冠状动脉旁路移植术的研究进展
Research Progress on Coronary Artery Bypass Grafting
DOI: 10.12677/jcpm.2025.42139, PDF, HTML, XML,   
作者: 朱海鹏:内蒙古医科大学附属医院心脏大血管外科,内蒙古 呼和浩特;内蒙古医科大学附属医院,内蒙古 呼和浩特;王 坚, 刘志平:内蒙古医科大学附属医院心脏大血管外科,内蒙古 呼和浩特
关键词: 冠状动脉旁路移植术(CABG)微创冠状动脉旁路移植术机器人辅助微创冠脉旁路移植术杂交手术非体外循环动脉移植物Coronary Artery Bypass Grafting (CABG) Minimally Invasive Coronary Artery Bypass Grafting Robot-Assisted Minimally Invasive Coronary Artery Bypass Grafting Hybrid Surgery Off-Pump Arterial Grafts
摘要: 冠状动脉旁路移植术(CABG)作为治疗冠心病的重要手术方式,近年来在技术上取得了显著进展。传统CABG虽能有效改善患者血流,但也面临着手术创伤大、术后恢复时间长等局限性。这就促使了微创技术的发展。随着对手术创伤的深入认识,微创技术(如MIDCAB和RACAB)以及杂交手术(HCR)应运而生,通过减少皮肤切口长度和整合外科与介入技术,显著降低了患者的术后疼痛和恢复时间。在这个基础上,非体外循环CABG (OPCABG)进一步减少了手术并发症,尤其适用于高风险患者。另外,动脉移植物(如LIMA和RA)也因其高长期通畅率成为首选。同时术中影像技术和血流评估的引入进一步优化了手术效果。研究表明,与单纯药物治疗相比,不断迭代的精细化和个性化的CABG术式显著改善了患者的长期生存率和生活质量。在未来,人工智能、生物工程和精准医学的深度融合将推动CABG向更个性化、精准化的方向发展,为患者提供更优质的治疗效果。
Abstract: Coronary artery bypass grafting (CABG) as an important surgical method for treating coronary heart disease has made significant progress in technology in recent years. Traditional CABG can effectively improve patient blood flow, but it also faces limitations such as large surgical trauma and long postoperative recovery time. This has driven the development of minimally invasive technology. With a deeper understanding of surgical trauma, minimally invasive technologies (such as MIDCAB and RACAB) and hybrid surgery (HCR) have emerged, significantly reducing patient postoperative pain and recovery time by reducing skin incision length and integrating surgery with interventional technology. On this basis, off-pump coronary artery bypass grafting (OPCABG) further reduces surgical complications, especially suitable for high-risk patients. Additionally, arterial grafts (such as LIMA and RA) have become the first choice due to their high long-term patency rate. The introduction of intraoperative imaging technology and blood flow assessment has further optimized surgical outcomes. Studies have shown that compared to simple drug treatment, the constantly evolving and personalized CABG surgery has significantly improved patients’ long-term survival rate and quality of life. In the future, the deep integration of artificial intelligence, bioengineering, and precision medicine will drive CABG towards more personalized and precise development, providing patients with better treatment outcomes.
文章引用:朱海鹏, 王坚, 刘志平. 冠状动脉旁路移植术的研究进展[J]. 临床个性化医学, 2025, 4(2): 6-13. https://doi.org/10.12677/jcpm.2025.42139

1. 引言

冠状动脉粥样硬化性心脏病(CAD)是全球性公共卫生挑战,不同地区的疾病负担差异显著。根据全球疾病负担研究2023,亚洲地区CAD年死亡率为172/10万,占全球总死亡人数的54.3%。欧洲地区男女死亡率差异显著,男性占39.2%,女性占46.1% [1] [2]。美国CDC 2024报告显示,35~74岁人群中心源性猝死案例的83%与未控制的CAD进展相关[3]。这些流行病学特征强调了区域性疾病预防和控制策略的重要性。

我国作为CAD高发国家,面临严峻的公共卫生挑战。CAD导致的死亡人数约为540万,占全球总死亡人数的一半以上[4]。与此同时,我国的CAD死亡率呈逐年上升趋势,心血管疾病已成为我国城乡居民的首要死亡原因[3]

冠状动脉旁路移植术(CABG)作为CAD的关键治疗手段,因其高远期通畅率和低二次手术率,被公认为左主干病变(LMCAD)和三支病变(TVD)的标准治疗方法[5]。作为经典冠状动脉手术,CABG全球每年开展案例数量庞大,美国单年超过40万例[6]。其核心技术即所谓的“三点一桥”,通过使用自体血管,在升主动脉和靶血管部位进行近端和远端吻合,有效绕过病变段,恢复心肌灌注[7]。自20世纪60年代体外循环技术与胸骨切开术结合以来,CABG技术不断进步,随着对CAD病理生理机制的深入理解,其标准化死亡率逐年下降[8]

CABG仍面临挑战,尤其是移植物的通畅率和长期效果。传统的隐静脉移植物(SVG)虽然常用于CABG,但长期通畅率不容乐观,且与介入治疗的不良事件风险相关。因此,左乳内动脉–前降支(LIMA-LAD)吻合被认为是CABG的“金标准”,其10年通畅率高达95.7%,显著优于SVG的74.3%。这种优势源于LIMA的生物学特性,包括抗动脉粥样硬化能力和与冠状动脉的血流匹配机制[9]

本文综述了当前冠状动脉旁路移植术的各类术式及其最新进展,旨在为优化CABG技术和提高患者预后提供系统性参考。

2. CABG

正中开胸冠状动脉旁路移植术(CCABG)是一种传统且有效的多支血管冠心病治疗手术,长期以来被指南推荐[10]。术前准备包括全身麻醉后取仰卧位,通过胸骨正中切开并撑开胸廓,获得良好的心脏暴露。移植物选择与制备方面,优先选用带蒂左乳内动脉(LIMA)作为主要桥血管,因其具有优良的长期通畅率,被认为是CABG的重要质量指标[10] [11];大隐静脉作为备用桥血管,可通过开放式、微创式或内镜获取[12];其他动脉移植物如桡动脉(RA)等通畅性较好,但通常不作为常规选择。

手术全程在非体外循环心脏不停跳条件下实施,术中置入冠脉分流栓以维持靶血管灌注,防止心肌缺血。通过心脏固定装置稳定术野,直视下完成LIMA与左前降支(LAD)端侧吻合,并使用主动脉侧壁钳临时阻断升主动脉,以完成大隐静脉–主动脉近端吻合。此外,通过调整体位及悬吊心包等技术,充分显露对角支(D)、回旋支(LCX)和右冠状动脉(RCA),并根据解剖特点选择端侧或侧侧吻合方式,最终完成多支血管的桥血管吻合。于心包左后方“T”型开窗引流,放置左侧胸腔引流管,缝合切口并固定胸骨[13]

CCABG的术后恢复时间为3至6小时,患者在医院停留4至7天,出院后需6至8周才能完全康复[10]。其技术特征包括广泛的心脏暴露和多样化的手术技术,可根据患者情况选择是否联合体外循环支持;同时可以将LIMA作为首选移植物,确保长期通畅率优于大隐静脉移植物[10] [11]。尽管CCABG存在一定的并发症风险,如胸骨并发症(发生率1.2%~3.4%)和切口感染(约0.4%) [14] [15]。但通过优化移植物选择、精细化操作和严格的术后管理,可显著降低风险,为患者提供安全有效的治疗选择。

3. 微创冠状动脉旁路移植术(MIDCAB)

近年来,微创技术在冠状动脉旁路移植术(CABG)领域取得了重要进展,其中微创直接冠状动脉旁路移植术(MIDCAB)作为一项备受关注的技术,迅速发展并得到广泛推广[16] [17]。MIDCAB通过微小切口取代传统正中开胸手术,最大限度减少创伤,加速术后恢复。研究表明,这种技术不仅能保持移植物的长期通畅率,还能提高患者满意度和术后舒适度[17] [18]。在一项比较MIDCAB与传统CCABG的回顾性队列研究中,Kappert等人发现,MIDCAB在创伤和恢复时间上具明显优势[19]

然而,MIDCAB的临床推广面临三大核心挑战:一是有限术野下精准获取IMA;二是掌握非接触式近端吻合技术;三是在跳动心脏上完成高精度显微吻合。这些技术难点导致MIDCAB的学习曲线较长,约需50~80例手术经验才能熟练掌握,限制了其更广泛的推广[20]。具体而言,其操作方法是:患者取仰卧位,左胸部垫高25˚~30˚,双腔气管插管以保证右肺通气。随后,在左胸第4肋间切开约5~8厘米切口,切断肋软骨并置入牵开器,尽可能多地游离IMA,其余步骤与传统CCABG相似[13]

4. 机器人辅助微创冠脉旁路移植术(RACAB)

传统正中开胸冠状动脉旁路移植术(CCABG)因其需要正中开胸和体外循环,导致患者身心创伤较大,且在与经皮冠脉介入治疗(PCI)的竞争中处于劣势。然而,机器人手术系统的引入为微创CABG的发展带来了新的契机,极大推动了RACAB的临床应用[21]。RACAB经历了三代技术演进:第一代(1999~2010年)主要应用于左前降支(LAD)单支血管吻合;第二代(2011~2018年)实现了多支血管序贯吻合;第三代(2019年至今)分为全机器人多支搭桥(MV-RACAB)和杂交血运重建(HCR-RACAB/PCI)两大技术分支。

RACAB的手术步骤包括:患者取左侧30˚抬高体位,双下肢屈曲外展;在左胸第3、5、7肋间建立器械通道;通过EndoWrist技术完成IMA的骨骼化游离;心电门控下标记LAD钙化斑块远端1厘米处;使用7-0聚丙烯线进行连续外翻缝合;通过瞬时血流测定(TFFM)确认血流流量大于20 mL/min [21]。RACAB通过“Y型桥”和“I型复合桥”等创新吻合方式,完成完全血运重建,体现了微创外科与精准医学的深度融合。HCR-RACAB通常在RACAB术后5~7天进行PCI,以处理非LAD病变,PCI依据标准流程执行[22]

相较于传统CCABG,RACAB具有显著优势,包括手术后重症监护和住院时间更短、围手术期输血需求减少、患者术后疼痛感下降及恢复更快[23]。与MIDCABG相比,RACAB通过达芬奇机器人系统的7自由度机械腕实现IMA“无牵拉获取”,精度显著提升;其高清三维影像系统和震颤过滤功能使缝合误差小于0.1毫米,从而将多支吻合成功率从78%提升至94% [24]。然而,RACAB仍面临手术时间长、设备费用高及主刀医生学习曲线较长等局限性[25]。总体而言,RACAB作为CABG领域的重要创新,凭借其微创性、精准性和快速恢复优势,是未来发展的重要方向。通过持续技术改进和临床实践,RACAB有望为更多冠心病患者提供更安全、更有效的治疗选择。

5. 杂交手术:整合技术以获得最佳结果

冠状动脉旁路移植术(CABG)作为多支冠状动脉疾病的经典治疗方式之一,因其带蒂左乳内动脉(LIMA)与左前降支(LAD)吻合的精准性和优越的长期生存率而备受推崇[26]。对于非LAD病变,CABG与经皮冠脉介入治疗(PCI)的远期疗效相近[27]。这就为冠状动脉杂交手术(Hybrid Coronary Revascularization, HCR)的发展奠定了基础。HCR通过结合CABG与PCI,通过分阶段治疗(分期杂交血运重建)实现“内外结合、分步优化”策略:第一阶段通过RACAB完成LIMA-LAD精密吻合;第二阶段(术后5~7天)在血管内超声(IVUS)引导下,对非LAD病变进行药物支架置入[28]。在具备杂交手术室条件时,也可以实现同时血运重建,进一步提高效率。

然而,然而,HCR的实施仍面临挑战,不仅需涉及多学科协作,还要求医疗团队具备高水平的专业培训和丰富的临床经验[29]。具体来说:1) 多学科协作模式:HCR需要心血管外科医生与介入心脏病专家的紧密配合,但实际操作中可能面临沟通与协调难题。建议通过建立统一的沟通协议和定期联合培训来优化协作效率。2) 专业培训内容:HCR操作要求医疗团队具备高水平的专业技能。具体培训内容应包括:杂交手术室的使用、RACAB术后PCI的标准流程、血管内超声引导下的支架置入等。3) 评估标准:HCR的评估应包含术后1年和5年的影像学跟踪,评估支架术后狭窄率、血流速度等指标,以客观量化手术效果[30]

Sanjana Nagraj等人的荟萃分析表明,HCR在临床效果上并不逊色于传统CABG,为患者提供了个性化的血运重建方案[31]。HCR通过结合外科手术与介入技术,在保证手术效果的同时,缩短了切口长度、减少了术中失血量,并加快了术后恢复速度,从而降低了整体手术创伤。对于复杂病例,HCR可根据患者的解剖特征和病理状况进行灵活调整,提供更优化及个性化的治疗方案[32]。研究表明,杂交策略不仅改善心脏灌注,还可降低发病率、缩短住院时间,进一步提升患者预后[33]

未来,随着技术进步,HCR的应用范围有望扩大。技术整合(如结合机器人手术、三维成像与精细导管介入)和个性化治疗策略的优化将成为发展重点,以期提升手术效果,降低风险,并满足不同患者的个体需求[34]

6. 非体外循环CABG:保护心脏功能

自20世纪60年代起,冠状动脉旁路移植术(CABG)主要采用体外循环辅助的on-pump技术(ONCAB),通过心脏停跳和体外循环完成手术。其能够有效缓解缺血症状并延长特选患者的生存期[35]。然而,ONCAB技术的广泛应用也伴随着全身炎症反应、多器官功能障碍、心肌抑制及血流动力学不稳定等并发症[36]。为减少体外循环相关并发症,医疗界自20世纪90年代中期开始探索非体外循环下的CABG (OPCABG) [37]。OPCABG无需心脏停跳或体外循环机,从而有效规避了ONCAB可能引发的并发症。

OPCABG通过“心脏三维定位系统”实现了更为精准和安全的手术过程:靶血管区域的局部稳定(位移 < 1 mm)确保手术精准性;冠脉自动分流技术维持心肌持续灌注;智能压力反馈控制优化吻合张力。研究显示,OPCABG可将体外循环相关的神经并发症发生率降低达41% (P < 0.01) [38]。对于高风险患者而言,OPCABG凭借微创、安全、有效的特点,通过减少心脏损伤,为患者提供更为安全的手术选择。这种技术不仅在技术上具有重要意义,也为心脏手术的革新开辟了新路径,有望逐渐取代传统ONCAB,成为心脏手术的新范式[39]

然而,OPCABG的实施面临较高的技术门槛。由于需在跳动心脏上完成手术,OPCABG操作难度较高,要求外科医生具备深厚的专业知识、丰富的临床经验和熟练的手术技能。例如:1) 手术视野管理:由于跳动心脏操作,视野不稳定。解决方案是通过心脏固定装置和调整体位来优化术野。2) 吻合精度要求:跳动心脏上完成吻合需极高的操作稳定性。可通过使用智能压力反馈控制和实时血流测定(TFFM)来优化吻合张力。3) 心脏保护:需在手术过程中维持心肌持续灌注,避免缺血损伤。可通过冠脉自动分流技术实现。

总体而言,OPCABG的出现令人期待,其不仅适用于高危患者,还可能通过技术革新改变传统心脏手术的治疗模式。

7. 移植物的选择研究进展

冠脉搭桥手术中移植物的选择对长期疗效有显著影响。动脉移植,尤其是IMA和RA移植,因其通畅率优于静脉移植,越来越受欢迎[15]。IMA作为一种内皮化导管,因其对动脉粥样硬化的抵抗能力,具备较好的长期通畅性。RA移植虽操作难度较高,但随着手术技术改进和患者选择标准优化,其应用逐渐普及[40]。CABG中移植物选择的进步不仅提升了患者预后,还重塑了手术策略。

IMA和隐静脉(SV)一直是主要的移植导管,但研究显示动脉移植的优势尤为显著,尤其是LIMA和RA。LIMA因其高通畅率和与冠状动脉的生理相似性,成为移植LAD的金标准。RA则可与LAD以外的其他血管吻合,临床效果同样良好[41]。近年来,动脉和静脉杂交移植方法得到发展,如LIMA-LAD和RA-非LAD移植,既增强了通畅性,又减少了手术侵入性。

术中成像工具如血管造影和多普勒血流仪,实时评估移植物性能,帮助外科医生精准选择移植物并调整操作[42]。基因组学和蛋白质组学研究揭示了影响移植成功的患者特异性因素,为个性化移植物选择铺平了道路,从而优化结局并降低再次手术的可能性[43]。随着心脏手术质量的提升,患者对CABG术后生活质量的预期寿命也与日俱增[44]

8. 辅助技术和患者筛选

冠状动脉搭桥手术(CABG)对患者的远期疗效和生活质量具有显著影响。与单纯药物治疗相比,CABG能够显著提高长期生存率并降低心血管事件的发生率[45]。手术通过恢复缺血心肌的血液流动,不仅减轻症状,还增强整体心脏功能,从而改善患者的长期预后。此外,CABG能够有效缓解心绞痛,提升生活品质和功能能力。术后,患者的心绞痛症状通常因心脏功能的改善而得到缓解,身体活动的限制减少,心理健康也随之提升[46]。然而,术前健康状况、合并症以及术后并发症等因素会影响生活质量的改善程度。这些长期的益处凸显了CABG在有效治疗冠心病慢性病方面的重要作用。

9. 展望与小结

冠状动脉旁路移植术(CABG)技术经历了从传统手术到微创手术、杂交干预及非体外循环策略的演进,不断优化了冠状动脉病(CAD)的治疗效果。微创手术(MIDCAB, RACAB)显著缩短了患者恢复时间,减少了术后并发症;杂交干预(HCR)通过结合外科与介入技术,为复杂病例提供了更安全的选择;非体外循环CABG (OPCABG)减少了术后神经系统并发症风险;个性化移植物选择则进一步提升了手术的长期效果。未来,CABG有望通过人工智能与生物工程的融合,实现术前规划、术中导航和术后监测的全面优化,为患者提供更安全、更个性化的治疗方案。

参考文献

[1] Timmis, A., Kazakiewicz, D., Townsend, N., Huculeci, R., Aboyans, V. and Vardas, P. (2023) Global Epidemiology of Acute Coronary Syndromes. Nature Reviews Cardiology, 20, 778-788.
https://doi.org/10.1038/s41569-023-00884-0
[2] Townsend, N., Kazakiewicz, D., Lucy Wright, F., Timmis, A., Huculeci, R., Torbica, A., et al. (2021) Epidemiology of Cardiovascular Disease in Europe. Nature Reviews Cardiology, 19, 133-143.
https://doi.org/10.1038/s41569-021-00607-3
[3] 马丽媛, 王增武, 樊静, 等. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国全科医学, 2023, 26(32): 3975-3994.
[4] Ralapanawa, U. and Sivakanesan, R. (2021) Epidemiology and the Magnitude of Coronary Artery Disease and Acute Coronary Syndrome: A Narrative Review. Journal of Epidemiology and Global Health, 11, 169-177.
https://doi.org/10.2991/jegh.k.201217.001
[5] Dehmer, G.J., Grines, C.L., Bakaeen, F.G., Beasley, D.L., Beckie, T.M., Boyd, J., et al. (2023) 2023 AHA/ACC Clinical Performance and Quality Measures for Coronary Artery Revascularization. Journal of the American College of Cardiology, 82, 1131-1174.
https://doi.org/10.1016/j.jacc.2023.03.409
[6] Bachar, B.J. and Manna, B. (2023) Coronary Artery Bypass Graft. StatPearls.
https://www.ncbi.nlm.nih.gov/books/NBK507836/
[7] BM, A., Raman, R., Prabha, R., Kaushal, D., Kaushik, K., Rahul, K., et al. (2024) Left Ventricular Systolic Function Changes during Pump-Assisted Beating Heart Coronary Artery Bypass Graft Surgery: A Prospective Observational Study. Cureus, 16, e73011.
https://doi.org/10.7759/cureus.73011
[8] Martin, S.S., Aday, A.W., Almarzooq, Z.I., et al. (2024) 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data from the American Heart Association. Circulation, 149, e347-e913.
https://doi.org/10.1161/CIR.0000000000001247
[9] Thakare, V.s., Sontakke, N.G., Wasnik, P. and Kanyal, D. (2023) Recent Advances in Coronary Artery Bypass Grafting Techniques and Outcomes: A Narrative Review. Cureus, 15, e45511.
https://doi.org/10.7759/cureus.45511
[10] Lawton, J.S., Tamis-Holland, J.E., Bangalore, S., et al. (2022) 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e4-e17.
https://doi.org/10.1161/CIR.0000000000001060
[11] Shapira, O.M. (2024) Commentary: The Radial Artery: The Optimal Second Arterial Conduit of Choice. The Journal of Thoracic and Cardiovascular Surgery, 167, 1303-1304.
https://doi.org/10.1016/j.jtcvs.2022.10.005
[12] Formica, F., Maestri, F., D’Alessandro, S., Di Mauro, M., Singh, G., Gallingani, A., et al. (2023) Survival Effect of Radial Artery Usage in Addition to Bilateral Internal Thoracic Arterial Grafting: A Meta-Analysis. The Journal of Thoracic and Cardiovascular Surgery, 165, 2076-2085.e9.
https://doi.org/10.1016/j.jtcvs.2021.06.062
[13] 王志华, 赵泽原, 胡俊龙, 等. 心肌梗死病史对同期行外科主动脉瓣置换术和冠状动脉旁路移植术患者预后的影响[J]. 中华实用诊断与治疗杂志, 2024, 38(6): 601-606.
[14] 吕智康, 程兆云, 孙俊杰, 等. CABG的发展现状和未来前景[J]. 中国动脉硬化杂志, 2022, 30(11): 1001-1005.
[15] Sandner, S. and Kurlansky, P. (2023) Multiarterial Grafting and the Challenge of Redefining Quality in Coronary Artery Bypass Surgery. The Annals of Thoracic Surgery, 115, 1419-1420.
https://doi.org/10.1016/j.athoracsur.2023.01.009
[16] Mastroiacovo, G., Manganiello, S., Pirola, S., Tedesco, C., Cavallotti, L., Antona, C., et al. (2021) Very Long-Term Outcome of Minimally Invasive Direct Coronary Artery Bypass. The Annals of Thoracic Surgery, 111, 845-852.
https://doi.org/10.1016/j.athoracsur.2020.06.025
[17] Rufa, M.I., Ursulescu, A., Dippon, J., Aktuerk, D., Nagib, R., Albert, M., et al. (2024) Is Minimally Invasive Multi-Vessel Off-Pump Coronary Surgery as Safe and Effective as MIDCAB? Frontiers in Cardiovascular Medicine, 11, Article 1385108.
https://doi.org/10.3389/fcvm.2024.1385108
[18] Manuel, L., Fong, L.S., Betts, K., Bassin, L. and Wolfenden, H. (2022) LIMA to LAD Grafting Returns Patient Survival to Age-Matched Population: 20-Year Outcomes of MIDCAB Surgery. Interactive CardioVascular and Thoracic Surgery, 35, ivac243.
https://doi.org/10.1093/icvts/ivac243
[19] Xu, Y., Li, Y., Bao, W. and Qiu, S. (2020) MIDCAB versus Off-Pump CABG: Comparative Study. Hellenic Journal of Cardiology, 61, 120-124.
https://doi.org/10.1016/j.hjc.2018.12.004
[20] Sakaguchi, T., Totsugawa, T., Tamura, K., Hiraoka, A., Ryomoto, M., Sekiya, N., et al. (2020) Minimally Invasive Coronary Artery Bypass Grafting: Useful Routine Option for Coronary Revascularization in Selected Cases. General Thoracic and Cardiovascular Surgery, 68, 1128-1133.
https://doi.org/10.1007/s11748-020-01336-z
[21] 谢玉芊, 张丽月, 成楠, 等. 机器人辅助微创冠状动脉血运重建治疗冠心病多支血管病变的单中心回顾性研究[J]. 中国胸心血管外科临床杂志, 2023, 30(5): 724-730.
[22] Moreno, P.R., Stone, G.W., Gonzalez-Lengua, C.A. and Puskas, J.D. (2020) The Hybrid Coronary Approach for Optimal Revascularization: JACC Review Topic of the Week. Journal of the American College of Cardiology, 76, 321-333.
https://doi.org/10.1016/j.jacc.2020.04.078
[23] Hemli, J.M. and Patel, N.C. (2020) Robotic Cardiac Surgery. Surgical Clinics of North America, 100, 219-236.
https://doi.org/10.1016/j.suc.2019.12.005
[24] Badhwar, V., Wei, L.M., Geirsson, A., Dearani, J.A., Grossi, E.A., Guy, T.S., et al. (2023) Contemporary Robotic Cardiac Surgical Training. The Journal of Thoracic and Cardiovascular Surgery, 165, 779-783.
https://doi.org/10.1016/j.jtcvs.2021.11.005
[25] Jonsson, A., Binongo, J., Patel, P., Wang, Y., Garner, V., Mitchell-Cooks, D., et al. (2023) Mastering the Learning Curve for Robotic-Assisted Coronary Artery Bypass Surgery. The Annals of Thoracic Surgery, 115, 1118-1125.
https://doi.org/10.1016/j.athoracsur.2023.02.045
[26] Holm, N.R., Mäkikallio, T., Lindsay, M.M., Spence, M.S., Erglis, A., Menown, I.B.A., et al. (2020) Percutaneous Coronary Angioplasty versus Coronary Artery Bypass Grafting in the Treatment of Unprotected Left Main Stenosis: Updated 5-Year Outcomes from the Randomised, Non-Inferiority NOBLE Trial. The Lancet, 395, 191-199.
https://doi.org/10.1016/s0140-6736(19)32972-1
[27] Lee, G., Vervoort, D., Sud, M. and Fremes, S.E. (2023) Commentary: Coronary Artery Bypass Grafting versus Percutaneous Coronary Intervention in Left Main Disease: Plausibility Does Not Equal Evidence. The Journal of Thoracic and Cardiovascular Surgery, 166, 134-135.
https://doi.org/10.1016/j.jtcvs.2021.08.072
[28] Hannan, E.L., Wu, Y., Cozzens, K., Sundt, T.M., Girardi, L., Chikwe, J., et al. (2020) Hybrid Coronary Revascularization versus Conventional Coronary Artery Bypass Surgery. Circulation: Cardiovascular Interventions, 13, e009386.
https://doi.org/10.1161/circinterventions.120.009386
[29] Zghouzi, M., Ullah, W., Sandhyavenu, H., Pacha, H.M., Al-Khadra, Y., Ahmad, B., et al. (2021) Hybrid Coronary Revascularization versus Coronary Artery Bypass Graft in Patients with Multivessel Coronary Artery Disease a Meta-Analysis. Journal of the American College of Cardiology, 77, 1042.
https://doi.org/10.1016/s0735-1097(21)02401-3
[30] Narayan, P. and Angelini, G.D. (2021) Hybrid Coronary Revascularization—Back to the Future. European Journal of Cardio-Thoracic Surgery, 60, 1167-1168.
https://doi.org/10.1093/ejcts/ezab207
[31] Nagraj, S., Tzoumas, A., Kakargias, F., Giannopoulos, S., Ntoumaziou, A., Kokkinidis, D.G., et al. (2022) Hybrid Coronary Revascularization (HCR) versus Coronary Artery Bypass Grafting (CABG) in Multivessel Coronary Artery Disease (MVCAD): A Meta‐Analysis of 14 Studies Comprising 4226 Patients. Catheterization and Cardiovascular Interventions, 100, 1182-1194.
https://doi.org/10.1002/ccd.30446
[32] Dixon, L.K., Akberali, U., Di Tommaso, E., George, S.J., Johnson, T.W. and Bruno, V.D. (2022) Hybrid Coronary Revascularization versus Coronary Artery Bypass Grafting for Multivessel Coronary Artery Disease: A Systematic Review and Meta-Analysis. International Journal of Cardiology, 359, 20-27.
https://doi.org/10.1016/j.ijcard.2022.04.030
[33] Wang, C., Li, P., Zhang, F., Li, J. and Kong, Q. (2021) Is Hybrid Coronary Revascularization Really Beneficial in the Long Term? European Journal of Cardio-Thoracic Surgery, 60, 1158-1166.
https://doi.org/10.1093/ejcts/ezab161
[34] McKiernan, M. and Halkos, M.E. (2020) Hybrid Coronary Revascularization: Are We There Yet? Current Opinion in Cardiology, 35, 673-678.
https://doi.org/10.1097/hco.0000000000000784
[35] Ren, Q., Li, G., Chu, T., Liu, Q., Huang, Y., Liu, K., et al. (2024) Off-Pump versus On-Pump Coronary Artery Bypass Grafting in Diabetic Patients: A Meta-Analysis of Observational Studies with a Propensity-Score Analysis. Cardiovascular Drugs and Therapy.
https://doi.org/10.1007/s10557-024-07603-y
[36] Ofoegbu, C.K.P. and Manganyi, R.M. (2022) Off-Pump Coronary Artery Bypass Grafting; Is It Still Relevant? Current Cardiology Reviews, 18, e271021197431.
https://doi.org/10.2174/1573403x17666211027141043
[37] Magarakis, M., Buitrago, D.H., Macias, A.E., Tompkins, B.A. and Salerno, T.A. (2021) Off Pump Coronary Artery Bypass in Patients with an Ejection Fraction of < 20%. What Is Our Strategy? Journal of Cardiac Surgery, 36, 1067-1071.
https://doi.org/10.1111/jocs.15330
[38] Abdul Qadeer, M., Khalid, M., Abdul Muqeet Farid, A., Fatima, T., Mariam Khalid, F., Ali, S.I., et al. (2024) Improved Early Outcomes with Off-Pump Coronary Artery Bypass Grafting in Patients with Left Ventricular Dysfunction: A Systematic Review and Meta-Analysis. Cardiology in Review.
https://doi.org/10.1097/crd.0000000000000706
[39] Rufa, M.I., Ursulescu, A., Nagib, R., Shanmuganathan, S., Albert, M., Reichert, S., et al. (2020) Off-Pump versus On-Pump Redo Coronary Artery Bypass Grafting: A Propensity Score Analysis of Long-Term Follow-Up. The Journal of Thoracic and Cardiovascular Surgery, 159, 447-456.e2.
https://doi.org/10.1016/j.jtcvs.2019.03.122
[40] Maes, F., Jolly, S.S., Cairns, J., et al. (2019) Plaque Sealing with Drug-Eluting Stents Versus Medical Therapy for Treating Inter-Mediate Non-Obstructive Saphenous Vein Graft Lesions: A Pooled Analysis of the VELETI and VELETI II Trials. The Journal of Invasive Cardiology, 31, E308-E315.
[41] Bianco, V., Kilic, A., Gleason, T.G., Aranda-Michel, E., Habertheuer, A., Humar, R., et al. (2021) Long-Term Outcomes after Reoperative Coronary Artery Bypass Grafting. The Annals of Thoracic Surgery, 111, 150-158.
https://doi.org/10.1016/j.athoracsur.2020.04.092
[42] Gaudino, M., Sandner, S., Di Giammarco, G., Di Franco, A., Arai, H., Asai, T., et al. (2021) The Use of Intraoperative Transit Time Flow Measurement for Coronary Artery Bypass Surgery: Systematic Review of the Evidence and Expert Opinion Statements. Circulation, 144, 1160-1171.
https://doi.org/10.1161/circulationaha.121.054311
[43] Thakare, V.s., Sontakke, N.G., Wasnik, P. and Kanyal, D. (2023) Recent Advances in Coronary Artery Bypass Grafting Techniques and Outcomes: A Narrative Review. Cureus, 15, e45511.
https://doi.org/10.7759/cureus.45511
[44] Li, X., Gu, D., Wang, X., Diao, X., Chen, S., Ma, H., et al. (2021) Trends of Coronary Artery Bypass Grafting Performance in a Cohort of Hospitals in China between 2013 and 2018. Circulation: Cardiovascular Quality and Outcomes, 14, e007025.
https://doi.org/10.1161/circoutcomes.120.007025
[45] Dimagli, A., Spadaccio, C., Myers, A., Demetres, M., Rademaker‐Havinga, T., Stone, G.W., et al. (2023) Quality of Life after Percutaneous Coronary Intervention versus Coronary Artery Bypass Grafting. Journal of the American Heart Association, 12, e030069.
https://doi.org/10.1161/jaha.123.030069
[46] Pačarić, S., Turk, T., Erić, I., Orkić, Ž., Petek Erić, A., Milostić-Srb, A., et al. (2020) Assessment of the Quality of Life in Patients before and after Coronary Artery Bypass Grafting (CABG): A Prospective Study. International Journal of Environmental Research and Public Health, 17, Article 1417.
https://doi.org/10.3390/ijerph17041417