中心性浆液性脉络膜视网膜病变的发病机制和治疗进展
Progress in the Pathogenesis and Treatment of Central Serous Chorioretinopathy
DOI: 10.12677/jcpm.2025.41069, PDF, HTML, XML,   
作者: 高龙洋:南华大学衡阳医学院,湖南 衡阳;孙立新*, 李 玲*:中南大学湘雅医学院附属常德医院眼科,湖南 常德
关键词: 中心性浆液性脉络膜视网膜病变微脉冲激光药物Central Serous Chorioretinopathy Micropulse Laser Drugs
摘要: 中心性浆液性脉络膜视网膜病变(CSC)是临床上常见的眼底疾病之一,好发于中青年男性,属于自限性疾病,主要表现为后极部视网膜类圆形视网膜神经上皮下积液。急性中心性浆液性脉络膜视网膜病变(aCSC)患者大多能自愈,视力恢复良好。而慢性中心性浆液性脉络膜视网膜病变(cCSC)患者预后较差,部分继发脉络膜新生血管。目前CSC的具体发病机制仍不明确。对于CSC的治疗也未达成共识,目前有光动力疗法、传统氩激光光凝、微脉冲激光以及药物等多种方法用于临床。本文主要综合分析中心性浆液性脉络膜视网膜病变的发病机制和治疗进展。
Abstract: Central serous chorioretinopathy (CSC) is one of the commom fundus diseases in clinical practice. CSC usually occurs in the young and middle-aged men. It is a self-limited disease, mainly manifested as round retinal subepithelial fluid accumulation in the posterior polar retina. Most patients with acute central serous chorioretinopathy (aCSC) can heal themselves and their visual acuity recovers well. However, patients with chronic central serous chorioretinopathy(cCSC) have a poor prognosis, and some of them have secondary choroidal neovascularization. At present, the specific pathogenesis of CSC is still unclear. There is no consensus on the treatment of csc. Currently, there are many clinical methods such as photodynamic therapy, traditional argon laser photocoagulation, micropulse laser and drugs. This article is comprehensive analysis of the pathogenesis and treatment progress of central serous chorioretinopathy.
文章引用:高龙洋, 孙立新, 李玲. 中心性浆液性脉络膜视网膜病变的发病机制和治疗进展[J]. 临床个性化医学, 2025, 4(1): 463-470. https://doi.org/10.12677/jcpm.2025.41069

1. 引言

中心性浆液性脉络膜视网膜病变(central serous chorioretinopathy, CSC)是一种常见于中青年男性、散发的和自限性眼病,其主要影响中心视力。在1965年Maumenee首先认识到病变是由视网膜色素上皮(retinal pigment epithelium, RPE)渗漏所致,并将该病变称为中心性浆液性视网膜病变。1967年,Gass对其神经上皮层脱离的机制做了详细的论述,他认为脉络膜毛细血管通透性的增加,从而引起RPE的功能障碍,因而脉络膜毛细血管渗漏的液体通过色素上皮损害处渗漏神经上皮下。近年来越来越多的证据表明CSC的发生与脉络膜高渗性密切相关[1]。但是CSC发病的真正原因和病理基础仍不明确[2],国内外对于CSC的治疗方案尚未达成共识。本文就目前CSC发病机制的最新发现和治疗方法进行综述。

2. 发病机制

2.1. 脉络膜功能障碍与视网膜色素上皮功能障碍

随着眼科影像学的发展,CSC的发病机制已归因于高渗透性脉络膜血管病变和视网膜色素上皮功能障碍[3]。而脉络膜厚度是脉络膜通透性过高的间接指标[4]。而在慢性CSC患者中,脉络膜厚度增加比视力的下降和神经上皮浆液性脱离更早发生。吲哚菁绿是一种三碳菁染料,能迅速而紧密地与血浆蛋白结合,防止有孔血管的明显渗漏,可以用来检测小的、未灌注的脉络膜血管区域[5]。在20世纪90年代,不少研究表明在CSC患者中吲哚菁绿血管造影提示脉络膜异常[6]。脉络膜血管通透性过高甚至在视网膜下液吸收后仍持续存在,而且在复发性CSC患者中能够观察到新的渗漏[7]。OCTA是一种基于OCT技术的无创伤血管造影技术,对于视网膜毛细血管和脉络膜毛细血管可以提供高分辨率的图像,也是目前诊断CSC的重要工具[8]。有人通过OCTA研究CSC患者中的脉络膜毛细血管成像,发现微血管流动缺陷也可能是CSC的发病机制[9],而且CSC患者的总平均血流信号空区面积大于健康对照组。PCV也是一种脉络膜血管疾病,有研究发现一些慢性CSC患者最后可发展为PCV [10],在CSC和PCV患者中观察到的脉络膜异常提示二者均有类似脉络膜病变。各项研究都表明CSC主要是脉络膜血管异常和随后的RPE障碍所致,并且导致视网膜感觉神经上皮脱离[11]。RPE与光感受器界面之处的物理因素,如外节和RPE微绒毛的交错以及细胞间基质的粘度,也会影响脱离发展的速度,但脱离能否持久的决定因素是流体平衡的状态[12]。在临床中发现局灶性的RPE缺陷促进液体从视网膜下空间流向脉络膜,在激光封闭孤立渗漏点的研究中证实,RPE水平的治疗也是有效的[13]。脉络膜功能障碍与视网膜色素上皮功能障碍在CSC的发病机制中是紧密联系的,需要我们进一步探索两者之间的关系,为我们以后制订治疗方案提供依据。

2.2. 厚脉络膜和涡间静脉吻合

脉络膜主要分为三层,包括毛细血管组成的脉络膜毛细血管层,小血管组成的Sattler层,还有大中型血管组成的Haller层。而脉络膜由涡静脉引流,涡静脉的数量范围通常在3~8个[14]。Hayreh提出脉络膜的动脉和静脉血液供应都是分为阶段性的,而且相邻区域的吻合连接少[15]。涡静脉系统之间的压力差也会导致脉络膜血管的异常连接。松本通过增强深度OCT检查有厚脉络膜相关新生血管患者,发现90%患者发生颞下和颞上涡静脉的异常吻合。[16]有研究发现CSC患者中外侧脉络膜层的管腔面积比例明显高于对照组,其中心凹下脉络膜厚度显著大于正常眼[17]。Chung等人报道称,CSC眼中的Haller层显著厚于正常眼中的Haller层,而Sattler层无显著差异,表明CSC患者中脉络膜增厚可能的原因是脉络膜外层的管腔成分增加[18]。此外有学者发现,厚巩膜可能减少脉络膜经巩膜流出,导致脉络膜外层的血管扩张[19]。Mantel等人报道了3例自发性涡静脉闭塞引起的脉络膜变化,发现在涡静脉分布范围内的脉络膜一过性增厚[20]。Gonz等人注意到,CSC患眼具有与涡静脉或颈动脉海绵窦瘘闭塞后相同的静脉模式,表现为脉络膜充盈迟缓、静脉扩张、涡间静脉阻塞,而通过手术修复或瘘管的自发性血栓形成,眼部病情减轻,脉络膜变薄,浆液性视网膜脱离消退[21]有学者运用OCT观察到CSC患者中扩张的脉络膜外血管,证实涡静脉扩张是导致急性CSC脉络膜增厚的主要原因,而在慢性CSC患者中涡静脉管腔变细,涡静脉充血可消退[19]。Venkatesh等人,最近报道通过部分厚度巩膜切除术治疗巩膜较厚的慢性CSC,术后渗出性视网膜脱离和RPE脱离消失,证明涡静脉阻塞的原因可能在于巩膜通道[22]

近年来对于CSC患者中厚脉络膜与涡间静脉吻合的理解有了重大进展,但仍有许多问题需要进一步研究,一些脉络膜厚度在正常范围内的患者仍有可能出现典型的CSC,而且对于涡静脉在急性CSC和慢性CSC中的不同表现仍需要进一步探索。

2.3. 皮质类固醇假说

全身和局部糖皮质激素是CSC的已知危险因素,然而糖皮质激素在CSC发病机制中的具体作用不明确[23]。越来越多的证据表明CSC可能与盐皮质激素受体(MR)的激活有关,MR对醛固酮和糖皮质激素具有相似的亲和力[24]。而醛固酮是一种特异性的MR激活剂,也可以产生脉络膜血管扩张和渗漏。CSC可能伴有心理压力,也可能是库欣病的主要症状[25]。MR在Muller胶质细胞中通过调节离子和水通道来控制钾和水的稳态。Min Zhao等人在动物研究中发现MR激活是CSC中观察到的血管脉络膜病变的潜在机制,并且证明短期MR拮抗剂是治疗CSC的有效方法,并推测CSC的触发因素可能是当内源性或外源性糖皮质激素过量时,MR保护酶HSD活性不足[26]。有学者发现K、Ca通道在醛固酮诱导的脉络膜血管舒张中起重要作用,而且该通道基本在脉络膜血管内皮表达[27]。水通道蛋白-4 (AQP4)与K通道有协同作用,一起维持视网膜中的渗透稳态,而醛固酮可增加AQP-4的表达并诱导视网膜肿胀。而类固醇诱导的CSC比特异性CSC更容易发生于男性,通常表现为双侧及非典型,提示类固醇诱导的CSC可能与个体易感性有关,而不是与剂量依赖性相关[28]。目前关于糖皮质激素在CSC中的具体机制仍不明确,需要进一步探索。

3. 治疗方法

3.1. 口服药物治疗

3.1.1. 皮质醇受体拮抗剂

全身性皮质醇与CSC的发生、延长、恶化密切相关,近年来,越来越多的证据表明MR的激活能够诱导CSC,与糖皮质激素受体(GR)相比,MR拮抗剂的副作用小,能用于慢性疾病的长期管理[29]。Yannuzzi的研究表明,在经过12月的治疗后,MR拮抗剂显著改善了慢性CSC患者的最佳矫正视力和SRF [30]。依普利酮是一种MR拮抗剂,主要是降低与螺内酯相关的激素效应,对MR的亲和力比螺内酯低10~20倍,是一种比螺内酯效力更低的拮抗剂。Rahimy等人在一前瞻性随机研究中报告依普利酮在视力、黄斑中心凹和SRF等方面优于安慰组[31]。螺内酯也是一种MR的竞争性拮抗剂,其主要副作用是血清水平升高及对动脉血压的影响,罕见的副作用包括过敏性皮疹和抗雄激素作用,如男性乳腺发育、性欲降低[32]。一项前瞻性临床试验证实螺内酯对大多数未消退的CSC患者有积极作用,治疗后SRF降低,而且BCVA改善或者稳定[33]。与依普利酮相比螺内酯对脉络膜中的MR作用更明显,从而减少脉络膜血管的扩张,但是螺内酯的副作用更明显[34]。综合考虑,低剂量口服螺内酯可能是未来治疗慢性CSC的首选,用药期间密切关注其可能的副作用。

3.1.2. 其他口服药物

近年来,也有其它的药物开始用于CSC,米非司酮是一种高亲和力的孕酮受体拮抗剂,尽管有学者在临床中发现米非司酮在慢性CSC患者中有一定疗效,但仍需要提供进一步的证据[35]。Nielsen等人对16例慢性CSC患者进行了一项非对照研究,每日200米非司酮治疗12周,44%患者的BCVA及OCT结果均有改善[36]。氧化应激和抗氧化剂炎症作用可能参与CSC的发病机制,一项随机、安慰剂对照研究使用高剂量抗氧化剂片(研究组)和安慰剂片(对照组)治疗CSC患者,发现3月后两组之间的BCVA和CMT无明显差异[37]。也有学者认为高凝状态可能是CSC的致病因素[38],Caccavale等人进行了一项前瞻性研究,在治疗组即109例CSC患者中,每日口服100 mg阿司匹林,连续1月后再改为隔日口服100 mg,连续5月,与对照组相比,治疗组在CSC发作后的第一个月和第三个月均有视力的改善[39]。这些药物均为全身系统用药,其研究多为小样本的回顾性研究,而且有较多的副作用,需要更多的证据证明其疗效及安全性。

3.2. 激光治疗

3.2.1. 光动力疗法

光动力疗法(PDT)主要是通过静脉内注射光敏剂维替泊芬,然后用689 nm的红外激光刺激黄斑,从而产生自由基的释放并引起血管壁的炎症,进而改善脉络膜血管系统的结构和灌注压,并进一步降低脉络膜渗透性,从而降低CSC患者的SRF [40]。标准PDT治疗持续83秒,而且使用6 mg/m2的维替泊芬和50 j/m2的能量密度,光斑尺寸比待治疗区域大1000 μm。临床使用剂量的维替泊芬诱导脉络膜毛细血管的选择性闭塞,而且不影响视网膜色素上皮层和神经感觉层,随着剂量的增加,可能对RPE造成损伤[41]。2003年,Chan等人在血管造影指导下首次成功采用PDT治疗CSC [42]。Uetani等人在接受一半剂量和三分之一剂量维替泊芬治疗CSC患者的对照研究中发现在缓解SRF方面,使用一半剂量的PDT优于使用三分之一剂量的PDT [43]。由于国内目前维替泊芬禁用,也有部分学者采用无光敏剂全能量PDT治疗慢性中浆,研究显示:无光敏剂全能量PDT和半剂量维替泊芬PDT在短期内功能和解剖结局相似,未来仍需要前瞻性临床试验评估无光敏剂全能量PDT治疗慢性中浆的潜在价值,尤其是当维替泊芬禁用或不可用时。与PDT相关的并发症有RPE层萎缩、严重脉络膜缺血、视力丧失等[44]

3.2.2. 微脉冲激光治疗

微脉冲激光是一种短促的高频率的重复脉冲激光,即一个完整的曝光中包含了一系列的微小的开光脉冲。实验证明热量的散播与脉冲时间有关,脉冲时间越短热播散距离越近,一个100微秒的脉冲时间在眼组织中热播散距离约为10 μm,而一个RPE细胞的直径约为10 μm,因此理论上该激光的作用仅局限在RPE水平[45]。Roider对兔子视网膜色素上皮细胞微脉冲治疗后的反应进行研究,发现在愈合过程中能形成新的色素上皮细胞,能够吞噬视网膜外段,重新建立血–视网膜屏障,炎症反应较轻,而且脉络膜毛细血管未受到影响,也没有光感受器的继发性损伤[46]。Jose等人对比研究微脉冲激光与半剂量维替泊芬治疗慢性CSC的疗效,发现二者均能有效改善黄斑区的解剖结构,而PDT组有一只眼睛出现脉络膜新生血管,微脉冲组无并发症发生,微脉冲激光没有与PDT输注相关的成本和不良事件,在PDT不可用的地方,微脉冲可作为一种替代方案[47]。很多研究表明微脉冲激光治疗慢性CSC有良好的疗效,而且对视网膜没有损伤,是一项很有前景的治疗方法,但仍需要大规模的前瞻性研究确定其治疗标准。传统激光旨在FFA指导下封闭RPE渗漏的部位,目的是修复渗漏的RPE层并恢复新的RPE屏障。微脉冲激光具有良好的疗效,并且对视网膜无损伤,是一种很有前景的治疗方法,但需要大规模的前瞻性研究以确定其治疗标准和激光治疗参数。

3.2.3. 传统激光治疗

传统激光旨在FFA指导下封闭RPE渗漏的部位,目的是修复渗漏的RPE层并恢复新的RPE屏障[48]。在传统激光光凝期,将连续的能量输送到靶组织,导致组织温度升高,出现浅灰色的白色灼伤,因此当渗漏点位于中心凹旁或中心凹下时应避免传统激光治疗[49]。Khosla等人报告,标准激光光凝常伴随光感受器和脉络膜毛细血管的严重破坏,可造成对比敏感度的显著损失,并增加CNV发展的风险[50]。因此传统激光仅允许用于距中心凹至少375 μm以外的渗漏点。

4. 总结和展望

CSC是中青年患者视力下降的主要原因之一,随着眼科检查技术的发展,如光学相干断层成像血管造影,我们对CSC的发病机制有了更深的认识,其发病机制包括RPE损害及脉络膜增厚、脉络膜渗透性增强等。急性CSC在大多数情况下能够自愈,也无需治疗。而慢性CSC表现出至少持续3~6月的SRF,并且需要积极治疗以避免永久性的视力损害。

传统激光作为最早治疗慢性CSC的唯一选择,但是其可能引起RPE萎缩、中心暗点、继发性CNV等并发症,目前已不作为慢性CSC的首选治疗。至于口服依普利酮、螺内酯、米非司酮等药物,也可能出现肝肾功能损伤、电解质紊乱、男性乳腺发育、性欲降低等全身副作用。

目前半剂量PDT和微脉冲激光可作为慢性CSC的一线治疗,但是维替泊芬费用昂贵,而且国内目前无法获得维替泊芬,在我国很多地市级医院无法开展。

慢性CSC处于没有特效治疗方案的瓶颈期,近年来出现的微脉冲激光为慢性CSC的治疗带来了新的希望,微脉冲激光使用一系列重复的、短促、高频的阈下低能量选择性作用于RPE细胞,不会向周围组织扩散,也不会对周围组织产生损伤,其治疗费用少、可重复性好、能直接作用于黄斑中心凹,是慢性CSC的首选治疗方案,有望在国内进一步推广。

未来更需要多中心、大样本、前瞻性、随机对照的临床试验来评估微脉冲的作用参数以及长期疗效。

NOTES

*通讯作者。

参考文献

[1] Kaye, R., Chandra, S., Sheth, J., Boon, C.J.F., Sivaprasad, S. and Lotery, A. (2020) Central Serous Chorioretinopathy: An Update on Risk Factors, Pathophysiology and Imaging Modalities. Progress in Retinal and Eye Research, 79, Article ID: 100865.
https://doi.org/10.1016/j.preteyeres.2020.100865
[2] Fung, A.T., Yang, Y. and Kam, A.W. (2023) Central Serous Chorioretinopathy: A Review. Clinical & Experimental Ophthalmology, 51, 243-270.
https://doi.org/10.1111/ceo.14201
[3] Arora, S., Sridharan, P., Arora, T., Chhabra, M. and Ghosh, B. (2019) Subthreshold Diode Micropulse Laser versus Observation in Acute Central Serous Chorioretinopathy. Clinical and Experimental Optometry, 102, 79-85.
https://doi.org/10.1111/cxo.12818
[4] Wong, K.H., Lau, K.P., Chhablani, J., Tao, Y., Li, Q. and Wong, I.Y. (2015) Central Serous Chorioretinopathy: What We Have Learnt So Far. Acta Ophthalmologica, 94, 321-325.
https://doi.org/10.1111/aos.12779
[5] Scheider, A., Nasemann, J.E. and Lund, O.E. (1993) Fluorescein and Indocyanine Green Angiographies of Central Serous Choroidopathy by Scanning Laser Ophthalmoscopy. American Journal of Ophthalmology, 115, 50-56.
https://doi.org/10.1016/s0002-9394(14)73524-x
[6] Spaide, R.F., Campeas, L., Haas, A., Yannuzzi, L.A., Fisher, Y.L., Guyer, D.R., et al. (1996) Central Serous Chorioretinopathy in Younger and Older Adults. Ophthalmology, 103, 2070-2080.
https://doi.org/10.1016/s0161-6420(96)30386-2
[7] Iida, T., Kishi, S., Hagimura, N. and Shimizu, K. (1999) Persistent and Bilateral Choroidal Vascular Abnormalities in Central Serous Chorioretinopathy. Retina, 19, 508-512.
https://doi.org/10.1097/00006982-199911000-00005
[8] Boned-Murillo, A., Albertos-Arranz, H., Diaz-Barreda, M.D., Orduna-Hospital, E., Sánchez-Cano, A., Ferreras, A., et al. (2021) Optical Coherence Tomography Angiography in Diabetic Patients: A Systematic Review. Biomedicines, 10, Article 88.
https://doi.org/10.3390/biomedicines10010088
[9] Feucht, N., Maier, M., Lohmann, C.P. and Reznicek, L. (2016) OCT Angiography Findings in Acute Central Serous Chorioretinopathy. Ophthalmic Surgery, Lasers and Imaging Retina, 47, 322-327.
https://doi.org/10.3928/23258160-20160324-03
[10] Giovannini, A., Scassellati-Sforzolini, B., Dʼaltobrando, E., Mariotti, C., Rutili, T. and Tittarelli, R. (1997) Choroidal Findings in the Course of Idiopathic Serous Pigment Epithelium Detachment Detected by Indocyanine Green Videoangiography. Retina, 17, 286-293.
https://doi.org/10.1097/00006982-199717040-00002
[11] Piccolino, F.C., Borgia, L., Zinicola, E. and Zingirian, M. (1995) Indocyanine Green Angiographic Findings in Central Serous Chorioretinopathy. Eye, 9, 324-332.
https://doi.org/10.1038/eye.1995.63
[12] Negi, A. and Marmor, M.F. (1984) Experimental Serous Retinal Detachment and Focal Pigment Epithelial Damage. Archives of Ophthalmology, 102, 445-449.
https://doi.org/10.1001/archopht.1984.01040030359038
[13] Zhou, F., Yao, J., Jiang, Q. and Yang, W. (2022) Efficacy of Navigated Laser Photocoagulation for Chronic Central Serous Chorioretinopathy: A Retrospective Observational Study. Disease Markers, 2022, Article ID: 7792291.
https://doi.org/10.1155/2022/7792291
[14] Spaide, R.F., Ledesma-Gil, G. and Gemmy Cheung, C.M. (2021) Intervortex Venous Anastomosis in Pachychoroid-Related Disorders. Retina, 41, 997-1004.
https://doi.org/10.1097/iae.0000000000003004
[15] Hayreh, S.S. (1975) Segmental Nature of the Choroidal Vasculature. British Journal of Ophthalmology, 59, 631-648.
https://doi.org/10.1136/bjo.59.11.631
[16] Matsumoto, H., Kishi, S., Mukai, R. and Akiyama, H. (2019) Remodeling of Macular Vortex Veins in Pachychoroid Neovasculopathy. Scientific Reports, 9, Article No. 14689.
https://doi.org/10.1038/s41598-019-51268-9
[17] Sonoda, S., Sakamoto, T., Yamashita, T., Shirasawa, M., Uchino, E., Terasaki, H., et al. (2014) Choroidal Structure in Normal Eyes and after Photodynamic Therapy Determined by Binarization of Optical Coherence Tomographic Images. Investigative Opthalmology & Visual Science, 55, 3893-3899.
https://doi.org/10.1167/iovs.14-14447
[18] Chung, Y., Kim, J.W., Kim, S.W. and Lee, K. (2016) Choroidal Thickness in Patients with Central Serous Chorioretinopathy: Assessment of Haller and Sattler Layers. Retina, 36, 1652-1657.
https://doi.org/10.1097/iae.0000000000000998
[19] Hiroe, T. and Kishi, S. (2018) Dilatation of Asymmetric Vortex Vein in Central Serous Chorioretinopathy. Ophthalmology Retina, 2, 152-161.
https://doi.org/10.1016/j.oret.2017.05.013
[20] Mantel, I., Schalenbourg, A. and Zografos, L. (2013) Evanescent Vaso-Occlusive Choroidal Pseudo-Tumor with Acute Painful Onset: A Presumed Vortex Vein Occlusion. Graefes Archive for Clinical and Experimental Ophthalmology, 252, 753-759.
https://doi.org/10.1007/s00417-013-2543-9
[21] González Martín-Moro, J., Sales-Sanz, M., Oblanca-Llamazares, N., Bustos-García, A., Méndez-Cendón, J.C. and Fandiño, E. (2018) Choroidal Thickening in a Case of Carotid Cavernous Fistula. Orbit, 37, 306-308.
https://doi.org/10.1080/01676830.2017.1423338
[22] Venkatesh, P., Chawla, R., Tripathy, K., Singh, H.I. and Bypareddy, R. (2016) Scleral Resection in Chronic Central Serous Chorioretinopathy Complicated by Exudative Retinal Detachment. Eye and Vision, 3, Article No. 23.
https://doi.org/10.1186/s40662-016-0055-5
[23] Bouzas, E.A., Karadimas, P. and Pournaras, C.J. (2002) Central Serous Chorioretinopathy and Glucocorticoids. Survey of Ophthalmology, 47, 431-448.
https://doi.org/10.1016/s0039-6257(02)00338-7
[24] Farman, N. and Rafestin-Oblin, M. (2001) Multiple Aspects of Mineralocorticoid Selectivity. American Journal of Physiology-Renal Physiology, 280, F181-F192.
https://doi.org/10.1152/ajprenal.2001.280.2.f181
[25] Haimovici, R., Koh, S., Gagnon, D.R., Lehrfeld, T. and Wellik, S. (2004) Risk Factors for Central Serous Chorioretinopathy. Ophthalmology, 111, 244-249.
https://doi.org/10.1016/j.ophtha.2003.09.024
[26] Zhao, M., Célérier, I., Bousquet, E., Jeanny, J., Jonet, L., Savoldelli, M., et al. (2012) Mineralocorticoid Receptor Is Involved in Rat and Human Ocular Chorioretinopathy. Journal of Clinical Investigation, 122, 2672-2679.
https://doi.org/10.1172/jci61427
[27] Cat, A.N.D., Griol‐Charhbili, V., Loufrani, L., Labat, C., Benjamin, L., Farman, N., et al. (2010) The Endothelial Mineralocorticoid Receptor Regulates Vasoconstrictor Tone and Blood Pressure. The FASEB Journal, 24, 2454-2463.
https://doi.org/10.1096/fj.09-147926
[28] Khairallah, M., Kahloun, R. and Tugal-Tutkun, I. (2012) Central Serous Chorioretinopathy, Corticosteroids, and Uveitis. Ocular Immunology and Inflammation, 20, 76-85.
https://doi.org/10.3109/09273948.2011.650776
[29] Behar-Cohen, F. and Zhao, M. (2016) Corticosteroids and the Retina: A Role for the Mineralocorticoid Receptor. Current Opinion in Neurology, 29, 49-54.
https://doi.org/10.1097/wco.0000000000000284
[30] Ghadiali, Q., Jung, J.J., Yu, S., Patel, S.N. and Yannuzzi, L.A. (2016) Central Serous Chorioretinopathy Treated with Mineralocorticoid Antagonists. Retina, 36, 611-618.
https://doi.org/10.1097/iae.0000000000000748
[31] Rahimy, E., Pitcher, J.D., Hsu, J., Adam, M.K., Shahlaee, A., Samara, W.A., et al. (2018) A Randomized Double-Blind Placebo-Control Pilot Study of Eplerenone for the Treatment of Central Serous Chorioretinopathy (ECSELSIOR). Retina, 38, 962-969.
https://doi.org/10.1097/iae.0000000000001649
[32] Delyani, J.A. (2000) Mineralocorticoid Receptor Antagonists: The Evolution of Utility and Pharmacology. Kidney International, 57, 1408-1411.
https://doi.org/10.1046/j.1523-1755.2000.00983.x
[33] Bousquet, E., Beydoun, T., Zhao, M., Hassan, L., Offret, O. and Behar-Cohen, F. (2013) Mineralocorticoid Receptor Antagonism in the Treatment of Chronic Central Serous Chorioretinopathy. Retina, 33, 2096-2102.
https://doi.org/10.1097/iae.0b013e318297a07a
[34] Pichi, F., Carrai, P., Ciardella, A., Behar-Cohen, F. and Nucci, P. (2016) Comparison of Two Mineralcorticosteroids Receptor Antagonists for the Treatment of Central Serous Chorioretinopathy. International Ophthalmology, 37, 1115-1125.
https://doi.org/10.1007/s10792-016-0377-2
[35] Nicolò, M., Ferro Desideri, L., Vagge, A. and Traverso, C.E. (2020) Current Pharmacological Treatment Options for Central Serous Chorioretinopathy: A Review. Pharmaceuticals, 13, Article 264.
https://doi.org/10.3390/ph13100264
[36] Nielsen, J.S. and Jampol, L.M. (2011) Oral Mifepristone for Chronic Central Serous Chorioretinopathy. Retina, 31, 1928-1936.
https://doi.org/10.1097/iae.0b013e31821c3ef6
[37] Ratanasukon, M., Bhurayanontachai, P. and Jirarattanasopa, P. (2012) High-Dose Antioxidants for Central Serous Chorioretinopathy; the Randomized Placebo-Controlled Study. BMC Ophthalmology, 12, Article No. 20.
https://doi.org/10.1186/1471-2415-12-20
[38] Malle, E.M., Posch-Pertl, L., Renner, W., Pinter-Hausberger, S., Singer, C., Haas, A., et al. (2018) Role of the Tissue-Type Plasminogen Activator −7351C > T and Plasminogen Activator Inhibitor 1 4G/5G Gene Polymorphisms in Central Serous Chorioretinopathy. Ophthalmic Genetics, 39, 714-716.
https://doi.org/10.1080/13816810.2018.1536219
[39] Caccavale, A. (2010) Low-Dose Aspirin as Treatment for Central Serous Chorioretinopathy. Clinical Ophthalmology, 4, 899-903.
https://doi.org/10.2147/opth.s12583
[40] Moreno-Morillo, F.J., Fernández-Vigo, J.I., Güemes-Villahoz, N., Burgos-Blasco, B., López-Guajardo, L. and Donate-López, J. (2021) Update on the Management of Chronic Central Serous Chorioretinopathy. Archivos de la Sociedad Española de Oftalmología (English Edition), 96, 251-264.
https://doi.org/10.1016/j.oftale.2020.07.005
[41] Schmidt-Erfurth, U. and Hasan, T. (2000) Mechanisms of Action of Photodynamic Therapy with Verteporfin for the Treatment of Age-Related Macular Degeneration. Survey of Ophthalmology, 45, 195-214.
https://doi.org/10.1016/s0039-6257(00)00158-2
[42] Chan, W. (2003) Choroidal Vascular Remodelling in Central Serous Chorioretinopathy after Indocyanine Green Guided Photodynamic Therapy with Verteporfin: A Novel Treatment at the Primary Disease Level. British Journal of Ophthalmology, 87, 1453-1458.
https://doi.org/10.1136/bjo.87.12.1453
[43] Uetani, R., Ito, Y., Oiwa, K., Ishikawa, K. and Terasaki, H. (2012) Half-dose vs One-Third-Dose Photodynamic Therapy for Chronic Central Serous Chorioretinopathy. Eye, 26, 640-649.
https://doi.org/10.1038/eye.2012.66
[44] Lim, J.I., Glassman, A.R., Aiello, L.P., Chakravarthy, U., Flaxel, C.J. and Spaide, R.F. (2014) Collaborative Retrospective Macula Society Study of Photodynamic Therapy for Chronic Central Serous Chorioretinopathy. Ophthalmology, 121, 1073-1078.
https://doi.org/10.1016/j.ophtha.2013.11.040
[45] Dorin, G. (2003) Subthreshold and Micropulse Diode Laser Photocoagulation. Seminars in Ophthalmology, 18, 147-153.
https://doi.org/10.1076/soph.18.3.147.29812
[46] Roider, J. (1999) Laser Treatment of Retinal Diseases by Subthreshold Laser Effects. Seminars in Ophthalmology, 14, 19-26.
https://doi.org/10.3109/08820539909056059
[47] Roca, J.A., Wu, L., Fromow-Guerra, J., Rodríguez, F.J., Berrocal, M.H., Rojas, S., et al. (2018) Yellow (577 nm) Micropulse Laser versus Half-Dose Verteporfin Photodynamic Therapy in Eyes with Chronic Central Serous Chorioretinopathy: Results of the Pan-American Collaborative Retina Study (PACORES) Group. British Journal of Ophthalmology, 102, 1696-1700.
https://doi.org/10.1136/bjophthalmol-2017-311291
[48] Iacono, P., Battaglia Parodi, M., Falcomatà, B. and Bandello, F. (2015) Central Serous Chorioretinopathy Treatments: A Mini Review. Ophthalmic Research, 55, 76-83.
https://doi.org/10.1159/000441502
[49] Ezuddin, N.S., Lanza, N.L. and Weng, C.Y. (2016) Subthreshold Micropulse Laser Photocoagulation in the Management of Central Serous Chorioretinopathy. International Ophthalmology Clinics, 56, 165-174.
https://doi.org/10.1097/iio.0000000000000140
[50] Khosla, P.K., Rana, S.S., Tewari, H.K., Azad, R.U. and Talwar, D. (1997) Evaluation of Visual Function Following Argon Laser Photocoagulation in Central Serous Retinopathy. Ophthalmic Surgery, Lasers and Imaging Retina, 28, 693-697.
https://doi.org/10.3928/1542-8877-19970801-16