子痫前期发病机制及潜在生物标志物的研究进展
Advances in the Pathogenesis and Potential Biomarkers of Preeclampsia
DOI: 10.12677/acm.2025.1541242, PDF, HTML, XML,   
作者: 王雅纯:华北理工大学临床医学院,河北 唐山;河北省人民医院产科,河北 石家庄;张润学, 周靖雅, 韩照照, 霍 琰*:河北省人民医院产科,河北 石家庄
关键词: 子痫前期发病机制生物标志物综述Preeclampsia Pathogenesis Biomarker Review
摘要: 子痫前期(Preeclampsia, PE)是以高血压和蛋白尿为主要表现的妊娠期特有的疾病,治疗不及时常严重危害母儿健康,目前最有效的治疗措施仅为终止妊娠。PE的发病机制仍未阐明,随着研究的不断深入,目前普遍认为其发病是一种多因素、多机制、多通路参与的过程。本文对近期关于PE的定义、分类、发病机制及其相关潜在生物标志物的最新研究进展进行综述,以期深化对PE的认识,并为临床筛查、预防及治疗提供理论依据。
Abstract: Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria, which poses significant risks to maternal and fetal health if not promptly treated. Currently, the most effective intervention remains the termination of pregnancy. The pathogenesis of preeclampsia remains incompletely understood, but emerging evidence suggests that it involves a multifactorial, multi-mechanism, and multi-pathway process. This review summarizes recent advances in the definition, classification, pathogenesis, and potential biomarkers of preeclampsia, aiming to enhance the understanding of this condition and provide a theoretical foundation for clinical screening, prevention, and treatment strategies.
文章引用:王雅纯, 张润学, 周靖雅, 韩照照, 霍琰. 子痫前期发病机制及潜在生物标志物的研究进展[J]. 临床医学进展, 2025, 15(4): 2795-2804. https://doi.org/10.12677/acm.2025.1541242

1. 引言

子痫前期(Preeclampsia, PE)是一种妊娠期特有的疾病,通常在妊娠20周后出现,以血压升高、蛋白尿异常及多系统器官功能障碍为主要临床表现,该疾病在全球妊娠相关并发症中的发生率为3%~5% [1],在我国约为2.7%,且西部地区发病率略高[2]。PE已成为影响母婴安全的重要危险因素,据全球流行病学统计数据显示,该疾病每年导致约7.6万例孕产妇死亡,同时造成近50万例胎儿及新生儿死亡[3]。针对PE合并多器官功能障碍的病情严重患者,适时终止妊娠是目前公认的最有效干预措施。已被证实的PE高危因素主要包括:年龄 ≥ 40岁、PE病史或家族史、妊娠间隔过短或过长、多胎妊娠、BMI ≥ 35 kg/m2、慢性高血压、妊娠期糖尿病、自身免疫性疾病(如抗磷脂综合征或系统性红斑狼疮)及吸烟史等[4]。现有研究提示,PE的病理生理过程涉及胎盘灌注不足、氧化应激失衡、血管内皮功能障碍及炎症介质激活等多个环节,但其具体发病机制尚未完全阐明[5]。本文综述了PE的定义、分类、发病机制及其相关潜在生物标志物的最新研究进展,旨在深化对PE的认识,并为临床筛查、预防及治疗提供理论依据。

2. 子痫前期的定义及分类

根据国际妊娠期高血压研究学会(International Society for the Study of Hypertension in Pregnancy, ISSHP)的最新诊断标准,子痫前期的定义为:既往无高血压病史的孕妇在妊娠20周后出现血压异常升高,表现为两次测量(间隔4小时以上)收缩压 ≥ 140 mmHg和/或舒张压 ≥ 90 mmHg,同时合并以下任一临床表现:1) 蛋白尿异常,可表现为尿蛋白/肌酐比值 ≥ 30 mg/mol、24小时尿蛋白定量 ≥ 0.3 g或尿蛋白(++);2) 母体器官功能障碍,具体表现为:肾功能损害(血清肌酐 ≥ 90 μmol/L或1 mg/dL)、肝功能异常(ALT或AST ≥ 40 U/L)、神经系统症状(包括子痫、意识障碍、视力异常、脑血管意外、持续视觉障碍或无法用其他疾病解释且药物治疗无效的新发头痛),或出现肺水肿、血液系统异常(血小板计数 < 150,000/μL、DIC或溶血);3) 胎盘–胎儿系统功能异常,表现为胎盘早剥、胎儿生长受限、脐血流异常或宫内死亡等[6]

目前,国际上对于PE的分类尚未达成统一标准。ISSHP依据终止妊娠时的孕周将PE分为早产型PE (分娩孕周 < 37周)和足月型PE (分娩孕周 ≥ 37周) [6]。然而,临床上更倾向于根据首次出现临床症状的孕周将其分为早发型PE (Early-Onset Preeclampsia, EOPE)和晚发型PE (Late-Onset Preeclampsia, LOPE) [7]。无论PE的起病时间早晚或初始症状轻重,均存在快速恶化的风险。因此,为避免延误诊治,当前国内外指南均不建议对PE区分为“轻度”或“重度”。

3. 子痫前期的发病机制及潜在生物标志物

PE曾被认为是一种胎盘源性疾病,但随着研究的深入,现已被视为一种多因素、多机制、多通路参与的综合征,胎盘功能障碍可能仅为PE发病过程中的一个环节[8]。Redman等提出的“二阶段模型”是较为公认的学说,该模型认为,妊娠早期虽无明显临床表现,但缺血缺氧可导致滋养细胞功能障碍,使子宫螺旋动脉重塑不足,进而引发胎盘发育异常;妊娠中晚期,胎盘组织在氧化应激和炎症微环境的刺激下,产生并释放大量病理因子,这些胎盘源性因子通过循环系统作用于母体,引发全身性炎症反应过度激活,同时造成血管内皮细胞结构和功能的损害,最终导致特征性临床表现的出现[9]。2014年,Redman进一步提出“六阶段模式”,包括:① 受精至胚胎着床期,母体对胚胎父源性基因产生免疫不耐受;② 子宫螺旋动脉重塑期,为胎盘形成的关键阶段,若血管重塑障碍则进入第三阶段;③ 胎盘应激期,因胎盘形成不良引发应激反应;④ 胎盘因子释放期,胎盘源性不良因子进入母体血液循环;⑤ 临床症状显现期,表现为高血压等临床症状;⑥ 病情加重期,胎盘灌注持续减少并形成血栓及梗死[10]。目前,PE发病机制的研究主要集中在胎盘缺血缺氧、氧化应激、血管生成障碍、免疫失调及炎症反应等方面[11]

3.1. 胎盘缺血缺氧

在妊娠初期,母胎界面的血管重塑为物质交换提供了理想环境。绒毛外滋养细胞(Extravillous Trophoblast Cell, EVT)通过侵袭子宫肌层,参与母体螺旋动脉的结构重塑过程,表现为血管末端平滑肌层的逐渐降解和收缩功能的丧失,最终在母胎界面形成低血管阻力和高血流灌注的独特血流动力学模式,为胎儿生长发育提供了必要的营养和氧气供应[12]。研究表明,PE患者EVT的侵袭能力较正常妊娠组显著下降,可导致子宫螺旋动脉重铸障碍,进而引起胎盘血流灌注不足和氧化应激损伤,最终导致胎盘发育异常[13]。EVT侵袭功能缺陷可能与持续性缺氧微环境抑制滋养层细胞向侵袭性表型分化密切相关。

3.1.1. 缺氧诱导因子-1 (Hypoxia Inducible Factor-1, HIF-1)

作为受低氧环境特异性调控的转录因子,HIF-1由HIF-1α和HIF-1β两个亚基构成,其中HIF-1α作为功能性亚基,在细胞感知和适应缺氧状态的过程中发挥关键作用,其活性受到细胞内氧分压的精确调控[14]。Dong研究团队的最新研究表明,血清中HIF-1的表达水平升高与胎盘组织缺血缺氧密切相关,这种改变不仅会抑制滋养层细胞的侵袭潜能,还会导致母体血管内皮功能障碍,最终导致严重并发症发生率和不良妊娠结局的风险显著增加[15]

3.1.2. 妊娠相关血浆蛋白A (Pregnancy Associated Plasma Protein A, PAPP-A)

作为早孕期产前筛查的关键生物标志物,PAPP-A由定位于人类基因组9q33.1位点的基因编码,在母体血清中表现出良好的组织特异性;胎盘组织合成并释放PAPP-A进入母体循环系统,该蛋白在体内主要对胰岛素样生长因子(Insulin Like Growth Factor, IGF)的生物活性具有调控作用[16]。根据Chen等研究者的发现,当PAPP-A表达水平下降时,会促进IGF与其结合蛋白4结合,导致游离IGF浓度降低,从而抑制滋养层细胞的浸润能力,进而影响胎盘的正常发育过程[17]。Wright等的研究表明,在妊娠12~16周期间,将1300 mIU/L作为PAPP-A的临界值对EOPE进行预测可得到94.2%的敏感度和90.8%的特异度,其约登指数达到0.85,具有显著的预测效能[18]。此外,Boutin等学者的研究进一步证实,与正常妊娠组相比,PE患者的PAPP-A水平呈现明显下降趋势,表明该指标在PE早期预测中具有重要的临床价值[19]

3.1.3. 胎盘蛋白-13 (Placental Protein 13, PP13)

作为半乳糖凝集素超家族成员之一,PP13在胎盘组织中存在特异性表达。PP13通过与细胞表面糖蛋白的多糖链特异性结合,抑制母体红细胞在螺旋动脉内皮上的异常黏附,维持血流动力学的稳定性,对保证妊娠期间胎盘组织的正常血液灌注具有关键性作用[20]。Delaine等学者发现,PE患者血清PP13水平呈现独特的动态变化模式:与正常妊娠孕妇相比,其在妊娠早期显著降低,而孕20周后则明显升高,表现出典型的“先降后升”特征[21]。Sammar等研究者的进一步研究表明,在妊娠早期母体循环中PP13水平的下降与EOPE及足月型PE的发病风险呈显著正相关[22]

3.2. 氧化应激

氧化应激机制学说主要涉及活性氧(Reactive Oxygen Species, ROS)和活性氮(Reactive Nitrogen Species, RNS)的代谢失衡,当这些活性分子过度生成超过机体抗氧化防御系统的清除能力时,就会打破原有的氧化还原平衡状态。正常妊娠状态下,母体通过上调抗氧化系统的功能活性来维持氧化–抗氧化平衡。然而,PE患者表现出明显的抗氧化能力缺陷,其特征性改变包括胎盘组织ROS和RNS生成增加,同时伴随抗氧化物质浓度降低,从而导致DNA、脂质和蛋白质的过氧化[23]。氧化应激不仅破坏了氧化与抗氧化系统的平衡,还会激活或损伤内皮细胞,进而参与PE的发生发展。

3.2.1. ROS

ROS是一类具有强氧化活性的有氧代谢的产物。在正常妊娠状态下,母体循环中ROS浓度的生理性升高体现了机体的适应性调节,这种改变与细胞增殖分化、胚胎发育以及妊娠维持等重要的生物学过程密切相关[18]。随着妊娠进展,母体对自由基损伤的防御能力逐步增强。然而,当ROS生成速率超过抗氧化系统的清除效率时,会导致氧化还原稳态失衡,进一步引发炎症级联反应和细胞毒性效应。PE患者的ROS过度生成可能与妊娠初期EVT对螺旋动脉平滑肌的降解不足密切相关,这种病理改变使得血管末端仍保留收缩功能,从而引起周期性缺血–再灌注损伤[24]。高浓度ROS可诱导血管内皮细胞或滋养层细胞凋亡,从而参与PE的发生[25]。Yang等人的研究证实,ROS在PE的发生发展中起着关键作用:PE患者体内氧化代谢产物增多、抗氧化物质减少以及炎症介质大量释放,这些病理改变协同作用于胎盘组织,导致氧自由基生成增加和脂质过氧化反应增强,从而加剧血管内皮细胞损伤,最终促进PE的病情进展[26]

3.2.2. 胎儿血红蛋白(Fetal Hemoglobin, HbF)

HbF是脐带血中最重要的氧转运蛋白,其分子结构是由两条α珠蛋白链和两条γ珠蛋白链通过非共价键结合形成稳定的四聚体构象。该蛋白具有独特的氧亲和特性,能够有效促进氧分子通过胎盘屏障从母体向胎儿转运,即使在正常妊娠状态下,母体循环中也可检测到微量HbF的存在[27]。近期研究揭示了HbF与PE发病机制的潜在关联。Centlow等学者通过分子生物学研究发现,PE患者胎盘组织中HbF基因表达水平显著升高,这提示作为高活性分子的游离血红蛋白可能通过诱导细胞膜结构损伤,在PE的病理生理过程中发挥重要作用[28]。此外,Anderson等学者还发现,LOPE患者的外周血中HbF水平呈现显著上升趋势[29]

3.2.3. 微小RNA (MicroRNA, miRNA)

miRNA是含有约22个碱基的单链结构的非编码RNA分子家族的一员,具有重要的基因表达调控作用[30]。miRNA具有长期稳定性和抗冻融能力,在血清及尿液中高度稳定,是理想的疾病生物标志物[31]。胎盘中存在大量miRNA,参与调控PE的发生与发展。研究表明,miRNA通过调控细胞增殖、血管生成等过程影响滋养层功能和血管稳态。例如,miR-155上调可抑制内皮型一氧化氮合酶(Endothelial Nitric Oxide Synthase, eNOS)表达,削弱滋养细胞侵袭能力并破坏血管内皮稳态[32],且PE孕妇尿液中其表达水平与24 h尿蛋白定量水平呈正相关[33] [34];miR-210上调与缺氧诱导的HIF、核因子κB (Nuclear factor kappa-B, NF-κB)等因子增加相关,进而影响血管形成[33];miR-126下调则显著降低血管内皮生长因子(Vascular Endothelial Growth Factor, VEGF)表达,破坏血管完整性及内皮功能[34]。此外,Martinez-Fierro等研究发现,妊娠早期miR-628-3p水平升高可能通过调控靶基因表达抑制滋养层功能,增加PE风险[35]

3.3. 血管生成障碍

基于血管内皮损伤理论,PE的病理生理过程可分为两个病理阶段:第一阶段滋养层细胞表现出明显的侵袭能力缺陷,导致子宫螺旋动脉重塑异常、胎盘着床深度不足,引起胎盘血流灌注减少,最终造成胎盘组织发生缺血缺氧性病理改变;第二阶段,胎盘源性炎性介质大量释放入母体血液循环,诱发系统性血管内皮功能障碍。这种全身性内皮损伤可导致多器官系统受累,随着病程进展,临床上逐渐出现高血压、蛋白尿等PE的特征性临床表现[36]

3.3.1. 胎盘生长因子(Placenta Growth Factor, PLGF)

作为重要的血管生成调节因子,PLGF主要由胎盘滋养层细胞分泌产生,在胚胎发育过程中发挥关键作用。根据Orosz等学者的研究,与正常妊娠孕妇相比,后续发展为PE的病例在妊娠早期阶段即呈现PLGF表达水平的明显下降,这一现象在EOPE病例中尤为突出[37]。Duhig研究团队的最新研究表明,联合PLGF进行孕期检测可显著提高PE的诊断效率,确诊时间中位数由原先的41天提前至19天,针对PLGF表达水平异常的孕妇加强孕期保健及监护,可有效改善妊娠结局、显著降低围产期母婴并发症的发生风险[38]。Wright等学者的研究证实,PLGF在妊娠未满35周的疑似PE病例中具有重要的预测价值,PLGF的表达水平对PE相关围产期并发症具有较好的预测效能[39]

3.3.2. 可溶性fms样酪氨酸激酶-1 (Soluble FMS-Like Tyrosine Kinase-1, sFlt-1)

sFlt-1是由血管内皮生长因子受体1 (Vascular Endothelial Growth Factor Receptor 1, VEGFR-1)经蛋白水解作用产生的变构体。sFlt-1作为重要的血管生成抑制因子,具有显著的抗血管生成特性,抑制VEGF和PLGF的生物学活性。正常妊娠状态下,VEGF、sFlt-1及PLGF三者之间保持着生理性动态平衡。然而,在PE病理过程中,由于胎盘血流灌注不足,sFlt-1的表达水平显著上调[40],导致sFlt-1与VEGF、PLGF竞争结合相应受体,打破原有的血管生成平衡状态,最终诱发血管内皮功能障碍[41]。作为胎盘源性分泌蛋白,sFlt-1的表达随孕周增加呈现生理性上升趋势,在妊娠晚期更为明显,而PE患者sFlt-1的表达显著高于正常妊娠水平[42]。近年研究发现,sFlt-1与PLGF之间保持动态平衡,其中sFlt-1/PLGF比值在PE的早期筛查和诊断中展现出优越的临床应用价值。sFlt-1/PLGF比值在不同类型妊娠期高血压疾病中呈现显著差异性表达特征,可作为有效的鉴别诊断的指标[43]

3.3.3. 可溶性内皮因子(Soluble Endoglin, sEng)

sEng是一种胎盘源性因子,与sFlt-1具有协同作用[44]。研究表明,sEng通过与转化生长因子-β1 (Transforming growth factor-β1, TGF-β1)结合,阻断TGF-β与VEGF的相互作用,从而抑制VEGF在血管重塑和血管舒张调节中的功能[45]。VEGF主要通过eNOS途径发挥作用,而sEng表达上调会减弱eNOS活性,抑制一氧化氮(Nitric Oxide, NO)的生成,最终导致胎盘、肾脏及其他器官的血管床收缩[46]

3.3.4. NO

NO是由底物L-精氨酸在NOS催化下与多种辅助因子合成的无机亲脂性分子,在维持血管张力稳态和调节胎盘–胎儿循环中发挥着关键的生理调节作用,其作为重要的生物活性介质参与PE的发病。根据Sutton等学者的研究,正常妊娠状态下NOS活性增强及其介导的NO合成增加是重要的生理适应机制,通过促进血管舒张和降低胎盘循环阻力,该调节机制可能受到细胞因子(如PlGF和VEGF)和激素(如类固醇和雌二醇)的共同调节[47]。在PE病理状态下,孕妇体内NO的生物利用度显著降低,其信号转导通路出现功能障碍,导致血管舒张能力减弱和胎盘血管阻力显著增加,导致胎盘微循环障碍,这种血流动力学改变可引起胎盘组织发生缺血缺氧性病理损伤[48]。胎盘组织的缺血缺氧状态会导致NOS系统功能障碍,进而影响其对血管张力和血压的调节能力,这种病理生理改变最终表现为血管舒张功能下降和血管收缩反应增强,从而导致血压进行性升高。NO作为小动脉的血管舒张剂,通过eNOS将精氨酸转化为NO,并经由cGMP通路发挥舒张血管和抑制血小板聚集的作用[49]。Pinto-Souza等人的研究表明,当EVT侵入螺旋动脉时会生成NO,而PE患者NO生物利用率降低可能与精氨酸酶活性升高有关,精氨酸酶与eNOS竞争性结合精氨酸,导致eNOS底物减少,NO生成相应下降[50]

3.4. 免疫失调

免疫调节功能障碍在PE的发病机制中扮演重要角色。自然杀伤细胞(Natural Killer, NK)、人类白细胞抗原(Human Leukocyte Antigen, HLA)及T淋巴细胞亚群共同构成了母胎界面的主要免疫调节网络。其中,NK细胞通过分泌包括VEGF、白细胞介素(Interleukin, IL)以及γ干扰素(Interferon-γ, IFN-γ)在内的多种生物活性物质参与妊娠维持,调节滋养层细胞侵袭能力和胎盘血管生成过程[51]。蜕膜组织中NK细胞的功能异常可导致滋养层细胞侵袭能力下降,进而影响子宫螺旋动脉的重塑过程。母体在妊娠早期出现的自身免疫反应异常可能影响胎盘的正常着床过程,导致胎盘血流灌注不足,这种病理改变可引发滋养动脉缺血性病变,伴随细胞脱落和炎症因子释放,最终造成系统性内皮功能紊乱,促进PE的发生发展[52]

3.4.1. 蜕膜调节性T细胞(Regulatory T Cell, Treg)

Treg来源于CD4+幼稚T细胞,其功能异常或数量减少与PE的发病机制存在显著相关性。Treg的免疫调节功能通过分泌TGF-β1来实现,TGF-β1表达水平的上调能够特异性抑制蜕膜NK细胞特定亚群的活化状态,这种免疫调节的异常改变在PE的发病过程中起着重要作用[53]。胎盘微环境中存在多种Treg细胞亚群,这些细胞亚群通过不同的分子机制参与调控局部炎症反应。当Treg数量不足或功能缺陷时,效应性T细胞可能被异常激活,导致母体对胎儿同种异体抗原产生免疫排斥反应,进而导致PE的发生[54]

3.4.2. 叉头框蛋白P3 (Forkhead Box P3, FoxP3)

作为重要的转录调控因子,FoxP3在调节Treg的分化成熟和功能维持过程中起着关键作用。Salvany-Celades等通过免疫组织化学法检测FoxP3的表达,发现PE孕妇蜕膜中Treg数量显著减少[55]。Chen等进一步研究发现,PE患者胎盘组织中FoxP3表达明显下调,且与miR-210表达水平呈显著负相关[56]。由于FoxP3是Treg的重要标志物,其表达下调提示PE患者Treg数量减少。Treg缺失可导致效应T细胞介导的胎儿或胎盘组织免疫失衡,从而参与PE的发病机制[54]

3.5. 炎症反应

在生理性妊娠过程中,母体会出现适度的炎症反应,然而过度的炎症激活可能导致PE的发生。PE患者常表现为C反应蛋白水平升高、白细胞数量增多且活化增强、补体系统过度激活以及血小板活化增加等系统性炎症反应特征。这些病理改变与胎盘发育异常存在密切关联,由胎盘释放的炎性因子进入母体循环系统后,能够触发系统性炎症反应级联,这种病理过程可导致血管内皮细胞功能紊乱和血管结构重塑异常,最终参与PE的病理生理过程[57]

3.5.1. IL

IL是在调控炎症细胞的活化、增殖及分化过程中发挥着核心作用的细胞因子。Serrano等人的研究表明,PE的发病机制与IL的代谢紊乱存在显著相关性。PE患者外周血中促炎性细胞因子水平明显异常,其中IL-1和IL-6等炎症介质的表达显著上调[58]。大量研究证据支持IL-1在胎盘功能异常及PE发病过程中的重要作用,Roberge等研究者发现,与正常妊娠组相比,PE患者胎盘组织中的炎症小体激活程度明显增强,同时伴有IL-1表达水平的显著升高[59]。IL-6属于小分子糖蛋白家族,在炎症反应调控网络中处于核心地位,由内皮细胞、巨噬细胞和平滑肌细胞分泌。Salazar-Garcia等人的一项荟萃分析显示,PE患者血清IL-6水平显著高于正常妊娠妇女[60]。IL-6表达水平升高不仅会触发炎症级联反应,还可通过影响血管舒缩功能的平衡状态,导致母体血压调节机制紊乱,最终引起血压水平升高[61]

3.5.2. 肿瘤坏死因子-α (Tumor Necrosis Factor-α, TNF-α)

作为炎症反应的关键调节因子,TNF-α主要由单核巨噬细胞系统合成和释放。TNF-α通过其显著的血管内皮毒性作用,诱导内皮损伤和促进滋养层细胞程序性死亡,导致胎盘组织灌注不足和缺氧性损伤,进而触发局部炎症反应[62]。此外,TNF-α可通过刺激IL-6的过度表达和凝血系统的异常激活参与PE的发病机制;同时,TNF-α在NK细胞的活化调控以及线粒体氧化应激反应的诱导过程中也发挥着重要的病理生理作用[63]

4. 总结与展望

PE的发病机制涉及胎盘缺血缺氧、血管生成失衡、氧化应激、炎症反应及免疫调节异常等多个方面,这些因素相互作用,共同参与疾病的发生发展。尽管研究不断深入,PE的具体发病机制仍未完全阐明。随着生物技术的进步,越来越多的潜在生物标志物被发现,为早期识别高危人群和临床干预提供了重要依据。然而,目前许多关于PE生物标志物的研究存在局限性,如样本量小、横断面设计及诊断标准不统一等。因此,亟需大规模纵向研究以进一步验证。此外,单一病理生理机制的生物标志物往往无法准确预测PE的发生,有必要整合多机制、多通路的相关生物标志物进行综合评估,以更精确地识别高危人群并指导临床干预。

未来研究应聚焦于PE的分子机制,通过多组学分析(如基因组学、蛋白质组学、代谢组学),将病理生理机制与临床表型相关联,基于分子特征对患者进行分层管理,并予以针对性干预措施。此外,对于已经确诊的PE患者,可通过对生物标志物的筛查推测可能的发病机制,开发靶向治疗策略。例如,针对胎盘灌注不足导致的PE,除了常规应用降压、解痉药物外,还可以针对性补充VEGF等用于改善血管生成。综上所述,随着新药物、相关发病机制研究、潜在生物标志物的不断发展,PE的检测和治疗在未来应更加多元化、个体化和精细化,更好地实现对疾病的早期筛查、早期预测和精细管理。

NOTES

*通讯作者。

参考文献

[1] 中华医学会妇产科学分会妊娠期高血压疾病学组. 妊娠期高血压疾病诊治指南(2020) [J]. 中华妇产科杂志, 2020, 55(4): 227-238.
[2] Zhou, S., Zhou, N., Zhang, H., Yang, W., Liu, Q., Zheng, L., et al. (2024) A Prospective Multicenter Birth Cohort in China: Pregnancy Health Atlas. European Journal of Epidemiology, 39, 1297-1310.
https://doi.org/10.1007/s10654-024-01157-x
[3] Espinoza, J., Vidaeff, A., Pettker, C.M., et al. (2020) Gestational Hypertension and Preeclampsia: ACOG Practice Bulle-tin, Number 222. Obstetrics & Gynecology, 135, e237-e260.
[4] 孔凡静, 王莉, 杜趁香, 等. 子痫前期发生的危险因素及孕中期血清PLGF、sFlt-1、ET-1水平的临床预测价值[J]. 实验与检验医学, 2022, 40(5): 572-575+580.
[5] 梁结明, 刘国成. 子痫前期发病机制的研究进展[J]. 国际妇产科学杂志, 2023, 50(4): 405-408+420.
[6] Magee, L.A., Brown, M.A., Hall, D.R., Gupte, S., Hennessy, A., Karumanchi, S.A., et al. (2022) The 2021 International Society for the Study of Hypertension in Pregnancy Classification, Diagnosis & Management Recommendations for International Practice. Pregnancy Hypertension, 27, 148-169.
https://doi.org/10.1016/j.preghy.2021.09.008
[7] 孔北华, 马丁, 段涛. 妇产科学[M]. 第10版. 北京: 人民卫生出版社, 2024: 87-96.
[8] Schuermans, A., Truong, B., Ardissino, M., Bhukar, R., Slob, E.A.W., Nakao, T., et al. (2024) Genetic Associations of Circulating Cardiovascular Proteins with Gestational Hypertension and Preeclampsia. JAMA Cardiology, 9, 209-220.
https://doi.org/10.1001/jamacardio.2023.4994
[9] Kornacki, J., Olejniczak, O., Sibiak, R., Gutaj, P. and Wender-Ożegowska, E. (2023) Pathophysiology of Pre-Eclampsia—Two Theories of the Development of the Disease. International Journal of Molecular Sciences, 25, Article No. 307.
https://doi.org/10.3390/ijms25010307
[10] Adibi, J.J., Zhao, Y., Koistinen, H., Mitchell, R.T., Barrett, E.S., Miller, R., et al. (2024) Molecular Pathways in Placental-Fetal Development and Disruption. Molecular and Cellular Endocrinology, 581, Article ID: 112075.
https://doi.org/10.1016/j.mce.2023.112075
[11] Burton, G.J., Redman, C.W., Roberts, J.M. and Moffett, A. (2019) Pre-Eclampsia: Pathophysiology and Clinical Implications. BMJ, 366, l2381.
https://doi.org/10.1136/bmj.l2381
[12] Roberge, S., Bujold, E. and Nicolaides, K.H. (2018) Meta-Analysis on the Effect of Aspirin Use for Prevention of Preeclampsia on Placental Abruption and Antepartum Hemorrhage. American Journal of Obstetrics and Gynecology, 218, 483-489.
https://doi.org/10.1016/j.ajog.2017.12.238
[13] Farrell, A., Alahari, S., Ermini, L., Tagliaferro, A., Litvack, M., Post, M., et al. (2019) Faulty Oxygen Sensing Disrupts Angiomotin Function in Trophoblast Cell Migration and Predisposes to Preeclampsia. JCI Insight, 4, e127009.
https://doi.org/10.1172/jci.insight.127009
[14] Peng, X., Gao, H., Xu, R., Wang, H., Mei, J. and Liu, C. (2020) The Interplay between HIF-1α and Noncoding RNAs in Cancer. Journal of Experimental & Clinical Cancer Research, 39, 27.
https://doi.org/10.1186/s13046-020-1535-y
[15] Dong, D., Khoong, Y., Ko, Y. and Zhang, Y. (2020) microRNA-646 Inhibits Angiogenesis of Endothelial Progenitor Cells in Pre-Eclamptic Pregnancy by Targeting the VEGF-A/HIF-1α Axis. Experimental and Therapeutic Medicine, 20, 1879-1888.
https://doi.org/10.3892/etm.2020.8929
[16] Conover, C.A. and Oxvig, C. (2023) The Pregnancy-Associated Plasma Protein-A (PAPP-A) Story. Endocrine Reviews, 44, 1012-1028.
https://doi.org/10.1210/endrev/bnad017
[17] Chen, Y., Wang, X., Hu, W., Chen, Y., Ning, W., Lu, S., et al. (2021) A Risk Model That Combines MAP, PLGF, and PAPP-A in the First Trimester of Pregnancy to Predict Hypertensive Disorders of Pregnancy. Journal of Human Hypertension, 36, 184-191.
https://doi.org/10.1038/s41371-021-00488-6
[18] Wright, A., Guerra, L., Pellegrino, M., Wright, D. and Nicolaides, K.H. (2016) Maternal Serum PAPP‐A and Free Β‐HCG at 12, 22 and 32 Weeks’ Gestation in Screening for Pre‐Eclampsia. Ultrasound in Obstetrics & Gynecology, 47, 762-767.
https://doi.org/10.1002/uog.15849
[19] Boutin, A., Gasse, C., Demers, S., Giguère, Y., Tétu, A. and Bujold, E. (2018) Maternal Characteristics for the Prediction of Preeclampsia in Nulliparous Women: The Great Obstetrical Syndromes (GOS) Study. Journal of Obstetrics and Gynaecology Canada, 40, 572-578.
https://doi.org/10.1016/j.jogc.2017.07.025
[20] Geldenhuys, J., Rossouw, T.M., Lombaard, H.A., Ehlers, M.M. and Kock, M.M. (2018) Disruption in the Regulation of Immune Responses in the Placental Subtype of Preeclampsia. Frontiers in Immunology, 9, Article No. 1659.
https://doi.org/10.3389/fimmu.2018.01659
[21] Delaine, T., Collins, P., MacKinnon, A., Sharma, G., Stegmayr, J., Rajput, V.K., et al. (2016) Galectin‐3‐Binding Glycomimetics That Strongly Reduce Bleomycin‐Induced Lung Fibrosis and Modulate Intracellular Glycan Recognition. ChemBioChem, 17, 1759-1770.
https://doi.org/10.1002/cbic.201600285
[22] Sammar, M., Drobnjak, T., Mandala, M., Gizurarson, S., Huppertz, B. and Meiri, H. (2019) Galectin 13 (PP13) Facilitates Remodeling and Structural Stabilization of Maternal Vessels during Pregnancy. International Journal of Molecular Sciences, 20, Article No. 3192.
https://doi.org/10.3390/ijms20133192
[23] Guerby, P., Tasta, O., Swiader, A., Pont, F., Bujold, E., Parant, O., et al. (2021) Role of Oxidative Stress in the Dysfunction of the Placental Endothelial Nitric Oxide Synthase in Preeclampsia. Redox Biology, 40, Article ID: 101861.
https://doi.org/10.1016/j.redox.2021.101861
[24] Nakahara, A., Nair, S., Ormazabal, V., Elfeky, O., Garvey, C.E., Longo, S., et al. (2020) Circulating Placental Extracellular Vesicles and Their Potential Roles during Pregnancy. Ochsner Journal, 20, 439-445.
https://doi.org/10.31486/toj.20.0049
[25] Sáez, T., Wiley, C., Quon, A., Spaans, F. and Davidge, S.T. (2021) Increased Oxidative Stress and Endothelial Activation in Umbilical Veins from Pregnancies Diagnosed with Preeclampsia. Pregnancy Hypertension, 26, 87-90.
https://doi.org/10.1016/j.preghy.2021.09.007
[26] Yang, S. and Lian, G. (2019) ROS and Diseases: Role in Metabolism and Energy Supply. Molecular and Cellular Biochemistry, 467, 1-12.
https://doi.org/10.1007/s11010-019-03667-9
[27] Hansson, S.R., Nääv, Å. and Erlandsson, L. (2015) Oxidative Stress in Preeclampsia and the Role of Free Fetal Hemoglobin. Frontiers in Physiology, 5, Article No. 516.
https://doi.org/10.3389/fphys.2014.00516
[28] Centlow, M., Carninci, P., Nemeth, K., Mezey, E., Brownstein, M. and Hansson, S.R. (2008) Placental Expression Profiling in Preeclampsia: Local Overproduction of Hemoglobin May Drive Pathological Changes. Fertility and Sterility, 90, 1834-1843.
https://doi.org/10.1016/j.fertnstert.2007.09.030
[29] Anderson, U.D., Gram, M., Ranstam, J., Thilaganathan, B., Åkerström, B. and Hansson, S.R. (2016) Fetal Hemoglobin, Α1-Microglobulin and Hemopexin Are Potential Predictive First Trimester Biomarkers for Preeclampsia. Pregnancy Hypertension: An International Journal of Womens Cardiovascular Health, 6, 103-109.
https://doi.org/10.1016/j.preghy.2016.02.003
[30] Bidarimath, M., Khalaj, K., Wessels, J.M. and Tayade, C. (2014) MicroRNAs, Immune Cells and Pregnancy. Cellular & Molecular Immunology, 11, 538-547.
https://doi.org/10.1038/cmi.2014.45
[31] Lv, Y., Lu, C., Ji, X., Miao, Z., Long, W., Ding, H., et al. (2018) Roles of MicroRNAs in Preeclampsia. Journal of Cellular Physiology, 234, 1052-1061.
https://doi.org/10.1002/jcp.27291
[32] Heiss, C., Rodriguez-Mateos, A. and Kelm, M. (2015) Central Role of Enos in the Maintenance of Endothelial Homeostasis. Antioxidants & Redox Signaling, 22, 1230-1242.
https://doi.org/10.1089/ars.2014.6158
[33] Biró, O., Alasztics, B., Molvarec, A., Joó, J., Nagy, B. and Rigó, J. (2017) Various Levels of Circulating Exosomal Total-Mirna and Mir-210 Hypoxamir in Different Forms of Pregnancy Hypertension. Pregnancy Hypertension, 10, 207-212.
https://doi.org/10.1016/j.preghy.2017.09.002
[34] Yan, T., Liu, Y., Cui, K., Hu, B., Wang, F. and Zou, L. (2013) MicroRNA-126 Regulates EPCs Function: Implications for a Role of miR-126 in Preeclampsia. Journal of Cellular Biochemistry, 114, 2148-2159.
https://doi.org/10.1002/jcb.24563
[35] Martinez-Fierro, M.L., Carrillo-Arriaga, J.G., Luevano, M., Lugo-Trampe, A., Delgado-Enciso, I., Rodriguez-Sanchez, I.P., et al. (2019) Serum Levels of Mir-628-3p and Mir-628-5p during the Early Pregnancy Are Increased in Women Who Subsequently Develop Preeclampsia. Pregnancy Hypertension, 16, 120-125.
https://doi.org/10.1016/j.preghy.2019.03.012
[36] Lecarpentier, E., Zsengellér, Z.K., Salahuddin, S., Covarrubias, A.E., Lo, A., Haddad, B., et al. (2020) Total versus Free Placental Growth Factor Levels in the Pathogenesis of Preeclampsia. Hypertension, 76, 875-883.
https://doi.org/10.1161/hypertensionaha.120.15338
[37] Orosz, L., Orosz, G., Veress, L., Dosa, D., Orosz Sr, L., Arany, I., et al. (2019) Screening for Preeclampsia in the First Trimester of Pregnancy in Routine Clinical Practice in Hungary. Journal of Biotechnology, 300, 11-19.
https://doi.org/10.1016/j.jbiotec.2019.04.017
[38] Duhig, K.E., Myers, J., Seed, P.T., Sparkes, J., Lowe, J., Hunter, R.M., et al. (2019) Placental Growth Factor Testing to Assess Women with Suspected Pre-Eclampsia: A Multicentre, Pragmatic, Stepped-Wedge Cluster-Randomised Controlled Trial. The Lancet, 393, 1807-1818.
https://doi.org/10.1016/s0140-6736(18)33212-4
[39] Wright, D., Wright, A. and Nicolaides, K.H. (2020) The Competing Risk Approach for Prediction of Preeclampsia. American Journal of Obstetrics and Gynecology, 223, 12-23.e7.
https://doi.org/10.1016/j.ajog.2019.11.1247
[40] Sasagawa, T., Nagamatsu, T., Morita, K., Mimura, N., Iriyama, T., Fujii, T., et al. (2018) HIF-2α, but Not HIF-1α, Mediates Hypoxia-Induced Up-Regulation of Flt-1 Gene Expression in Placental Trophoblasts. Scientific Reports, 8, Article No. 17375.
https://doi.org/10.1038/s41598-018-35745-1
[41] Tomimatsu, T., Mimura, K., Matsuzaki, S., Endo, M., Kumasawa, K. and Kimura, T. (2019) Preeclampsia: Maternal Systemic Vascular Disorder Caused by Generalized Endothelial Dysfunction Due to Placental Antiangiogenic Factors. International Journal of Molecular Sciences, 20, Article No. 4246.
https://doi.org/10.3390/ijms20174246
[42] Verlohren, S., Brennecke, S.P., Galindo, A., Karumanchi, S.A., Mirkovic, L.B., Schlembach, D., et al. (2022) Clinical Interpretation and Implementation of the sFlt-1/PlG Ratio in the Prediction, Diagnosis and Management of Preeclampsia. Pregnancy Hypertension, 27, 42-50.
https://doi.org/10.1016/j.preghy.2021.12.003
[43] Ukah, U.V., Hutcheon, J.A., Payne, B., Haslam, M.D., Vatish, M., Ansermino, J.M., et al. (2017) Placental Growth Factor as a Prognostic Tool in Women with Hypertensive Disorders of Pregnancy: A Systematic Review. Hypertension, 70, 1228-1237.
https://doi.org/10.1161/hypertensionaha.117.10150
[44] Wallace, K., Morris, R., Kyle, P.B., Cornelius, D., Darby, M., Scott, J., et al. (2013) Hypertension, Inflammation and T Lymphocytes Are Increased in a Rat Model of HELLP Syndrome. Hypertension in Pregnancy, 33, 41-54.
https://doi.org/10.3109/10641955.2013.835820
[45] Lim, J.H., Kim, S.Y., Park, S.Y., Lee, M.H., Yang, J.H., Kim, M.Y., et al. (2009) Soluble Endoglin and Transforming Growth Factor‐β1 in Women Who Subsequently Developed Preeclampsia. Prenatal Diagnosis, 29, 471-476.
https://doi.org/10.1002/pd.2217
[46] El-Sayed, A.A.F. (2017) Preeclampsia: A Review of the Pathogenesis and Possible Management Strategies Based on Its Pathophysiological Derangements. Taiwanese Journal of Obstetrics and Gynecology, 56, 593-598.
https://doi.org/10.1016/j.tjog.2017.08.004
[47] Sutton, E.F., Gemmel, M. and Powers, R.W. (2020) Nitric Oxide Signaling in Pregnancy and Preeclampsia. Nitric Oxide, 95, 55-62.
https://doi.org/10.1016/j.niox.2019.11.006
[48] Rezeck Nunes, P., Cezar Pinheiro, L., Zanetoni Martins, L., Alan Dias-Junior, C., Carolina Taveiros Palei, A. and Cristina Sandrim, V. (2022) A New Look at the Role of Nitric Oxide in Preeclampsia: Protein S-Nitrosylation. Pregnancy Hypertension, 29, 14-20.
https://doi.org/10.1016/j.preghy.2022.05.008
[49] Qu, H. and Khalil, R.A. (2020) Vascular Mechanisms and Molecular Targets in Hypertensive Pregnancy and Preeclampsia. American Journal of Physiology-Heart and Circulatory Physiology, 319, H661-H681.
https://doi.org/10.1152/ajpheart.00202.2020
[50] Pinto-Souza, C.C., Coeli-Lacchini, F., Luizon, M.R., Cavalli, R.C., Lacchini, R. and Sandrim, V.C. (2021) Effects of Arginase Genetic Polymorphisms on Nitric Oxide Formation in Healthy Pregnancy and in Preeclampsia. Nitric Oxide, 109, 20-25.
https://doi.org/10.1016/j.niox.2021.02.003
[51] Ives, C.W., Sinkey, R., Rajapreyar, I., Tita, A.T.N. and Oparil, S. (2020) Preeclampsia—Pathophysiology and Clinical Presentations: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 76, 1690-1702.
https://doi.org/10.1016/j.jacc.2020.08.014
[52] Honigberg, M.C., Truong, B., Khan, R.R., Xiao, B., Bhatta, L., Vy, H.M.T., et al. (2023) Polygenic Prediction of Preeclampsia and Gestational Hypertension. Nature Medicine, 29, 1540-1549.
https://doi.org/10.1038/s41591-023-02374-9
[53] Zhang, J., Dunk, C.E., Shynlova, O., Caniggia, I. and Lye, S.J. (2019) Tgfb1 Suppresses the Activation of Distinct DNK Subpopulations in Preeclampsia. EBioMedicine, 39, 531-539.
https://doi.org/10.1016/j.ebiom.2018.12.015
[54] Meister, S., Hahn, L., Beyer, S., Mannewitz, M., Perleberg, C., Schnell, K., et al. (2022) Regulatory T Cell Apoptosis during Preeclampsia May Be Prevented by Gal-2. International Journal of Molecular Sciences, 23, Article No. 1880.
https://doi.org/10.3390/ijms23031880
[55] Salvany-Celades, M., van der Zwan, A., Benner, M., Setrajcic-Dragos, V., Bougleux Gomes, H.A., Iyer, V., et al. (2019) Three Types of Functional Regulatory T Cells Control T Cell Responses at the Human Maternal-Fetal Interface. Cell Reports, 27, 2537-2547.e5.
https://doi.org/10.1016/j.celrep.2019.04.109
[56] Chen, J., Zhao, L., Wang, D., Xu, Y., Gao, H., Tan, W., et al. (2018) Contribution of Regulatory T Cells to Immune Tolerance and Association of MicroRNA-210 and Foxp3 in Preeclampsia. Molecular Medicine Reports, 19, 1150-1158.
https://doi.org/10.3892/mmr.2018.9733
[57] Wang, Y., Li, B. and Zhao, Y. (2022) Inflammation in Preeclampsia: Genetic Biomarkers, Mechanisms, and Therapeutic Strategies. Frontiers in Immunology, 13, Article ID: 883404.
https://doi.org/10.3389/fimmu.2022.883404
[58] Serrano, N.C., Guio, E., Becerra-Bayona, S.M., Quintero-Lesmes, D.C., Bautista-Niño, P.K., Colmenares-Mejía, C., et al. (2020) C-Reactive Protein, Interleukin-6 and Pre-Eclampsia: Large-Scale Evidence from the GenPE Case-Control Study. Scandinavian Journal of Clinical and Laboratory Investigation, 80, 381-387.
https://doi.org/10.1080/00365513.2020.1747110
[59] Roberge, S., Bujold, E. and Nicolaides, K.H. (2018) Aspirin for the Prevention of Preterm and Term Preeclampsia: Systematic Review and Meta-Analysis. American Journal of Obstetrics and Gynecology, 218, 287-293.e1.
https://doi.org/10.1016/j.ajog.2017.11.561
[60] Salazar Garcia, M.D., Mobley, Y., Henson, J., Davies, M., Skariah, A., Dambaeva, S., et al. (2018) Early Pregnancy Immune Biomarkers in Peripheral Blood May Predict Preeclampsia. Journal of Reproductive Immunology, 125, 25-31.
https://doi.org/10.1016/j.jri.2017.10.048
[61] Žák, P. and Souček, M. (2019) Correlation of Tumor Necrosis Factor Alpha, Interleukin 6 and Interleukin 10 with Blood Pressure, Risk of Preeclampsia and Low Birth Weight in Gestational Diabetes. Physiological Research, 68, 395-408.
https://doi.org/10.33549/physiolres.934002
[62] Lee, D.K. and Nevo, O. (2021) Tumor Necrosis Factor Alpha Expression Is Increased in Maternal Microvascular Endothelial Cells in Preeclampsia. Hypertension in Pregnancy, 40, 193-201.
https://doi.org/10.1080/10641955.2021.1921794
[63] Lau, S.Y., Guild, S., Barrett, C.J., Chen, Q., McCowan, L., Jordan, V., et al. (2013) Tumor Necrosis Factor-Alpha, Interleukin-6, and Interleukin-10 Levels Are Altered in Preeclampsia: A Systematic Review and Meta-Analysis. American Journal of Reproductive Immunology, 70, 412-427.
https://doi.org/10.1111/aji.12138