|
[1]
|
Ortega, M.A., Fraile-Martinez, O., Garcia-Honduvilla, N., et al. (2020) Update on Uveal Melanoma: Translational Research from Biology to Clinical Practice (Review). International Journal of Oncology, 57, 1262-1279.
[Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Carvajal, R.D., Schwartz, G.K., Tezel, T., et al. (2017) Metastatic Disease from Uveal Melanoma: Treatment Options and Future Prospects. British Journal of Ophthalmology, 101, 38-44.
[Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Martinez-Perez, D., Viñal, D., Solares, I., Espinosa, E. and Feliu, J. (2021) Gp-100 as a Novel Therapeutic Target in Uveal Melanoma. Cancers, 13, Article No. 5968. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Singh, P. and Lim, B. (2022) Targeting Apoptosis in Cancer. Current Oncology Reports, 24, 273-284.
[Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
王思思. Epoxycytochalasin H诱导人卵巢癌A2780细胞凋亡的机制研究[D]: [硕士学位论文]. 长春: 吉林大学, 2022.
|
|
[6]
|
Lovric, M.M. and Hawkins, C.J. (2010) TRAIL Treatment Provokes Mutations in Surviving Cells. Oncogene, 29, 5048-5060. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Stadel, D., Mohr, A., Ref, C., et al. (2010) TRAIL-Induced Apoptosis Is Preferentially Mediated via TRAIL Receptor 1 in Pancreatic Carcinoma Cells and Profoundly Enhanced by XIAP Inhibitors. Clinical Cancer Research, 16, 5734-5749. [Google Scholar] [CrossRef]
|
|
[8]
|
Choe, S.C., Hamacher-Brady, A. and Brady, N.R. (2015) Autophagy Capacity and Sub-Mitochondrial Heterogeneity Shape Bnip3-Induced Mitophagy Regulation of Apoptosis. Cell Communication and Signaling, 13, Article No. 37.
[Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wolff, S., Erster, S., Palacios, G. and Moll, U.M. (2008) P53’s Mitochondrial Translocation and MOMP Action Is Independent of Puma and Bax and Severely Disrupts Mitochondrial Membrane Integrity. Cell Research, 2008, 18(7): 733-744. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Davies, L., Spiller, D., White, M.R.H., Grierson, I. and Paraoan, L. (2011) PERP Expression Stabilizes Active p53 via Modulation of p53-MDM2 Interaction in Uveal Melanoma Cells. Cell Death & Disease, 2, e136.
[Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Dillon, C.P., Oberst, A., Weinlich, R., et al. (2012) Survival Function of the FADD-CASPASE-8-cFLIPL Complex. Cell Reports, 1, 401-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Wan, L., Du, F. and Wang, X. (2008) TNF-α Induces Two Distinct Caspase-8 Activation Pathways. Cell, 133, 693-703.
[Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Peng, F., Liao, M., Qin, R., et al. (2022) Regulated Cell Death (RCD) in Cancer: Key Pathways and Targeted Therapies. Signal Transduction and Targeted Therapy, 7, Article No. 286. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, J., Kos, R., Garssen, J. and Redegeld, F. (2019) Molecular Insights into the Mechanism of Necroptosis: The Necrosome as a Potential Therapeutic Target. Cells, 8, Article No. 1486. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Dondelinger, Y., Jouan-Lanhouet, S., Divert, T., et al. (2015) NF-κB-Independent Role of IKKα/IKKβ in Preventing RIPK1 Kinase-Dependent Apoptotic and Necroptotic Cell Death during TNF Signaling. Molecular Cell, 60, 63-76.
[Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bian, Z., Fan, R. and Xie, L. (2022) A Novel Cuproptosis-Related Prognostic Gene Signature and Validation of Differential Expression in Clear Cell Renal Cell Carcinoma. Genes, 13, Article No. 851.
[Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ebrahimi, N., Adelian, S., Shakerian, S., et al. (2022) Crosstalk between Ferroptosis and the Epithelial-Mesenchymal Transition: Implications for Inflammation and Cancer Therapy. Cytokine & Growth Factor Reviews, 64, 33-45.
[Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yu, H., Guo, P., Xie, X., Wang, Y. and Chen, G. (2017) Ferroptosis, a New Form of Cell Death, and Its Relationships with Tumourous Diseases. Journal of Cellular and Molecular Medicine, 21, 648-657.
[Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cao, J.Y. and Dixon, S.J. (2016) Mechanisms of Ferroptosis. Cellular and Molecular Life Sciences, 73, 2195-2209.
[Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Xie, Y., Hou, W., Song, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379.
[Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Salnikow, K. (2021) Role of Iron in Cancer. Seminars in Cancer Biology, 76, 189-194.
[Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, Y., Wu, X., Ren, Z., et al. (2023) Overcoming Cancer Chemotherapy Resistance by the Induction of Ferroptosis. Drug Resistance Updates, 66, Article ID: 100916. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ma, X., Yu, S., Zhao, B., et al. (2022) Development and Validation of a Novel Ferroptosis-Related LncRNA Signature for Predicting Prognosis and the Immune Landscape Features in Uveal Melanoma. Frontiers in Immunology, 13, Article 922315. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
He, C. and Klionsky, D.J. (2009) Regulation Mechanisms and Signaling Pathways of Autophagy. Annual Review of Genetics, 43, 67-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Miller, D.R. and Thorburn, A. (2021) Autophagy and Organelle Homeostasis in Cancer. Developmental Cell, 56, 906-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, W.-W., Li, J. and Bao, J.-K. (2012) Microautophagy: Lesser-Known Self-Eating. Cellular and Molecular Life Sciences, 69, 1125-1136. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, W., Langfelder, P., Fuller, T., et al. (2010) Weighted Gene Coexpression Network Analysis: State of the Art. Journal of Biopharmaceutical Statistics, 20, 281-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kunz, J.B., Schwarz, H. and Mayer, A. (2004) Determination of Four Sequential Stages during Microautophagy in Vitro. Journal of Biological Chemistry, 279, 9987-9996. [Google Scholar] [CrossRef]
|
|
[30]
|
金剑. 猪流行性腹泻病毒引起Vero细胞内质网应激介导自噬的分子机制研究[D]: [硕士学位论文]. 合肥: 安徽农业大学, 2021.
|
|
[31]
|
Giatromanolaki, A.N., Charitoudis, G.S., Bechrakis, N.E., et al. (2011) Autophagy Patterns and Prognosis in Uveal Melanomas. Modern Pathology, 24, 1036-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Chen, L., Min, J. and Wang, F. (2022) Copper Homeostasis and Cuproptosis in Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 378. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tsvetkov, P., Coy, S. and Petrova, B. (2022) Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins. Science, 375, 1254-1261. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Denoyer, D., Masaldan, S., La Fontaine, S. and Cater, M.A. (2015) Targeting Copper in Cancer Therapy: ‘Copper That Cancer’. Metallomics, 7, 1459-1476. [Google Scholar] [CrossRef]
|
|
[35]
|
Kaštelan, S., Antunica, A.G., Oresković, L.B., et al. (2020) Immunotherapy for Uveal Melanoma—Current Knowledge and Perspectives. Current Medicinal Chemistry, 27, 1350-1366. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Raju, K.S., Alessandri, G., Ziche, M. and Gullino, P.M. (1982) Ceruloplasmin, Copper Ions, and Angiogenesis. Journal of the National Cancer Institute, 69, 1183-1188.
|
|
[37]
|
Blockhuys, S., Zhang, X. and Wittung-Stafshede, P. (2020) Single-Cell Tracking Demonstrates Copper Chaperone Atox1 to Be Required for Breast Cancer Cell Migration. Proceedings of the National Academy of Sciences of the United States of America, 117, 2014-2019. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, Y., Chen, X. and Wang, X. (2022) Identification of a Prognostic Model Using Cuproptosis-Related Genes in Uveal Melanoma. Frontiers in Cell and Developmental Biology, 10, Article 973073.
[Google Scholar] [CrossRef] [PubMed]
|