[1]
|
中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2020) [J]. 中华妇产科杂志, 2020, 55(4): 227-238.
|
[2]
|
Zhou, S., Zhou, N., Zhang, H., Yang, W., Liu, Q., Zheng, L., et al. (2024) A Prospective Multicenter Birth Cohort in China: Pregnancy Health Atlas. European Journal of Epidemiology, 39, 1297-1310. https://doi.org/10.1007/s10654-024-01157-x
|
[3]
|
Espinoza, J., Vidaeff, A., Pettker, C.M., et al. (2020) Gestational Hypertension and Preeclampsia: ACOG Practice Bulle-tin, Number 222. Obstetrics & Gynecology, 135, e237-e260.
|
[4]
|
孔凡静, 王莉, 杜趁香, 等. 子痫前期发生的危险因素及孕中期血清PLGF、sFlt-1、ET-1水平的临床预测价值[J]. 实验与检验医学, 2022, 40(5): 572-575+580.
|
[5]
|
梁结明, 刘国成. 子痫前期发病机制的研究进展[J]. 国际妇产科学杂志, 2023, 50(4): 405-408+420.
|
[6]
|
Magee, L.A., Brown, M.A., Hall, D.R., Gupte, S., Hennessy, A., Karumanchi, S.A., et al. (2022) The 2021 International Society for the Study of Hypertension in Pregnancy Classification, Diagnosis & Management Recommendations for International Practice. Pregnancy Hypertension, 27, 148-169. https://doi.org/10.1016/j.preghy.2021.09.008
|
[7]
|
孔北华, 马丁, 段涛. 妇产科学[M]. 第10版. 北京: 人民卫生出版社, 2024: 87-96.
|
[8]
|
Schuermans, A., Truong, B., Ardissino, M., Bhukar, R., Slob, E.A.W., Nakao, T., et al. (2024) Genetic Associations of Circulating Cardiovascular Proteins with Gestational Hypertension and Preeclampsia. JAMA Cardiology, 9, 209-220. https://doi.org/10.1001/jamacardio.2023.4994
|
[9]
|
Kornacki, J., Olejniczak, O., Sibiak, R., Gutaj, P. and Wender-Ożegowska, E. (2023) Pathophysiology of Pre-Eclampsia—Two Theories of the Development of the Disease. International Journal of Molecular Sciences, 25, Article No. 307. https://doi.org/10.3390/ijms25010307
|
[10]
|
Adibi, J.J., Zhao, Y., Koistinen, H., Mitchell, R.T., Barrett, E.S., Miller, R., et al. (2024) Molecular Pathways in Placental-Fetal Development and Disruption. Molecular and Cellular Endocrinology, 581, Article ID: 112075. https://doi.org/10.1016/j.mce.2023.112075
|
[11]
|
Burton, G.J., Redman, C.W., Roberts, J.M. and Moffett, A. (2019) Pre-Eclampsia: Pathophysiology and Clinical Implications. BMJ, 366, l2381. https://doi.org/10.1136/bmj.l2381
|
[12]
|
Roberge, S., Bujold, E. and Nicolaides, K.H. (2018) Meta-Analysis on the Effect of Aspirin Use for Prevention of Preeclampsia on Placental Abruption and Antepartum Hemorrhage. American Journal of Obstetrics and Gynecology, 218, 483-489. https://doi.org/10.1016/j.ajog.2017.12.238
|
[13]
|
Farrell, A., Alahari, S., Ermini, L., Tagliaferro, A., Litvack, M., Post, M., et al. (2019) Faulty Oxygen Sensing Disrupts Angiomotin Function in Trophoblast Cell Migration and Predisposes to Preeclampsia. JCI Insight, 4, e127009. https://doi.org/10.1172/jci.insight.127009
|
[14]
|
Peng, X., Gao, H., Xu, R., Wang, H., Mei, J. and Liu, C. (2020) The Interplay between HIF-1α and Noncoding RNAs in Cancer. Journal of Experimental & Clinical Cancer Research, 39, 27. https://doi.org/10.1186/s13046-020-1535-y
|
[15]
|
Dong, D., Khoong, Y., Ko, Y. and Zhang, Y. (2020) microRNA-646 Inhibits Angiogenesis of Endothelial Progenitor Cells in Pre-Eclamptic Pregnancy by Targeting the VEGF-A/HIF-1α Axis. Experimental and Therapeutic Medicine, 20, 1879-1888. https://doi.org/10.3892/etm.2020.8929
|
[16]
|
Conover, C.A. and Oxvig, C. (2023) The Pregnancy-Associated Plasma Protein-A (PAPP-A) Story. Endocrine Reviews, 44, 1012-1028. https://doi.org/10.1210/endrev/bnad017
|
[17]
|
Chen, Y., Wang, X., Hu, W., Chen, Y., Ning, W., Lu, S., et al. (2021) A Risk Model That Combines MAP, PLGF, and PAPP-A in the First Trimester of Pregnancy to Predict Hypertensive Disorders of Pregnancy. Journal of Human Hypertension, 36, 184-191. https://doi.org/10.1038/s41371-021-00488-6
|
[18]
|
Wright, A., Guerra, L., Pellegrino, M., Wright, D. and Nicolaides, K.H. (2016) Maternal Serum PAPP‐A and Free Β‐HCG at 12, 22 and 32 Weeks’ Gestation in Screening for Pre‐Eclampsia. Ultrasound in Obstetrics & Gynecology, 47, 762-767. https://doi.org/10.1002/uog.15849
|
[19]
|
Boutin, A., Gasse, C., Demers, S., Giguère, Y., Tétu, A. and Bujold, E. (2018) Maternal Characteristics for the Prediction of Preeclampsia in Nulliparous Women: The Great Obstetrical Syndromes (GOS) Study. Journal of Obstetrics and Gynaecology Canada, 40, 572-578. https://doi.org/10.1016/j.jogc.2017.07.025
|
[20]
|
Geldenhuys, J., Rossouw, T.M., Lombaard, H.A., Ehlers, M.M. and Kock, M.M. (2018) Disruption in the Regulation of Immune Responses in the Placental Subtype of Preeclampsia. Frontiers in Immunology, 9, Article No. 1659. https://doi.org/10.3389/fimmu.2018.01659
|
[21]
|
Delaine, T., Collins, P., MacKinnon, A., Sharma, G., Stegmayr, J., Rajput, V.K., et al. (2016) Galectin‐3‐Binding Glycomimetics That Strongly Reduce Bleomycin‐Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition. ChemBioChem, 17, 1759-1770. https://doi.org/10.1002/cbic.201600285
|
[22]
|
Sammar, M., Drobnjak, T., Mandala, M., Gizurarson, S., Huppertz, B. and Meiri, H. (2019) Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. International Journal of Molecular Sciences, 20, Article No. 3192. https://doi.org/10.3390/ijms20133192
|
[23]
|
Guerby, P., Tasta, O., Swiader, A., Pont, F., Bujold, E., Parant, O., et al. (2021) Role of Oxidative Stress in the Dysfunction of the Placental Endothelial Nitric Oxide Synthase in Preeclampsia. Redox Biology, 40, Article ID: 101861. https://doi.org/10.1016/j.redox.2021.101861
|
[24]
|
Nakahara, A., Nair, S., Ormazabal, V., Elfeky, O., Garvey, C.E., Longo, S., et al. (2020) Circulating Placental Extracellular Vesicles and Their Potential Roles during Pregnancy. Ochsner Journal, 20, 439-445. https://doi.org/10.31486/toj.20.0049
|
[25]
|
Sáez, T., Wiley, C., Quon, A., Spaans, F. and Davidge, S.T. (2021) Increased Oxidative Stress and Endothelial Activation in Umbilical Veins from Pregnancies Diagnosed with Preeclampsia. Pregnancy Hypertension, 26, 87-90. https://doi.org/10.1016/j.preghy.2021.09.007
|
[26]
|
Yang, S. and Lian, G. (2019) ROS and Diseases: Role in Metabolism and Energy Supply. Molecular and Cellular Biochemistry, 467, 1-12. https://doi.org/10.1007/s11010-019-03667-9
|
[27]
|
Hansson, S.R., Nääv, Å. and Erlandsson, L. (2015) Oxidative Stress in Preeclampsia and the Role of Free Fetal Hemoglobin. Frontiers in Physiology, 5, Article No. 516. https://doi.org/10.3389/fphys.2014.00516
|
[28]
|
Centlow, M., Carninci, P., Nemeth, K., Mezey, E., Brownstein, M. and Hansson, S.R. (2008) Placental Expression Profiling in Preeclampsia: Local Overproduction of Hemoglobin May Drive Pathological Changes. Fertility and Sterility, 90, 1834-1843. https://doi.org/10.1016/j.fertnstert.2007.09.030
|
[29]
|
Anderson, U.D., Gram, M., Ranstam, J., Thilaganathan, B., Åkerström, B. and Hansson, S.R. (2016) Fetal Hemoglobin, Α1-Microglobulin and Hemopexin Are Potential Predictive First Trimester Biomarkers for Preeclampsia. Pregnancy Hypertension: An International Journal of Women’s Cardiovascular Health, 6, 103-109. https://doi.org/10.1016/j.preghy.2016.02.003
|
[30]
|
Bidarimath, M., Khalaj, K., Wessels, J.M. and Tayade, C. (2014) MicroRNAs, Immune Cells and Pregnancy. Cellular & Molecular Immunology, 11, 538-547. https://doi.org/10.1038/cmi.2014.45
|
[31]
|
Lv, Y., Lu, C., Ji, X., Miao, Z., Long, W., Ding, H., et al. (2018) Roles of MicroRNAs in Preeclampsia. Journal of Cellular Physiology, 234, 1052-1061. https://doi.org/10.1002/jcp.27291
|
[32]
|
Heiss, C., Rodriguez-Mateos, A. and Kelm, M. (2015) Central Role of Enos in the Maintenance of Endothelial Homeostasis. Antioxidants & Redox Signaling, 22, 1230-1242. https://doi.org/10.1089/ars.2014.6158
|
[33]
|
Biró, O., Alasztics, B., Molvarec, A., Joó, J., Nagy, B. and Rigó, J. (2017) Various Levels of Circulating Exosomal Total-Mirna and Mir-210 Hypoxamir in Different Forms of Pregnancy Hypertension. Pregnancy Hypertension, 10, 207-212. https://doi.org/10.1016/j.preghy.2017.09.002
|
[34]
|
Yan, T., Liu, Y., Cui, K., Hu, B., Wang, F. and Zou, L. (2013) MicroRNA-126 Regulates EPCs Function: Implications for a Role of miR-126 in Preeclampsia. Journal of Cellular Biochemistry, 114, 2148-2159. https://doi.org/10.1002/jcb.24563
|
[35]
|
Martinez-Fierro, M.L., Carrillo-Arriaga, J.G., Luevano, M., Lugo-Trampe, A., Delgado-Enciso, I., Rodriguez-Sanchez, I.P., et al. (2019) Serum Levels of Mir-628-3p and Mir-628-5p during the Early Pregnancy Are Increased in Women Who Subsequently Develop Preeclampsia. Pregnancy Hypertension, 16, 120-125. https://doi.org/10.1016/j.preghy.2019.03.012
|
[36]
|
Lecarpentier, E., Zsengellér, Z.K., Salahuddin, S., Covarrubias, A.E., Lo, A., Haddad, B., et al. (2020) Total versus Free Placental Growth Factor Levels in the Pathogenesis of Preeclampsia. Hypertension, 76, 875-883. https://doi.org/10.1161/hypertensionaha.120.15338
|
[37]
|
Orosz, L., Orosz, G., Veress, L., Dosa, D., Orosz Sr, L., Arany, I., et al. (2019) Screening for Preeclampsia in the First Trimester of Pregnancy in Routine Clinical Practice in Hungary. Journal of Biotechnology, 300, 11-19. https://doi.org/10.1016/j.jbiotec.2019.04.017
|
[38]
|
Duhig, K.E., Myers, J., Seed, P.T., Sparkes, J., Lowe, J., Hunter, R.M., et al. (2019) Placental Growth Factor Testing to Assess Women with Suspected Pre-Eclampsia: A Multicentre, Pragmatic, Stepped-Wedge Cluster-Randomised Controlled Trial. The Lancet, 393, 1807-1818. https://doi.org/10.1016/s0140-6736(18)33212-4
|
[39]
|
Wright, D., Wright, A. and Nicolaides, K.H. (2020) The Competing Risk Approach for Prediction of Preeclampsia. American Journal of Obstetrics and Gynecology, 223, 12-23.e7. https://doi.org/10.1016/j.ajog.2019.11.1247
|
[40]
|
Sasagawa, T., Nagamatsu, T., Morita, K., Mimura, N., Iriyama, T., Fujii, T., et al. (2018) HIF-2α, but Not HIF-1α, Mediates Hypoxia-Induced Up-Regulation of Flt-1 Gene Expression in Placental Trophoblasts. Scientific Reports, 8, Article No. 17375. https://doi.org/10.1038/s41598-018-35745-1
|
[41]
|
Tomimatsu, T., Mimura, K., Matsuzaki, S., Endo, M., Kumasawa, K. and Kimura, T. (2019) Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. International Journal of Molecular Sciences, 20, Article No. 4246. https://doi.org/10.3390/ijms20174246
|
[42]
|
Verlohren, S., Brennecke, S.P., Galindo, A., Karumanchi, S.A., Mirkovic, L.B., Schlembach, D., et al. (2022) Clinical Interpretation and Implementation of the sFlt-1/PlG Ratio in the Prediction, Diagnosis and Management of Preeclampsia. Pregnancy Hypertension, 27, 42-50. https://doi.org/10.1016/j.preghy.2021.12.003
|
[43]
|
Ukah, U.V., Hutcheon, J.A., Payne, B., Haslam, M.D., Vatish, M., Ansermino, J.M., et al. (2017) Placental Growth Factor as a Prognostic Tool in Women with Hypertensive Disorders of Pregnancy: A Systematic Review. Hypertension, 70, 1228-1237. https://doi.org/10.1161/hypertensionaha.117.10150
|
[44]
|
Wallace, K., Morris, R., Kyle, P.B., Cornelius, D., Darby, M., Scott, J., et al. (2013) Hypertension, Inflammation and T Lymphocytes Are Increased in a Rat Model of HELLP Syndrome. Hypertension in Pregnancy, 33, 41-54. https://doi.org/10.3109/10641955.2013.835820
|
[45]
|
Lim, J.H., Kim, S.Y., Park, S.Y., Lee, M.H., Yang, J.H., Kim, M.Y., et al. (2009) Soluble Endoglin and Transforming Growth Factor‐β1 in Women Who Subsequently Developed Preeclampsia. Prenatal Diagnosis, 29, 471-476. https://doi.org/10.1002/pd.2217
|
[46]
|
El-Sayed, A.A.F. (2017) Preeclampsia: A Review of the Pathogenesis and Possible Management Strategies Based on Its Pathophysiological Derangements. Taiwanese Journal of Obstetrics and Gynecology, 56, 593-598. https://doi.org/10.1016/j.tjog.2017.08.004
|
[47]
|
Sutton, E.F., Gemmel, M. and Powers, R.W. (2020) Nitric Oxide Signaling in Pregnancy and Preeclampsia. Nitric Oxide, 95, 55-62. https://doi.org/10.1016/j.niox.2019.11.006
|
[48]
|
Rezeck Nunes, P., Cezar Pinheiro, L., Zanetoni Martins, L., Alan Dias-Junior, C., Carolina Taveiros Palei, A. and Cristina Sandrim, V. (2022) A New Look at the Role of Nitric Oxide in Preeclampsia: Protein S-Nitrosylation. Pregnancy Hypertension, 29, 14-20. https://doi.org/10.1016/j.preghy.2022.05.008
|
[49]
|
Qu, H. and Khalil, R.A. (2020) Vascular Mechanisms and Molecular Targets in Hypertensive Pregnancy and Preeclampsia. American Journal of Physiology-Heart and Circulatory Physiology, 319, H661-H681. https://doi.org/10.1152/ajpheart.00202.2020
|
[50]
|
Pinto-Souza, C.C., Coeli-Lacchini, F., Luizon, M.R., Cavalli, R.C., Lacchini, R. and Sandrim, V.C. (2021) Effects of Arginase Genetic Polymorphisms on Nitric Oxide Formation in Healthy Pregnancy and in Preeclampsia. Nitric Oxide, 109, 20-25. https://doi.org/10.1016/j.niox.2021.02.003
|
[51]
|
Ives, C.W., Sinkey, R., Rajapreyar, I., Tita, A.T.N. and Oparil, S. (2020) Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76, 1690-1702. https://doi.org/10.1016/j.jacc.2020.08.014
|
[52]
|
Honigberg, M.C., Truong, B., Khan, R.R., Xiao, B., Bhatta, L., Vy, H.M.T., et al. (2023) Polygenic Prediction of Preeclampsia and Gestational Hypertension. Nature Medicine, 29, 1540-1549. https://doi.org/10.1038/s41591-023-02374-9
|
[53]
|
Zhang, J., Dunk, C.E., Shynlova, O., Caniggia, I. and Lye, S.J. (2019) Tgfb1 Suppresses the Activation of Distinct DNK Subpopulations in Preeclampsia. EBioMedicine, 39, 531-539. https://doi.org/10.1016/j.ebiom.2018.12.015
|
[54]
|
Meister, S., Hahn, L., Beyer, S., Mannewitz, M., Perleberg, C., Schnell, K., et al. (2022) Regulatory T Cell Apoptosis during Preeclampsia May Be Prevented by Gal-2. International Journal of Molecular Sciences, 23, Article No. 1880. https://doi.org/10.3390/ijms23031880
|
[55]
|
Salvany-Celades, M., van der Zwan, A., Benner, M., Setrajcic-Dragos, V., Bougleux Gomes, H.A., Iyer, V., et al. (2019) Three Types of Functional Regulatory T Cells Control T Cell Responses at the Human Maternal-Fetal Interface. Cell Reports, 27, 2537-2547.e5. https://doi.org/10.1016/j.celrep.2019.04.109
|
[56]
|
Chen, J., Zhao, L., Wang, D., Xu, Y., Gao, H., Tan, W., et al. (2018) Contribution of Regulatory T Cells to Immune Tolerance and Association of MicroRNA-210 and Foxp3 in Preeclampsia. Molecular Medicine Reports, 19, 1150-1158. https://doi.org/10.3892/mmr.2018.9733
|
[57]
|
Wang, Y., Li, B. and Zhao, Y. (2022) Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Frontiers in Immunology, 13, Article ID: 883404. https://doi.org/10.3389/fimmu.2022.883404
|
[58]
|
Serrano, N.C., Guio, E., Becerra-Bayona, S.M., Quintero-Lesmes, D.C., Bautista-Niño, P.K., Colmenares-Mejía, C., et al. (2020) C-Reactive Protein, Interleukin-6 and Pre-Eclampsia: Large-Scale Evidence from the GenPE Case-Control Study. Scandinavian Journal of Clinical and Laboratory Investigation, 80, 381-387. https://doi.org/10.1080/00365513.2020.1747110
|
[59]
|
Roberge, S., Bujold, E. and Nicolaides, K.H. (2018) Aspirin for the Prevention of Preterm and Term Preeclampsia: Systematic Review and Meta-Analysis. American Journal of Obstetrics and Gynecology, 218, 287-293.e1. https://doi.org/10.1016/j.ajog.2017.11.561
|
[60]
|
Salazar Garcia, M.D., Mobley, Y., Henson, J., Davies, M., Skariah, A., Dambaeva, S., et al. (2018) Early Pregnancy Immune Biomarkers in Peripheral Blood May Predict Preeclampsia. Journal of Reproductive Immunology, 125, 25-31. https://doi.org/10.1016/j.jri.2017.10.048
|
[61]
|
Žák, P. and Souček, M. (2019) Correlation of Tumor Necrosis Factor Alpha, Interleukin 6 and Interleukin 10 with Blood Pressure, Risk of Preeclampsia and Low Birth Weight in Gestational Diabetes. Physiological Research, 68, 395-408. https://doi.org/10.33549/physiolres.934002
|
[62]
|
Lee, D.K. and Nevo, O. (2021) Tumor Necrosis Factor Alpha Expression Is Increased in Maternal Microvascular Endothelial Cells in Preeclampsia. Hypertension in Pregnancy, 40, 193-201. https://doi.org/10.1080/10641955.2021.1921794
|
[63]
|
Lau, S.Y., Guild, S., Barrett, C.J., Chen, Q., McCowan, L., Jordan, V., et al. (2013) Tumor Necrosis Factor-Alpha, Interleukin-6, and Interleukin-10 Levels Are Altered in Preeclampsia: A Systematic Review and Meta-Analysis. American Journal of Reproductive Immunology, 70, 412-427. https://doi.org/10.1111/aji.12138
|