone.0276585
[21] Saleem, S., Khandoker, A.H., Alkhodari, M., Hadjileontiadis, L.J. and Jelinek, H.F. (2023) Investigating the Effects of Beta-Blockers on Circadian Heart Rhythm Using Heart Rate Variability in Ischemic Heart Disease with Preserved Ejection Fraction. Scientific Reports, 13, Article No. 5828.
https://doi.org/10.1038/s41598-023-32963-0
[22] Ksela, J., Rupert, L., Djordjevic, A., Antonic, M., Avbelj, V. and Jug, B. (2022) Altered Heart Rate Turbulence and Variability Parameters Predict 1-Year Mortality in Heart Failure with Preserved Ejection Fraction. Journal of Cardiovascular Development and Disease, 9, Article 213.
https://doi.org/10.3390/jcdd9070213
[23] Zhu, X., Huang, Y., Li, S., Ge, N., Li, T., Wang, Y., et al. (2020) Glucocorticoids Reverse Diluted Hyponatremia through Inhibiting Arginine Vasopressin Pathway in Heart Failure Rats. Journal of the American Heart Association, 9, e014950.
https://doi.org/10.1161/jaha.119.014950
[24] Leary, P.J., Jenny, N.S., Bluemke, D.A., Kawut, S.M., Kronmal, R.A., Lima, J.A., et al. (2020) Endothelin-1, Cardiac Morphology, and Heart Failure: The MESA Angiogenesis Study. The Journal of Heart and Lung Transplantation, 39, 45-52.
https://doi.org/10.1016/j.healun.2019.07.007
[25] Mennuni, S., Rubattu, S., Pierelli, G., Tocci, G., Fofi, C. and Volpe, M. (2013) Hypertension and Kidneys: Unraveling Complex Molecular Mechanisms Underlying Hypertensive Renal Damage. Journal of Human Hypertension, 28, 74-79.
https://doi.org/10.1038/jhh.2013.55
[26] Kox, M., van Eijk, L.T., Zwaag, J., van den Wildenberg, J., Sweep, F.C.G.J., van der Hoeven, J.G., et al. (2014) Voluntary Activation of the Sympathetic Nervous System and Attenuation of the Innate Immune Response in Humans. Proceedings of the National Academy of Sciences of the United States of America, 111, 7379-7384.
https://doi.org/10.1073/pnas.1322174111
[27] Bellocchi, C., Carandina, A., Montinaro, B., Targetti, E., Furlan, L., Rodrigues, G.D., et al. (2022) The Interplay between Autonomic Nervous System and Inflammation across Systemic Autoimmune Diseases. International Journal of Molecular Sciences, 23, Article 2449.
https://doi.org/10.3390/ijms23052449
[28] Rosas-Ballina, M., Olofsson, P.S., Ochani, M., Valdés-Ferrer, S.I., Levine, Y.A., Reardon, C., et al. (2011) Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science, 334, 98-101.
https://doi.org/10.1126/science.1209985
[29] Courties, A., Berenbaum, F. and Sellam, J. (2021) Vagus Nerve Stimulation in Musculoskeletal Diseases. Joint Bone Spine, 88, Article ID: 105149.
https://doi.org/10.1016/j.jbspin.2021.105149
[30] Campese, V.M., Ye, S., Zhong, H., Yanamadala, V., Ye, Z. and Chiu, J. (2004) Reactive Oxygen Species Stimulate Central and Peripheral Sympathetic Nervous System Activity. American Journal of Physiology-Heart and Circulatory Physiology, 287, H695-H703.
https://doi.org/10.1152/ajpheart.00619.2003
[31] Joffre, J., Lloyd, E., Wong, E., Chung-Yeh, C., Nguyen, N., Xu, F., et al. (2021) Catecholaminergic Vasopressors Reduce Toll-Like Receptor Agonist-Induced Microvascular Endothelial Cell Permeability but Not Cytokine Production. Critical Care Medicine, 49, e315-e326.
https://doi.org/10.1097/ccm.0000000000004854
[32] Chignalia, A.Z., Weinberg, G. and Dull, R.O. (2020) Norepinephrine Induces Lung Microvascular Endothelial Cell Death by NADPH Oxidase-Dependent Activation of Caspase-3. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 2563764.
https://doi.org/10.1155/2020/2563764
[33] Kvadsheim, E., Sørensen, L., Fasmer, O.B., Osnes, B., Haavik, J., Williams, D.P., et al. (2022) Vagally Mediated Heart Rate Variability, Stress, and Perceived Social Support: A Focus on Sex Differences. Stress, 25, 113-121.
https://doi.org/10.1080/10253890.2022.2043271
[34] Felt, J.M., Russell, M.A., Johnson, J.A., Ruiz, J.M., Uchino, B.N., Allison, M., et al. (2022) Within-Person Associations of Optimistic and Pessimistic Expectations with Momentary Stress, Affect, and Ambulatory Blood Pressure. Anxiety, Stress, & Coping, 36, 636-648.
https://doi.org/10.1080/10615806.2022.2142574
[35] Koenig, J. and Thayer, J.F. (2016) Sex Differences in Healthy Human Heart Rate Variability: A Meta-Analysis. Neuroscience & Biobehavioral Reviews, 64, 288-310.
https://doi.org/10.1016/j.neubiorev.2016.03.007
[36] Yeh, C., Kuo, T.B.J., Li, J., Kuo, K., Chern, C., Yang, C.C.H., et al. (2022) Effects of Age and Sex on Vasomotor Activity and Baroreflex Sensitivity during the Sleep-Wake Cycle. Scientific Reports, 12, Article No. 22424.
https://doi.org/10.1038/s41598-022-26440-3
[37] Barón-Esquivias, G., Díaz Martín, A.J., del Castillo, Á.M., Quintanilla, M., Barón-Solís, C. and Morillo, C.A. (2020) Head-Up Tilt Test Diagnostic Yield in Syncope Diagnosis. Journal of Electrocardiology, 63, 46-50.
https://doi.org/10.1016/j.jelectrocard.2020.09.016
[38] Jha, R.K., Acharya, A. and Nepal, O. (2018) Autonomic Influence on Heart Rate for Deep Breathing and Valsalva Maneuver in Healthy Subjects. Journal of Nepal Medical Association, 56, 670-673.
https://doi.org/10.31729/jnma.3618
[39] Arnold, S.V., Silverman, D.N., Gosch, K., Nassif, M.E., Infeld, M., Litwin, S., et al. (2023) Beta-Blocker Use and Heart Failure Outcomes in Mildly Reduced and Preserved Ejection Fraction. JACC: Heart Failure, 11, 893-900.
https://doi.org/10.1016/j.jchf.2023.03.017
[40] Kaddoura, R., Madurasinghe, V., Chapra, A., Abushanab, D., Al-Badriyeh, D. and Patel, A. (2024) Beta-Blocker Therapy in Heart Failure with Preserved Ejection Fraction (B-HFpEF): A Systematic Review and Meta-Analysis. Current Problems in Cardiology, 49, Article ID: 102376.
https://doi.org/10.1016/j.cpcardiol.2024.102376
[41] Telesca, M., De Angelis, A., Donniacuo, M., Bellocchio, G., Riemma, M.A., Mele, E., et al. (2024) Effects of Sacubitril-Valsartan on Aging-Related Cardiac Dysfunction. European Journal of Pharmacology, 978, Article ID: 176794.
https://doi.org/10.1016/j.ejphar.2024.176794
[42] Rossi, F., Mascolo, A. and Mollace, V. (2017) The Pathophysiological Role of Natriuretic Peptide-Raas Cross Talk in Heart Failure. International Journal of Cardiology, 226, 121-125.
https://doi.org/10.1016/j.ijcard.2016.03.080
[43] Ovaert, P., Elliott, J., Bernay, F., Guillot, E. and Bardon, T. (2010) Aldosterone Receptor Antagonists—How Cardiovascular Actions May Explain Their Beneficial Effects in Heart Failure. Journal of Veterinary Pharmacology and Therapeutics, 33, 109-117.
https://doi.org/10.1111/j.1365-2885.2009.01122.x
[44] Velliou, M., Polyzogopoulou, E., Ventoulis, I. and Parissis, J. (2023) Clinical Pharmacology of SGLT-2 Inhibitors in Heart Failure. Expert Review of Clinical Pharmacology, 16, 149-160.
https://doi.org/10.1080/17512433.2023.2173574
[45] Sardu, C., Massimo Massetti, M., Rambaldi, P., Gatta, G., Cappabianca, S., Sasso, F.C., et al. (2022) SGLT2-Inhibitors Reduce the Cardiac Autonomic Neuropathy Dysfunction and Vaso-Vagal Syncope Recurrence in Patients with Type 2 Diabetes Mellitus: The SCAN Study. Metabolism, 137, Article ID: 155243.
https://doi.org/10.1016/j.metabol.2022.155243
[46] Kittleson, M.M. (2023) Vericiguat in HFrEF: Insights From the GWTG-HF Registry. JACC: Heart Failure, 11, 224-226.
https://doi.org/10.1016/j.jchf.2022.11.019
[47] Anand, I., Ardell, J.L., Gregory, D., Libbus, I., DiCarlo, L., Premchand, R.K., et al. (2020) Baseline NT-proBNP and Responsiveness to Autonomic Regulation Therapy in Patients with Heart Failure and Reduced Ejection Fraction. IJC Heart & Vasculature, 29, Article ID: 100520.
https://doi.org/10.1016/j.ijcha.2020.100520
[48] Kong, S., Liu, J., Yu, X., Lu, Y. and Zang, W. (2012) Protection against Ischemia-Induced Oxidative Stress Conferred by Vagal Stimulation in the Rat Heart: Involvement of the AMPK-PKC Pathway. International Journal of Molecular Sciences, 13, 14311-14325.
https://doi.org/10.3390/ijms131114311
[49] Sant’Anna, L.B., Couceiro, S.L.M., Ferreira, E.A., Sant’Anna, M.B., Cardoso, P.R., Mesquita, E.T., et al. (2021) Vagal Neuromodulation in Chronic Heart Failure with Reduced Ejection Fraction: A Systematic Review and Meta-Analysis. Frontiers in Cardiovascular Medicine, 8, Article 766676.
https://doi.org/10.3389/fcvm.2021.766676
[50] Kumar, H.U., Nearing, B.D., Mittal, S., Premchand, R.K., Libbus, I., DiCarlo, L.A., et al. (2023) Autonomic Regulation Therapy in Chronic Heart Failure with Preserved/Mildly Reduced Ejection Fraction: Anthem-HFpEF Study Results. International Journal of Cardiology, 381, 37-44.
https://doi.org/10.1016/j.ijcard.2023.03.030
[51] Konstam, M.A., Mann, D.L., Udelson, J.J.E., Ardell, J.L., De Ferrari, G.M., Cowie, M.R., et al. (2022) Advances in Our Clinical Understanding of Autonomic Regulation Therapy Using Vagal Nerve Stimulation in Patients Living with Heart Failure. Frontiers in Physiology, 13, Article 857538.
https://doi.org/10.3389/fphys.2022.857538
[52] Burgoyne, S., Georgakopoulos, D., Belenkie, I. and Tyberg, J.V. (2014) Systemic Vascular Effects of Acute Electrical Baroreflex Stimulation. American Journal of Physiology-Heart and Circulatory Physiology, 307, H236-H241.
https://doi.org/10.1152/ajpheart.00422.2013
[53] Singh, J.P., Kandala, J. and John Camm, A. (2013) Non-Pharmacological Modulation of the Autonomic Tone to Treat Heart Failure. European Heart Journal, 35, 77-85.
https://doi.org/10.1093/eurheartj/eht436
[54] Cai, G., Guo, K., Zhang, D. and Qin, S. (2020) The Efficacy of Baroreflex Activation Therapy for Heart Failure: A Meta-Analysis of Randomized Controlled Trials. Medicine, 99, e22951.
https://doi.org/10.1097/md.0000000000022951
[55] Aggarwal, M., Bozkurt, B., Panjrath, G., Aggarwal, B., Ostfeld, R.J., Barnard, N.D., et al. (2018) Lifestyle Modifications for Preventing and Treating Heart Failure. Journal of the American College of Cardiology, 72, 2391-2405.
https://doi.org/10.1016/j.jacc.2018.08.2160
[56] O’Connor, C.M., Whellan, D.J., Lee, K.L., Keteyian, S.J., Cooper, L.S., Ellis, S.J., et al. (2009) Efficacy and Safety of Exercise Training in Patients with Chronic Heart Failure: HF-ACTION Randomized Controlled Trial. JAMA, 301, 1439-1450.
https://doi.org/10.1001/jama.2009.454
[57] Mueller, S., Winzer, E.B., Duvinage, A., Gevaert, A.B., Edelmann, F., Haller, B., et al. (2021) Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients with Heart Failure with Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA, 325, 542-551.
https://doi.org/10.1001/jama.2020.26812