基于DTI-ALPS方法评估神经系统疾病类淋巴系统功能的研究进展
Recent Advances in Assessing Glymphatic System Function in Neurological Diseases Based on DTI-ALPS Method
摘要: 类淋巴系统(glymphatic system, GS)是大脑的废物清除途径,对维持中枢神经系统的内环境稳态至关重要。近年来,沿血管周围间隙的弥散张量成像(diffusion tensor imaging analysis along the perivascular space, DTI-ALPS)作为一种无创非侵入性成像技术,被广泛应用于各种神经系统疾病的GS功能评估,利用DTI-ALPS方法计算出的ALPS指数能反映疾病的动态变化。本文就GS的结构和功能、DTI-ALPS的原理和优势及其在神经系统疾病中的应用进行综述,旨在为神经系统疾病的病程监测、疗效评估和预后预测等提供一定的参考依据。
Abstract: The glymphatic system (GS) plays a vital role in clearing waste from the brain, which is essential for maintaining the homeostasis of the central nervous system. In recent years, diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) has emerged as a valuable non-invasive imaging technique for assessing GS function in various neurological disorders. The ALPS index derived from DTI-ALPS can capture dynamic changes associated with these diseases. This article reviews the structure and function of the GS, the principles and benefits of DTI-ALPS, and its application in neurological diseases, aiming to provide a reference for monitoring disease progression, evaluating therapeutic efficacy, and predicting prognosis in neurological disorders.
文章引用:蒋禹婷, 胡良波. 基于DTI-ALPS方法评估神经系统疾病类淋巴系统功能的研究进展[J]. 临床医学进展, 2025, 15(1): 98-108. https://doi.org/10.12677/acm.2025.151016

1. 引言

类淋巴系统(Glymphatic System, GS),被认为是脑内重要的废物清除系统,其结构基础是星型胶质细胞终足围绕血管形成的血管周围间隙(Perivascular Spaces, PVS)网络,脑脊液(Cerebrospinal Fluid, CSF)与组织液(Interstitial Fluid, ISF)沿着这些管道流动并进行物质交换,从而维持大脑微环境稳态[1]。已有大量研究表明,GS功能的损害可能导致β-淀粉样蛋白(amyloid β-protein, Aβ)、tau蛋白等代谢产物的堆积,这与阿尔茨海默病(Alzheimer’s disease, AD)、帕金森病(Parkinson’s disease, PD)等神经退行性疾病的发病发展密切相关[2]-[4]。随着研究的深入,GS在重性抑郁障碍(Major depressive disorder, MDD) [5]-[7]、精神分裂症[8]-[10]等精神障碍疾病及缺血性卒中[11] [12]、烟雾病[13]-[15]等脑血管疾病中的作用也受到越来越多的关注。先前GS的研究多基于动态增强磁共振成像(Magnetic Resonance Imaging, MRI),采用鞘内或静脉注含钆对比剂的方式,通过测量影像信号强度随时间的变化并计算大脑清除示踪剂所需的时间来评估GS功能。然而,侵入性及造影剂毒性等风险限制了其在人体研究中的应用[16]。近年来,Taoka [17]等人在AD相关研究中首次提出了沿血管周围间隙的弥散张量成像(diffusion tensor imaging analysis along the perivascular space, DTI-ALPS)这一无创方法,通过计算ALPS指数来评估GS功能。本文就GS的结构和功能、DTI-ALPS的原理和优势进行概述,同时系统阐述DTI-ALPS在各种神经系统疾病中的应用,最后总结DTI-ALPS技术的局限性和改进策略,以期为疾病的病程监测、疗效评估和预后预测等提供新的工具和视角。

2. 大脑类淋巴系统的结构与功能

既往认为大脑内缺乏淋巴循环通路,直到Iliff研究团队利用双光子显微镜来观测小鼠CSF中荧光示踪剂的路径,首次提出了GS这一概念[18]。GS是一个具有高度组织性的流体运输系统,CSF在水通道蛋白4 (Aquaporin 4, AQP4)的介导下沿大脑表面动脉及穿支小动脉走行的PVS流入脑实质,然后与ISF进行物质交换,最终以整体流的形式通过脑内静脉的PVS流出大脑。

PVS是由星形胶质细胞终足覆盖大多数脑内血管而形成的充满液体的隔室,作为液体进出脑的连接通道,其形态、大小等与GS废物清除的效率有关[19]。AQP4是中枢神经系统中表达最丰富的水通道蛋白,不均匀地分布在星型胶质细胞特定的区域或表面,这种极性分布的方式可以促进液体的定向流动,调节液体中水分子和离子平衡,有助于优化大脑中的液体运输和代谢产物的清除[20]。Iliff等人发现在敲除小鼠AQP4基因后,大脑内液体的流动速率明显减弱,示踪剂的清除率减少70% [18],这表明AQP4在GS清除网络中发挥关键作用。Harrison [21]等人的研究也验证了这一观点,他们利用tau病小鼠模型,发现使用新型AQP4抑制剂TGN-020后小鼠的tau蛋白清除率明显下降,因此我们推断针对AQP4的治疗措施有助于增强大脑内液体运输的调节能力,GS有望成为AD等神经退行性疾病的潜在治疗靶点。

3. DTI-ALPS的原理与优势

DTI-ALPS是一种基于弥散张量成像(diffusion tensor imaging, DTI)的新兴神经影像学技术,能够无创地评估大脑的GS功能。DTI通过在不同方向上施加梯度磁场并测量相邻梯度之间的水分子信号变化来评估水分子的扩散能力[22]。水分子在组织中的运动并非完全随机,而是受到细胞、纤维束和脂质双层等生物结构的影响。在大脑白质等神经组织中,水分子更倾向于沿着神经纤维束的方向移动,这导致沿着PVS扩散水分子运动很难通过DTI被观察和评估。

DTI-ALPS通过优化DTI参数和分析方法可以高分辨率地揭示PVS中水分子的扩散特性,从而提供对脑组织微观结构更深入的理解。在侧脑室体部层面,PVS与投射纤维(z轴方向)、联络纤维(y轴方向)成垂直关系,这一解剖特点可以减少沿主要脑白质纤维方向扩散的水分子的影响。分别在单侧大脑半球的投射纤维和联络纤维上各放置一个感兴趣区(region of interest, ROI),并提取x、y和z轴三个方向的扩散率,计算ALPS指数。该指数由垂直于组织中优势纤维的两组扩散系数值之比表示,计算公式如下:

ALPS= meann( Dxprojn, Dxassocn ) meann( Dyprojn, Dzassocn )

式中mean (Dyproj, Dzassoc)为投射纤维y轴方向与联络纤维z轴方向扩散率之和的平均值,mean (Dxproj, Dxassoc)为投射纤维x轴方向与联络纤维x轴方向扩散率之和的平均值[17]。ALPS指数越大,沿PVS的水分子的扩散能力越强,GS的活性越高。因此,ALPS指数可以量化评估GS功能,有潜力成为一种新的神经影像学生物标志物。

DTI-ALPS因其便捷性及无创性而广泛应用于临床研究中,其可靠性及可重复性已得到验证[23]。在一项脑小血管疾病的研究中,Zhang [24]等人发现ALPS指数与鞘内注射造影剂的传统MRI方法的评估结果显著相关,进一步验证了DTI-ALPS方法的可行性,且非侵入性的DTI-ALPS更符合未来研究的要求与发展。目前,DTI-ALPS已被用于多种神经系统疾病中的GS功能的评估,并在一定程度上为动态监测疾病的发展状态提供了客观影像依据。

4. DTI-ALPS在神经系统疾病中的应用

4.1. 精神障碍疾病

4.1.1. 睡眠–觉醒障碍

睡眠–觉醒障碍是一类影响个体睡眠模式、睡眠质量、或觉醒状态的精神障碍,涵盖失眠、嗜睡、快速眼动睡眠行为障碍(Rapid Eye Movement Sleep Behavior Disorder, RBD)、阻塞性睡眠呼吸暂停(Obstructive Sleep Apnea, OSA)等多种表现形式。GS在大脑中发挥废物清除的作用,其效率在深度睡眠阶段达到最佳[25],睡眠–觉醒障碍可能导致GS功能受损。在一项前瞻性纵向研究中,Bae [26]等人通过长期随访发现RBD患者GS功能减弱,且RBD向帕金森病等α-突触核病的表型转换风险随着ALPS指数的降低而增加,这表明GS功能障碍与疾病的进展密切相关。Roy [27]等人的研究则聚焦于OSA患者,他们发现OSA患者ALPS指数降低且认知功能下降,Lin [28]等人在此基础上进一步比较了不同严重程度OSA患者的其他MRI指标(PVS体积分数、自由水指数),并观察到中度OSA患者在治疗后MRI指标及认知表现均得到改善,这为OSA的疗效评价提供了新的影像学证据。除此之外,研究表明失眠[29] [30]、嗜睡[31] [32]等睡眠障碍也与GS功能障碍存在关联。这些研究结果提示,改善睡眠质量可能有助于保护GS功能,进而潜在延缓神经退行性疾病的进展,并为探索可能的干预治疗措施提供了线索。

4.1.2. MDD

MDD是常见的情感障碍性疾病之一,常见症状包括情绪低落、兴趣缺乏、睡眠障碍、认知功能损害等。当前研究逐渐揭示了GS与MDD之间的潜在联系。Gu [5]等人的研究发现,GS在清除大分子和细胞碎片、活性氧和细胞因子中发挥重要作用,而其功能障碍可能导致氧化应激和神经炎症从而诱导MDD的发展;除此之外,Zhang [7]等人研究探讨了MDD全脑血氧水平依赖(gBOLD)信号与CSF流入动力学的耦合关系,发现其gBOLD-CSF耦合强度下降且与睡眠中断相关,这提示MDD患者GS功能异常可能与睡眠质量下降有关。Liu [33]等人基于慢性应激诱导抑郁小鼠模型提出,多不饱和脂肪酸补充治疗能缓解小鼠抑郁样症状并改善其认知表现,推测其机制可能与保护脑血管功能和恢复GS功能有关。最近,Yang [7]等人首次利用DTI-ALPS评估MDD患者的GS功能,发现MDD患者ALPS指数降低,且与白质微结构异常和神经心理评分相关,进一步揭示了大脑结构与功能之间的复杂关系。这些研究结果均表明GS可能参与MDD的发病机制,但其因果关系尚不明确,目前关于MDD类淋巴方面的相关研究较少,GS在MDD发病发展中的具体作用仍需进一步探讨。

4.1.3. 孤独症谱系障碍(Autism Spectrum Disorder, ASD)

ASD是一种复杂的神经发育障碍,其核心症状为社交互动障碍和重复刻板行为。ASD发病机制复杂,可能涉及遗传、环境因素等,GS在ASD中的作用也受到了广泛关注。GS通过脑内PVS进行CSF和ISF间的物质交换,在ASD中,CSF增加[34]、PVS体积增大[35]等均可能导致GS功能异常。Garic [36]等人的研究进一步验证了这一观点,他们发现发展成ASD的婴儿在12至24个月间可出现PVS扩大,这与CSF增加及后期睡眠障碍有关,提示ASD患者可能存在GS功能失调。另外,尸检报告荟萃分析提出神经胶质细胞诱导的神经炎症也与ASD的发病有关,其中小胶质细胞和星形胶质细胞协同作用,共同参与GS神经炎症调节过程,进而影响神经发育[37]。而Li [38]等人首次利用DTI-ALPS这一无创方法评估ASD患者的GS功能,发现其ALPS指数显著低于健康对照组,且与年龄呈正相关,说明ASD患者的GS功能可能随年龄增长而下降,强调了GS在ASD发展中的作用。以上研究均为理解ASD的病理生理学提供了新的见解,然而目前基于DTI-ALPS评估ASD类淋巴功能的研究只有一项,相关领域还存在较大的研究空白,GS在ASD病程中的具体作用还需要通过更多研究探索。

4.1.4. 精神分裂症

精神分裂症是一种严重的精神障碍疾病,以思维、知觉、情感和行为等多方面的障碍为特征,表现为精神活动与环境的不协调。神经影像学在寻找精神分裂症的生物标志物中发挥重要作用,目前已发现的潜在标志物包括多巴胺功能亢进、海马功能亢进、N-甲基-D-天门冬氨酸受体功能减退、皮质灰质体积损失等[39]。近年来,研究者们开始探索精神分裂症与GS的联系。Abdolizadeh [8]等人利用质子磁共振波谱和DTI-ALPS方法来研究精神分裂症患者的GS功能,发现与健康对照组相比,患者组的ALPS指数降低,说明精神分裂症患者存在GS功能障碍;此外,他们还发现精神分裂症患者的病程与脑内大分子水平呈正相关,与右侧ALPS指数负相关,提示GS功能障碍可能导致代谢废物堆积,这可能与精神分裂症的发病机制存在关联。Tu [9]等人的研究进一步证实了精神分裂症患者GS功能异常,并发现其ALPS指数的降低与认知功能下降有关。以上研究为理解精神分裂症的神经生物学基础提供了宝贵线索,如何将这些研究结果应用于新的治疗策略的开发,是未来研究的重要方向。

4.2. 脑血管疾病

4.2.1. 脑小血管病(Cerebral Small Vessel Disease, CSVD)

CSVD是指一类因脑内小血管(包括小动脉、毛细血管和小静脉)受损而导致的一系列临床、病理、影像综合征。累积性损伤可能引发慢性脑供血不足,最终导致认知障碍、步态不稳和情绪波动等症状[40]。MRI是CSVD的首选检查方法,其中PVS增大比白质高信号、腔隙或脑微出血等其他影像学特征出现得更早,并被认为是CSVD病理学中最早的病变阶段[41]。先前的临床研究证实CSVD患者的GS功能受损并发现ALPS指数与其影像学特征密切相关[24]。其中,脑淀粉样血管病是一种以Aβ沉积为特征的CSVD,Xu [42]等人评估了603例CAA患者的GS功能并进行随访,发现CAA患者组的ALPS指数明显低于对照组,且ALPS指数降低与CAA的复发增加及基底节区PVS扩大有关,这表明GS在CAA的进展及预后中扮演重要角色。在另一项前瞻性研究中[43],CSVD患者的ALPS指数下降且与认知功能障碍相关,但其PVS体积并未见明显变化,推断其原因是ALPS指数的动态变化可以反映早期GS的功能障碍,但在功能失调的晚期阶段才会出现PVS体积增大。这表明了ALPS指数的动态变化为CSVD的早期诊断提供新的视角,但PVS增大等影像学特征是否与CSVD患者认知功能下降存在相关性,需要更多研究来验证。

4.2.2. 缺血性卒中(Ischemic Stroke, IS)

IS是由于动脉硬化、血栓、栓塞等因素引起的脑血管狭窄或闭塞,导致脑供血不足,进而引发脑组织损伤的一种严重疾病。脑水肿是缺血性卒中常见的并发症之一。大量动物实验研究表明[44]-[47],在IS发生后,GS功能障碍导致代谢废物和水分的积聚,进一步加重脑水肿和神经损伤,从而形成恶性循环,在此过程中AQP4的表达和极化状态直接影响GS的清除效率。但有关动物GS的发现是否适用于人类还需要更多的研究,DTI-ALPS这一方法的应用为此提供了可能。Toh和Siow [12]等人回顾性分析了50例缺血性卒中患者的DTI数据,发现IS患者的ALPS指数显著低于正常对照组,且指数随着卒中发生时间的延长而逐渐增加,提示GS功能可能有所恢复。然而,这种恢复是否完全以及是否足以改善患者的预后尚需通过延长随访时间来进一步验证。Qin [11]等人则重点关注亚急性期IS的GS功能改变,他们发现,卒中组的左侧ALPS指数显著降低,且与运动功能评分呈正相关,表明GS功能减弱可能与患者运动功能受损有关。以上研究均为理解IS后GS的变化提供了重要信息,GS功能障碍可能造成患者预后不良,通过调节AQP4和改善GS功能,可能有助于减轻并发症从而改善IS的预后,这也未来的治疗提供了新的靶点。

4.2.3. 烟雾病(Moyamoya Disease, MMD)

MMD是一种以双侧颈内动脉末端及大脑前、中动脉起始部狭窄或闭塞为特征,并继发脑底异常血管网形成的一种脑血管疾病。烟雾病的发病机制复杂,近年来关于GS的研究为烟雾病的发病机制提供了新的观点。烟雾病导致的脑缺血可能会影响脉络丛功能,CSF的产生及循环也发生改变,从而导致GS功能异常[48]。另外,MMD患者大脑中血管周围间隙扩大也间接证明GS在MMD中的作用[49]。Zhu [15]等人同时采用ALPS指数和gBOLD-CSF耦合强度来评价MMD患者的GS功能,发现两种指标均显著低于健康对照组,除此之外,ALPS指数在缺血早期较高并随患者脑灌注阶段而变化,ALPS指数还与认知评分、白质体积呈正相关,研究结果不仅揭示了MMD患者GS功能受损,还阐明了这种异常与脑结构变化和认知障碍之间的复杂关系。Hara [14]等人、Zeng [13]等人的研究也发现MMD患者的ALPS指数降低,且与认知功能下降相关。而Jin [50]等人的研究则重点关注MMD晚期患者,发现其GS功能受损,并可能影响认知功能和术后新生血管形成,这表明GS与MMD预后相关,有助于开发新的治疗策略。尽管现有研究为MMD的诊治提供了有益的见解,但其与GS的关系仍处于初步探索阶段,未来的研究应该包括不同阶段的烟雾病患者,并探索GS作为治疗靶点的潜力。

4.3. 神经退行性疾病

4.3.1. PD

PD是全球发病率增长最快的神经退行性疾病之一,可表现出运动迟缓、震颤等运动症状和/或认知障碍、情绪障碍等非运动症状。PD病理学特征包括黑质多巴胺神经元的缺失及α-突触核蛋白异常聚集形成路易小体[51]。GS在清除α-突触核蛋白等错误折叠蛋白方面发挥关键作用,GS功能障碍会导致代谢废物的堆积从而造成神经功能损害。Shen [52]等人评估了不同阶段的PD患者的GS功能,发现晚期PD患者ALPS指数下降更明显,且早期PD组仅出现左半球ALPS指数降低,但随着疾病的进展逐渐累及双侧半球,这表明GS功能在一定程度上反映了疾病进展状况。He [53]等人通过横断面及纵向研究进一步验证了这一观点,他们发现PD患者的ALPS指数与年龄、疾病严重程度和运动障碍呈负相关,且ALPS指数低的患者在运动和认知功能方面表现出更快的恶化,这与Wood [54]等人的结论一致。而Pang [55]等人则重点探讨了GS功能在预测PD患者从轻度认知障碍向痴呆转化中的作用,他们发现转化为痴呆的患者ALPS指数明显降低,PVS体积显著增大,说明ALPS指数及PVS体积在预测疾病转归方面具有潜在的临床价值。以上研究表明GS在疾病的进展中发挥重要作用,并探索了ALPS指数及PVS体积作为潜在生物标志物的可能性,为疾病进展的监测提供了客观影像学证据。

4.3.2. AD

AD是最常见的痴呆症类型,主要表现为渐进性的记忆丧失、认知障碍以及功能衰退。其病理特征包括Aβ沉积形成淀粉样斑块及tau蛋白异常磷酸化形成神经纤维缠结[56]。GS作为大脑中的新型清除机制,在AD的研究中受到了广泛关注。Hsu [57]等人研究了GS功能与PD的病理改变及临床症状的相关性,发现ALPS指数与PET成像中Aβ和tau蛋白沉积呈负相关,与认知功能评分呈正相关,且ALPS指数在蛋白沉积与认知功能障碍之间起着重要的中介效应,这与Hong [58]等人的研究结果一致,这为理解AD的病理生理学机制提供了新的见解。主观认知下降(subjective cognitive decline, SCD)与AD相似的特征性病理改变,被认为是AD的临床前期阶段[59]。一项双队列探索性研究[60]结果表明,SCD患者ALPS指数与认知下降显著相关,且ALPS指数在区分SCD与健康组方面具有良好性能,这为AD的早期识别与诊断提供可能。Huang [3]等人进一步探讨了不同阶段AD患者的GS功能变化,他们发现ALPS指数在AD痴呆、前驱期和临床前期均降低,且对Aβ沉积和脑萎缩具有预测作用。当前研究已经建立了GS功能障碍与AD之间的联系,有利于AD的早期诊断及进展监测,未来还应积极探索改善GS功能的有效治疗方法,为AD的治疗提供新的策略。

4.3.3. 特发性正常颅压性脑积水(Idiopathic Normal Pressure Hydrocephalus, iNPH)

iNPH是一种由不明原因引起脑室扩大而脑脊液压力正常的进展性退行性疾病,以步态异常、认知障碍和尿失禁三联征为主要临床表现,iNPH的发病机制尚不完全清楚,但普遍认为与CSF循环和吸收障碍有关[61],提示其GS功能可能存在异常。Bae [62]等人首次采用DTI-ALPS方法评估了iNPH患者的GS功能,发现iNPH患者的ALPS指数显著低于对照组,提示iNPH患者存在GS功能障碍。Georgiopoulos [63]等人进一步发现,iNPH患者的ALPS指数下降,且与疾病严重程度相关,此外ALPS指数还与性别和脑室扩大程度有关,提示在评估时需考虑这些因素的影响。Kikuta [64]等人则着重关注了脑室–腹腔分流术后iNPH患者的GS功能变化,发现术后iNPH患者的平均ALPS指数显著提高,尤其在症状改善的患者中更加明显,这可能表明手术后GS功能得到恢复,对iNPH治疗效果的评价有一定的参考价值。目前的研究初步揭示了GS功能与iNPH病理生理之间的潜在联系,并为其诊断及治疗提供了新的思路,但这几项研究因样本量较小而存在一定局限性,对于iNPH的手术疗效评估的价值还需要更大的样本量的纵向研究来验证,这也是未来的研究方向之一。

5. 总结与展望

GS作为大脑清除代谢废物的重要途径,其功能障碍与多种疾病的发生发展密切相关,已逐渐成为神经医学研究的前沿热点。DTI-ALPS作为一种非侵入性的成像技术,通过量化水分子在不同方向的扩散速率,能够无创地评估在体GS功能,为GS的临床研究和疾病监测提供了新的视角。DTI-ALPS方法最先被应用于AD等神经退行性疾病的相关研究中,其在评估GS功能、监测疾病进展等方面的有效性已得到初步验证。最近,DTI-ALPS方法在MDD、精神分裂症等精神障碍及烟雾病等脑血管疾病的相关研究中也展现出了巨大的潜力。然而,目前关于DTI-ALPS的研究仍然存在一些局限性:第一,该方法在ROI的选择和放置上存在一定的主观性。有研究指出较大面积的ROI和双侧放置ROI显示出更好的稳定性[65];此外,开发自动化或半自动化的ROI放置算法,例如利用卷积神经网络等深度学习模型[66],可以识别特定的解剖结构和纤维束,从而减少操作者偏差,提高结果的客观性;同时采用多模态(如功能MRI、PET、磁共振波普等)融合技术,提高对脑结构和功能特征的理解,进一步提高ROI定位的精确度。第二,该方法以DTI成像为基础,所需扫描时间相对较长,因此有研究提出了一种沿血管周围间隙的扩散加权成像(diffusion weighted imaging analysis along the perivascular space, DWI-ALPS)的分析方法[65],这种方法缩短了采集时间,在受检者中接受程度高,且与GS的功能状态显示出较好的相关性[67]-[69]。DTI-ALPS可以提供更全面的脑组织微观结构信息,而DWI-ALPS更侧重于快速、简便地评估扩散特性,适用于大规模临床研究,未来还需进一步比较这两种技术在不同疾病状态下的应用效果,以确定它们在临床实践中的最佳应用场景。第三,目前的相关研究多为单中心、小样本量、横断面研究,对于GS在疾病发展中的具体作用及二者的因果关系还需要更多深入研究的验证,因此开展多中心、大样本量的前瞻性研究并延长随访时间是十分必要的,从而验证DTI-ALPS的临床应用价值,并探索其在不同疾病中的诊断和预后效能。

综上所述,DTI-ALPS为GS功能的研究提供了一个有力的工具,其在未来的疾病研究和临床应用中具有重要的启发作用和指导意义。随着技术的不断进步和研究的深入,DTI-ALPS将在疾病的早期诊断、病程监测及个体化治疗方面发挥越来越重要的作用,从而有望为GS相关的神经系统疾病的研究开辟新的道路。

基金项目

重庆市科卫联合医学科研重点项目《基于多模态磁共振在重复经颅磁刺激(rTMS)治疗青少年抑郁障碍的临床应用》,项目编号:2024ZDXM013。

NOTES

*通讯作者。

参考文献

[1] Rasmussen, M.K., Mestre, H. and Nedergaard, M. (2022) Fluid Transport in the Brain. Physiological Reviews, 102, 1025-1151.
https://doi.org/10.1152/physrev.00031.2020
[2] Ishida, K., Yamada, K., Nishiyama, R., Hashimoto, T., Nishida, I., Abe, Y., et al. (2022) Glymphatic System Clears Extracellular Tau and Protects from Tau Aggregation and Neurodegeneration. Journal of Experimental Medicine, 219, e20211275.
https://doi.org/10.1084/jem.20211275
[3] Huang, S., Zhang, Y., Guo, Y., Du, J., Ren, P., Wu, B., et al. (2024) Glymphatic System Dysfunction Predicts Amyloid Deposition, Neurodegeneration, and Clinical Progression in Alzheimer’s Disease. Alzheimer’s & Dementia, 20, 3251-3269.
https://doi.org/10.1002/alz.13789
[4] Park, Y.W., Shin, N., Chung, S.J., Kim, J., Lim, S.M., Lee, P.H., et al. (2019) Magnetic Resonance Imaging-Visible Perivascular Spaces in Basal Ganglia Predict Cognitive Decline in Parkinson's Disease. Movement Disorders, 34, 1672-1679.
https://doi.org/10.1002/mds.27798
[5] Gu, S., Li, Y., Jiang, Y., Huang, J.H. and Wang, F. (2022) Glymphatic Dysfunction Induced Oxidative Stress and Neuro-Inflammation in Major Depression Disorders. Antioxidants, 11, Article 2296.
https://doi.org/10.3390/antiox11112296
[6] Yang, C., Tian, S., Du, W., Liu, M., Hu, R., Gao, B., et al. (2024) Glymphatic Function Assessment with Diffusion Tensor Imaging along the Perivascular Space in Patients with Major Depressive Disorder and Its Relation to Cerebral White-Matter Alteration. Quantitative Imaging in Medicine and Surgery, 14, 6397-6412.
https://doi.org/10.21037/qims-24-510
[7] Zhang, Y., Peng, B., Chen, S., Liang, Q., Zhang, Y., Lin, S., et al. (2024) Reduced Coupling between Global Signal and Cerebrospinal Fluid Inflow in Patients with Depressive Disorder: A Resting State Functional MRI Study. Journal of Affective Disorders, 354, 136-142.
https://doi.org/10.1016/j.jad.2024.03.023
[8] Abdolizadeh, A., Torres-Carmona, E., Kambari, Y., Amaev, A., Song, J., Ueno, F., et al. (2024) Evaluation of the Glymphatic System in Schizophrenia Spectrum Disorder Using Proton Magnetic Resonance Spectroscopy Measurement of Brain Macromolecule and Diffusion Tensor Image Analysis along the Perivascular Space Index. Schizophrenia Bulletin, 50, 1396-1410.
https://doi.org/10.1093/schbul/sbae060
[9] Tu, Y., Fang, Y., Li, G., Xiong, F. and Gao, F. (2024) Glymphatic System Dysfunction Underlying Schizophrenia Is Associated with Cognitive Impairment. Schizophrenia Bulletin, 50, 1223-1231.
https://doi.org/10.1093/schbul/sbae039
[10] Korann, V., Panganiban, K.J., Stogios, N., Remington, G., Graff-Guerrero, A., Chintoh, A., et al. (2024) The Dysregulation of the Glymphatic System in Patients with Psychosis Spectrum Disorders Minimally Exposed to Antipsychotics: La dérégulation du système glymphatique en présence de troubles psychotiques chez des patients peu exposés à des antipsychotiques. The Canadian Journal of Psychiatry.
https://doi.org/10.1177/07067437241290193
[11] Qin, Y., Li, X., Qiao, Y., Zou, H., Qian, Y., Li, X., et al. (2023) DTI-ALPS: An MR Biomarker for Motor Dysfunction in Patients with Subacute Ischemic Stroke. Frontiers in Neuroscience, 17, Article 1132393.
https://doi.org/10.3389/fnins.2023.1132393
[12] Toh, C.H. and Siow, T.Y. (2021) Glymphatic Dysfunction in Patients with Ischemic Stroke. Frontiers in Aging Neuroscience, 13, Article 756249.
https://doi.org/10.3389/fnagi.2021.756249
[13] Zeng, C., Zhai, Y., Ge, P., Liu, C., Yu, X., Liu, W., et al. (2024) Glymphatic Impairment Associated with Neurocognitive Dysfunction in Moyamoya Disease. Translational Stroke Research.
https://doi.org/10.1007/s12975-024-01250-z
[14] Hara, S., Kikuta, J., Takabayashi, K., Kamagata, K., Hayashi, S., Inaji, M., et al. (2024) Decreased Diffusivity along the Perivascular Space and Cerebral Hemodynamic Disturbance in Adult Moyamoya Disease. Journal of Cerebral Blood Flow & Metabolism, 44, 1787-1800.
https://doi.org/10.1177/0271678x241245492
[15] Zhu, H., Zhu, C., Liu, T., Wang, P., Li, W., Zhang, Q., et al. (2024) Alterations in the Glymphatic System and Association with Brain Structure and Cognitive Function in Moyamoya Disease. Translational Stroke Research.
https://doi.org/10.1007/s12975-024-01296-z
[16] Semelka, R.C. and Ramalho, M. (2023) Gadolinium Deposition Disease: Current State of Knowledge and Expert Opinion. Investigative Radiology, 58, 523-529.
https://doi.org/10.1097/rli.0000000000000977
[17] Taoka, T., Masutani, Y., Kawai, H., Nakane, T., Matsuoka, K., Yasuno, F., et al. (2017) Evaluation of Glymphatic System Activity with the Diffusion MR Technique: Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) in Alzheimer’s Disease Cases. Japanese Journal of Radiology, 35, 172-178.
https://doi.org/10.1007/s11604-017-0617-z
[18] Iliff, J.J., Wang, M., Liao, Y., Plogg, B.A., Peng, W., Gundersen, G.A., et al. (2012) A Paravascular Pathway Facilitates CSF Flow through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 4, 147ra111.
https://doi.org/10.1126/scitranslmed.3003748
[19] Wardlaw, J.M., Benveniste, H., Nedergaard, M., Zlokovic, B.V., Mestre, H., Lee, H., et al. (2020) Perivascular Spaces in the Brain: Anatomy, Physiology and Pathology. Nature Reviews Neurology, 16, 137-153.
https://doi.org/10.1038/s41582-020-0312-z
[20] Peng, S., Liu, J., Liang, C., Yang, L. and Wang, G. (2023) Aquaporin-4 in Glymphatic System, and Its Implication for Central Nervous System Disorders. Neurobiology of Disease, 179, Article 106035.
https://doi.org/10.1016/j.nbd.2023.106035
[21] Harrison, I.F., Ismail, O., Machhada, A., Colgan, N., Ohene, Y., Nahavandi, P., et al. (2020) Impaired Glymphatic Function and Clearance of Tau in an Alzheimer’s Disease Model. Brain, 143, 2576-2593.
https://doi.org/10.1093/brain/awaa179
[22] Du, L., Roy, S., Wang, P., Li, Z., Qiu, X., Zhang, Y., et al. (2024) Unveiling the Future: Advancements in MRI Imaging for Neurodegenerative Disorders. Ageing Research Reviews, 95, Article 102230.
https://doi.org/10.1016/j.arr.2024.102230
[23] Liu, X., Barisano, G., Shao, X., Jann, K., Ringman, J.M., Lu, H., et al. (2023) Cross-Vendor Test-Retest Validation of Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) for Evaluating Glymphatic System Function. Aging and Disease, 15, 1885-1898.
https://doi.org/10.14336/ad.2023.0321-2
[24] Zhang, W., Zhou, Y., Wang, J., Gong, X., Chen, Z., Zhang, X., et al. (2021) Glymphatic Clearance Function in Patients with Cerebral Small Vessel Disease. NeuroImage, 238, Article 118257.
https://doi.org/10.1016/j.neuroimage.2021.118257
[25] Chong, P.L.H., Garic, D., Shen, M.D., Lundgaard, I. and Schwichtenberg, A.J. (2022) Sleep, Cerebrospinal Fluid, and the Glymphatic System: A Systematic Review. Sleep Medicine Reviews, 61, Article 101572.
https://doi.org/10.1016/j.smrv.2021.101572
[26] Bae, Y.J., Kim, J., Choi, B.S., Ryoo, N., Song, Y.S., Nam, Y., et al. (2023) Altered Brain Glymphatic Flow at Diffusion-Tensor MRI in Rapid Eye Movement Sleep Behavior Disorder. Radiology, 307, e221848.
https://doi.org/10.1148/radiol.221848
[27] Roy, B., Nunez, A., Aysola, R.S., Kang, D.W., Vacas, S. and Kumar, R. (2022) Impaired Glymphatic System Actions in Obstructive Sleep Apnea Adults. Frontiers in Neuroscience, 16, Article 884234.
https://doi.org/10.3389/fnins.2022.884234
[28] Lin, S., Lin, X., Chen, S., Liang, Q., Li, Y., Wei, F., et al. (2024) Association of MRI Indexes of the Perivascular Space Network and Cognitive Impairment in Patients with Obstructive Sleep Apnea. Radiology, 311, e232274.
https://doi.org/10.1148/radiol.232274
[29] Jin, Y., Zhang, W., Yu, M., Li, J., Du, Y., Wang, W., et al. (2024) Glymphatic System Dysfunction in Middle-Aged and Elderly Chronic Insomnia Patients with Cognitive Impairment Evidenced by Diffusion Tensor Imaging along the Perivascular Space (DTI-ALPS). Sleep Medicine, 115, 145-151.
https://doi.org/10.1016/j.sleep.2024.01.028
[30] Okada, I., Iwamoto, K., Miyata, S., Fujimoto, A., Tanaka, M., Amano, M., et al. (2021) FLUID Study: Study Protocol for an Open-Label, Single-Centre Pilot Study to Investigate the Effect of Lemborexant on Sleep Management in Japanese Subjects Aged 50 Years and Older with Insomnia Disorder. BMJ Open, 11, e054885.
https://doi.org/10.1136/bmjopen-2021-054885
[31] Hu, P., Yuan, Y., Zou, Y., Xiong, R., Dai, J., Zhao, X., et al. (2024) Alterations in the DTI-ALPS Index and Choroid Plexus Volume Are Associated with Clinical Symptoms in Participants with Narcolepsy Type 1. Sleep Medicine, 124, 471-478.
https://doi.org/10.1016/j.sleep.2024.10.019
[32] Gumeler, E., Aygun, E., Tezer, F.I., Saritas, E.U. and Oguz, K.K. (2023) Assessment of Glymphatic Function in Narcolepsy Using DTI-ALPS Index. Sleep Medicine, 101, 522-527.
https://doi.org/10.1016/j.sleep.2022.12.002
[33] Liu, X., Hao, J., Yao, E., Cao, J., Zheng, X., Yao, D., et al. (2020) Polyunsaturated Fatty Acid Supplement Alleviates Depression-Incident Cognitive Dysfunction by Protecting the Cerebrovascular and Glymphatic Systems. Brain, Behavior, and Immunity, 89, 357-370.
https://doi.org/10.1016/j.bbi.2020.07.022
[34] Shen, M.D. (2018) Cerebrospinal Fluid and the Early Brain Development of Autism. Journal of Neurodevelopmental Disorders, 10, Article No. 39.
https://doi.org/10.1186/s11689-018-9256-7
[35] Sotgiu, M.A., Lo Jacono, A., Barisano, G., Saderi, L., Cavassa, V., Montella, A., et al. (2023) Brain Perivascular Spaces and Autism: Clinical and Pathogenic Implications from an Innovative Volumetric MRI Study. Frontiers in Neuroscience, 17, Article 1205489.
https://doi.org/10.3389/fnins.2023.1205489
[36] Garic, D., McKinstry, R.C., Rutsohn, J., Slomowitz, R., Wolff, J., MacIntyre, L.C., et al. (2023) Enlarged Perivascular Spaces in Infancy and Autism Diagnosis, Cerebrospinal Fluid Volume, and Later Sleep Problems. JAMA Network Open, 6, e2348341.
https://doi.org/10.1001/jamanetworkopen.2023.48341
[37] Liao, X., Chen, M. and Li, Y. (2023) The Glial Perspective of Autism Spectrum Disorder Convergent Evidence from Postmortem Brain and PET Studies. Frontiers in Neuroendocrinology, 70, Article 101064.
https://doi.org/10.1016/j.yfrne.2023.101064
[38] Li, X., Ruan, C., Zibrila, A.I., Musa, M., Wu, Y., Zhang, Z., et al. (2022) Children with Autism Spectrum Disorder Present Glymphatic System Dysfunction Evidenced by Diffusion Tensor Imaging along the Perivascular Space. Medicine, 101, e32061.
https://doi.org/10.1097/md.0000000000032061
[39] Kraguljac, N.V., McDonald, W.M., Widge, A.S., Rodriguez, C.I., Tohen, M. and Nemeroff, C.B. (2021) Neuroimaging Biomarkers in Schizophrenia. American Journal of Psychiatry, 178, 509-521.
https://doi.org/10.1176/appi.ajp.2020.20030340
[40] Clancy, U., Gilmartin, D., Jochems, A.C.C., Knox, L., Doubal, F.N. and Wardlaw, J.M. (2021) Neuropsychiatric Symptoms Associated with Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. The Lancet Psychiatry, 8, 225-236.
https://doi.org/10.1016/s2215-0366(20)30431-4
[41] Duperron, M., Knol, M.J., Le Grand, Q., Evans, T.E., Mishra, A., Tsuchida, A., et al. (2023) Genomics of Perivascular Space Burden Unravels Early Mechanisms of Cerebral Small Vessel Disease. Nature Medicine, 29, 950-962.
https://doi.org/10.1038/s41591-023-02268-w
[42] Xu, J., Su, Y., Fu, J., Wang, X., Nguchu, B.A., Qiu, B., et al. (2022) Glymphatic Dysfunction Correlates with Severity of Small Vessel Disease and Cognitive Impairment in Cerebral Amyloid Angiopathy. European Journal of Neurology, 29, 2895-2904.
https://doi.org/10.1111/ene.15450
[43] Hong, H., Tozer, D.J. and Markus, H.S. (2024) Relationship of Perivascular Space Markers with Incident Dementia in Cerebral Small Vessel Disease. Stroke, 55, 1032-1040.
https://doi.org/10.1161/strokeaha.123.045857
[44] Li, C., Lin, L., Sun, C., Hao, X., Yin, L., Zhang, X., et al. (2022) Glymphatic System in the Thalamus, Secondary Degeneration Area Was Severely Impaired at 2nd Week after Transient Occlusion of the Middle Cerebral Artery in Rats. Frontiers in Neuroscience, 16, Article 997743.
https://doi.org/10.3389/fnins.2022.997743
[45] Zhang, J., Zhao, H., Xue, Y., Liu, Y., Fan, G., Wang, H., et al. (2022) Impaired Glymphatic Transport Kinetics Following Induced Acute Ischemic Brain Edema in a Mouse pMCAO Model. Frontiers in Neurology, 13, Article 860255.
https://doi.org/10.3389/fneur.2022.860255
[46] Sun, C., Lin, L., Yin, L., Hao, X., Tian, J., Zhang, X., et al. (2022) Acutely Inhibiting AQP4 with TGN-020 Improves Functional Outcome by Attenuating Edema and Peri-Infarct Astrogliosis after Cerebral Ischemia. Frontiers in Immunology, 13, Article 870029.
https://doi.org/10.3389/fimmu.2022.870029
[47] Li, X., Xie, Z., Zhou, Q., Tan, X., Meng, W., Pang, Y., et al. (2023) TGN-020 Alleviate Inflammation and Apoptosis after Cerebral Ischemia-Reperfusion Injury in Mice through Glymphatic and ERK1/2 Signaling Pathway. Molecular Neurobiology, 61, 1175-1186.
https://doi.org/10.1007/s12035-023-03636-w
[48] Johnson, S.E., McKnight, C.D., Lants, S.K., Juttukonda, M.R., Fusco, M., Chitale, R., et al. (2019) Choroid Plexus Perfusion and Intracranial Cerebrospinal Fluid Changes after Angiogenesis. Journal of Cerebral Blood Flow & Metabolism, 40, 1658-1671.
https://doi.org/10.1177/0271678x19872563
[49] Park, M., Roh, J., Ahn, S., Cho, J.W., Park, K. and Baik, S.K. (2024) Dilated Perivascular Spaces and Steno-Occlusive Changes in Children and Adults with Moyamoya Disease. BMC Neurology, 24, Article No. 14.
https://doi.org/10.1186/s12883-023-03520-z
[50] Jin, L., Hu, J., Han, G., Li, Y., Zhu, J., Zhu, Y., et al. (2024) Glymphatic System Impairment in the Advanced Stage of Moyamoya Disease. Journal of Neuroscience Research, 102, e25381.
https://doi.org/10.1002/jnr.25381
[51] Morris, H.R., Spillantini, M.G., Sue, C.M. and Williams-Gray, C.H. (2024) The Pathogenesis of Parkinson’s Disease. The Lancet, 403, 293-304.
https://doi.org/10.1016/s0140-6736(23)01478-2
[52] Shen, T., Yue, Y., Ba, F., He, T., Tang, X., Hu, X., et al. (2022) Diffusion along Perivascular Spaces as Marker for Impairment of Glymphatic System in Parkinson’s Disease. npj Parkinson’s Disease, 8, Article No. 174.
https://doi.org/10.1038/s41531-022-00437-1
[53] He, P., Shi, L., Li, Y., Duan, Q., Qiu, Y., Feng, S., et al. (2023) The Association of the Glymphatic Function with Parkinson’s Disease Symptoms: Neuroimaging Evidence from Longitudinal and Cross‐Sectional Studies. Annals of Neurology, 94, 672-683.
https://doi.org/10.1002/ana.26729
[54] Wood, K.H., Nenert, R., Miften, A.M., Kent, G.W., Sleyster, M., Memon, R.A., et al. (2024) diffusion Tensor Imaging‐along the Perivascular‐Space Index Is Associated with Disease Progression in Parkinson's Disease. Movement Disorders, 39, 1504-1513.
https://doi.org/10.1002/mds.29908
[55] Pang, H., Wang, J., Yu, Z., Yu, H., Li, X., Bu, S., et al. (2024) Glymphatic Function from Diffusion-Tensor MRI to Predict Conversion from Mild Cognitive Impairment to Dementia in Parkinson’s Disease. Journal of Neurology, 271, 5598-5609.
https://doi.org/10.1007/s00415-024-12525-8
[56] Self, W.K. and Holtzman, D.M. (2023) Emerging Diagnostics and Therapeutics for Alzheimer Disease. Nature Medicine, 29, 2187-2199.
https://doi.org/10.1038/s41591-023-02505-2
[57] Hsu, J., Wei, Y., Toh, C.H., Hsiao, I., Lin, K., Yen, T., et al. (2022) magnetic Resonanceimages Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction Inalzheimer Disease. Annals of Neurology, 93, 164-174.
https://doi.org/10.1002/ana.26516
[58] Hong, H., Hong, L., Luo, X., Zeng, Q., Li, K., Wang, S., et al. (2024) The Relationship between Amyloid Pathology, Cerebral Small Vessel Disease, Glymphatic Dysfunction, and Cognition: A Study Based on Alzheimer’s Disease Continuum Participants. Alzheimer’s Research & Therapy, 16, Article No. 43.
https://doi.org/10.1186/s13195-024-01407-w
[59] Wang, X., Huang, W., Su, L., Xing, Y., Jessen, F., Sun, Y., et al. (2020) Neuroimaging Advances Regarding Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Molecular Neurodegeneration, 15, Article No. 55.
https://doi.org/10.1186/s13024-020-00395-3
[60] Li, Y., Wang, L., Zhong, J., Xu, H., Han, Y., Zuo, C., et al. (2024) Impaired Glymphatic Function as a Biomarker for Subjective Cognitive Decline: An Exploratory Dual Cohort Study. Alzheimer’s & Dementia, 20, 6542-6555.
https://doi.org/10.1002/alz.14149
[61] Gallina, P., Porfirio, B. and Lolli, F. (2020) iNPH as a ‘2-Hit’ Intracranial Hydrodynamic Derangement Disease. Trends in Molecular Medicine, 26, 531-532.
https://doi.org/10.1016/j.molmed.2020.04.002
[62] Bae, Y.J., Choi, B.S., Kim, J., Choi, J., Cho, S.J. and Kim, J.H. (2021) Altered Glymphatic System in Idiopathic Normal Pressure Hydrocephalus. Parkinsonism & Related Disorders, 82, 56-60.
https://doi.org/10.1016/j.parkreldis.2020.11.009
[63] Georgiopoulos, C., Tisell, A., Holmgren, R.T., Eleftheriou, A., Rydja, J., Lundin, F., et al. (2024) Noninvasive Assessment of Glymphatic Dysfunction in Idiopathic Normal Pressure Hydrocephalus with Diffusion Tensor Imaging. Journal of Neurosurgery, 140, 612-620.
https://doi.org/10.3171/2023.6.jns23260
[64] Kikuta, J., Kamagata, K., Taoka, T., Takabayashi, K., Uchida, W., Saito, Y., et al. (2022) Water Diffusivity Changes along the Perivascular Space after Lumboperitoneal Shunt Surgery in Idiopathic Normal Pressure Hydrocephalus. Frontiers in Neurology, 13, Article 843883.
https://doi.org/10.3389/fneur.2022.843883
[65] Taoka, T., Ito, R., Nakamichi, R., Kamagata, K., Sakai, M., Kawai, H., et al. (2021) Reproducibility of Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) for Evaluating Interstitial Fluid Diffusivity and Glymphatic Function: Changes in Alps Index on Multiple Condition Acquisition Experiment (CHAMONIX) Study. Japanese Journal of Radiology, 40, 147-158.
https://doi.org/10.1007/s11604-021-01187-5
[66] Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., et al. (2020) Convolutional Neural Networks for Classification of Alzheimer’s Disease: Overview and Reproducible Evaluation. Medical Image Analysis, 63, Article 101694.
https://doi.org/10.1016/j.media.2020.101694
[67] Li, W., Liu, Z., Zhai, F., Han, F., Li, M., Zhou, L., et al. (2024) Automated Diffusion‐Weighted Image Analysis along the Perivascular Space Index Reveals Glymphatic Dysfunction in Association with Brain Parenchymal Lesions. Human Brain Mapping, 45, e26790.
https://doi.org/10.1002/hbm.26790
[68] Taoka, T., Ito, R., Nakamichi, R., Nakane, T., Sakai, M., Ichikawa, K., et al. (2022) Diffusion-Weighted Image Analysis along the Perivascular Space (DWI-ALPS) for Evaluating Interstitial Fluid Status: Age Dependence in Normal Subjects. Japanese Journal of Radiology, 40, 894-902.
https://doi.org/10.1007/s11604-022-01275-0
[69] Taoka, T., Ito, R., Nakamichi, R., Nakane, T., Kawamura, M., Ishihara, S., et al. (2023) Evaluation of Alterations in Interstitial Fluid Dynamics in Cases of Whole‐Brain Radiation Using the Diffusion‐Weighted Image Analysis along the Perivascular Space Method. NMR in Biomedicine, 37, e5030.
https://doi.org/10.1002/nbm.5030