[1]
|
Rasmussen, M.K., Mestre, H. and Nedergaard, M. (2022) Fluid Transport in the Brain. Physiological Reviews, 102, 1025-1151. https://doi.org/10.1152/physrev.00031.2020
|
[2]
|
Ishida, K., Yamada, K., Nishiyama, R., Hashimoto, T., Nishida, I., Abe, Y., et al. (2022) Glymphatic System Clears Extracellular Tau and Protects from Tau Aggregation and Neurodegeneration. Journal of Experimental Medicine, 219, e20211275. https://doi.org/10.1084/jem.20211275
|
[3]
|
Huang, S., Zhang, Y., Guo, Y., Du, J., Ren, P., Wu, B., et al. (2024) Glymphatic System Dysfunction Predicts Amyloid Deposition, Neurodegeneration, and Clinical Progression in Alzheimer’s Disease. Alzheimer’s & Dementia, 20, 3251-3269. https://doi.org/10.1002/alz.13789
|
[4]
|
Park, Y.W., Shin, N., Chung, S.J., Kim, J., Lim, S.M., Lee, P.H., et al. (2019) Magnetic Resonance Imaging-Visible Perivascular Spaces in Basal Ganglia Predict Cognitive Decline in Parkinson's Disease. Movement Disorders, 34, 1672-1679. https://doi.org/10.1002/mds.27798
|
[5]
|
Gu, S., Li, Y., Jiang, Y., Huang, J.H. and Wang, F. (2022) Glymphatic Dysfunction Induced Oxidative Stress and Neuro-Inflammation in Major Depression Disorders. Antioxidants, 11, Article 2296. https://doi.org/10.3390/antiox11112296
|
[6]
|
Yang, C., Tian, S., Du, W., Liu, M., Hu, R., Gao, B., et al. (2024) Glymphatic Function Assessment with Diffusion Tensor Imaging along the Perivascular Space in Patients with Major Depressive Disorder and Its Relation to Cerebral White-Matter Alteration. Quantitative Imaging in Medicine and Surgery, 14, 6397-6412. https://doi.org/10.21037/qims-24-510
|
[7]
|
Zhang, Y., Peng, B., Chen, S., Liang, Q., Zhang, Y., Lin, S., et al. (2024) Reduced Coupling between Global Signal and Cerebrospinal Fluid Inflow in Patients with Depressive Disorder: A Resting State Functional MRI Study. Journal of Affective Disorders, 354, 136-142. https://doi.org/10.1016/j.jad.2024.03.023
|
[8]
|
Abdolizadeh, A., Torres-Carmona, E., Kambari, Y., Amaev, A., Song, J., Ueno, F., et al. (2024) Evaluation of the Glymphatic System in Schizophrenia Spectrum Disorder Using Proton Magnetic Resonance Spectroscopy Measurement of Brain Macromolecule and Diffusion Tensor Image Analysis along the Perivascular Space Index. Schizophrenia Bulletin, 50, 1396-1410. https://doi.org/10.1093/schbul/sbae060
|
[9]
|
Tu, Y., Fang, Y., Li, G., Xiong, F. and Gao, F. (2024) Glymphatic System Dysfunction Underlying Schizophrenia Is Associated with Cognitive Impairment. Schizophrenia Bulletin, 50, 1223-1231. https://doi.org/10.1093/schbul/sbae039
|
[10]
|
Korann, V., Panganiban, K.J., Stogios, N., Remington, G., Graff-Guerrero, A., Chintoh, A., et al. (2024) The Dysregulation of the Glymphatic System in Patients with Psychosis Spectrum Disorders Minimally Exposed to Antipsychotics: La dérégulation du système glymphatique en présence de troubles psychotiques chez des patients peu exposés à des antipsychotiques. The Canadian Journal of Psychiatry. https://doi.org/10.1177/07067437241290193
|
[11]
|
Qin, Y., Li, X., Qiao, Y., Zou, H., Qian, Y., Li, X., et al. (2023) DTI-ALPS: An MR Biomarker for Motor Dysfunction in Patients with Subacute Ischemic Stroke. Frontiers in Neuroscience, 17, Article 1132393. https://doi.org/10.3389/fnins.2023.1132393
|
[12]
|
Toh, C.H. and Siow, T.Y. (2021) Glymphatic Dysfunction in Patients with Ischemic Stroke. Frontiers in Aging Neuroscience, 13, Article 756249. https://doi.org/10.3389/fnagi.2021.756249
|
[13]
|
Zeng, C., Zhai, Y., Ge, P., Liu, C., Yu, X., Liu, W., et al. (2024) Glymphatic Impairment Associated with Neurocognitive Dysfunction in Moyamoya Disease. Translational Stroke Research. https://doi.org/10.1007/s12975-024-01250-z
|
[14]
|
Hara, S., Kikuta, J., Takabayashi, K., Kamagata, K., Hayashi, S., Inaji, M., et al. (2024) Decreased Diffusivity along the Perivascular Space and Cerebral Hemodynamic Disturbance in Adult Moyamoya Disease. Journal of Cerebral Blood Flow & Metabolism, 44, 1787-1800. https://doi.org/10.1177/0271678x241245492
|
[15]
|
Zhu, H., Zhu, C., Liu, T., Wang, P., Li, W., Zhang, Q., et al. (2024) Alterations in the Glymphatic System and Association with Brain Structure and Cognitive Function in Moyamoya Disease. Translational Stroke Research. https://doi.org/10.1007/s12975-024-01296-z
|
[16]
|
Semelka, R.C. and Ramalho, M. (2023) Gadolinium Deposition Disease: Current State of Knowledge and Expert Opinion. Investigative Radiology, 58, 523-529. https://doi.org/10.1097/rli.0000000000000977
|
[17]
|
Taoka, T., Masutani, Y., Kawai, H., Nakane, T., Matsuoka, K., Yasuno, F., et al. (2017) Evaluation of Glymphatic System Activity with the Diffusion MR Technique: Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) in Alzheimer’s Disease Cases. Japanese Journal of Radiology, 35, 172-178. https://doi.org/10.1007/s11604-017-0617-z
|
[18]
|
Iliff, J.J., Wang, M., Liao, Y., Plogg, B.A., Peng, W., Gundersen, G.A., et al. (2012) A Paravascular Pathway Facilitates CSF Flow through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β. Science Translational Medicine, 4, 147ra111. https://doi.org/10.1126/scitranslmed.3003748
|
[19]
|
Wardlaw, J.M., Benveniste, H., Nedergaard, M., Zlokovic, B.V., Mestre, H., Lee, H., et al. (2020) Perivascular Spaces in the Brain: Anatomy, Physiology and Pathology. Nature Reviews Neurology, 16, 137-153. https://doi.org/10.1038/s41582-020-0312-z
|
[20]
|
Peng, S., Liu, J., Liang, C., Yang, L. and Wang, G. (2023) Aquaporin-4 in Glymphatic System, and Its Implication for Central Nervous System Disorders. Neurobiology of Disease, 179, Article 106035. https://doi.org/10.1016/j.nbd.2023.106035
|
[21]
|
Harrison, I.F., Ismail, O., Machhada, A., Colgan, N., Ohene, Y., Nahavandi, P., et al. (2020) Impaired Glymphatic Function and Clearance of Tau in an Alzheimer’s Disease Model. Brain, 143, 2576-2593. https://doi.org/10.1093/brain/awaa179
|
[22]
|
Du, L., Roy, S., Wang, P., Li, Z., Qiu, X., Zhang, Y., et al. (2024) Unveiling the Future: Advancements in MRI Imaging for Neurodegenerative Disorders. Ageing Research Reviews, 95, Article 102230. https://doi.org/10.1016/j.arr.2024.102230
|
[23]
|
Liu, X., Barisano, G., Shao, X., Jann, K., Ringman, J.M., Lu, H., et al. (2023) Cross-Vendor Test-Retest Validation of Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) for Evaluating Glymphatic System Function. Aging and Disease, 15, 1885-1898. https://doi.org/10.14336/ad.2023.0321-2
|
[24]
|
Zhang, W., Zhou, Y., Wang, J., Gong, X., Chen, Z., Zhang, X., et al. (2021) Glymphatic Clearance Function in Patients with Cerebral Small Vessel Disease. NeuroImage, 238, Article 118257. https://doi.org/10.1016/j.neuroimage.2021.118257
|
[25]
|
Chong, P.L.H., Garic, D., Shen, M.D., Lundgaard, I. and Schwichtenberg, A.J. (2022) Sleep, Cerebrospinal Fluid, and the Glymphatic System: A Systematic Review. Sleep Medicine Reviews, 61, Article 101572. https://doi.org/10.1016/j.smrv.2021.101572
|
[26]
|
Bae, Y.J., Kim, J., Choi, B.S., Ryoo, N., Song, Y.S., Nam, Y., et al. (2023) Altered Brain Glymphatic Flow at Diffusion-Tensor MRI in Rapid Eye Movement Sleep Behavior Disorder. Radiology, 307, e221848. https://doi.org/10.1148/radiol.221848
|
[27]
|
Roy, B., Nunez, A., Aysola, R.S., Kang, D.W., Vacas, S. and Kumar, R. (2022) Impaired Glymphatic System Actions in Obstructive Sleep Apnea Adults. Frontiers in Neuroscience, 16, Article 884234. https://doi.org/10.3389/fnins.2022.884234
|
[28]
|
Lin, S., Lin, X., Chen, S., Liang, Q., Li, Y., Wei, F., et al. (2024) Association of MRI Indexes of the Perivascular Space Network and Cognitive Impairment in Patients with Obstructive Sleep Apnea. Radiology, 311, e232274. https://doi.org/10.1148/radiol.232274
|
[29]
|
Jin, Y., Zhang, W., Yu, M., Li, J., Du, Y., Wang, W., et al. (2024) Glymphatic System Dysfunction in Middle-Aged and Elderly Chronic Insomnia Patients with Cognitive Impairment Evidenced by Diffusion Tensor Imaging along the Perivascular Space (DTI-ALPS). Sleep Medicine, 115, 145-151. https://doi.org/10.1016/j.sleep.2024.01.028
|
[30]
|
Okada, I., Iwamoto, K., Miyata, S., Fujimoto, A., Tanaka, M., Amano, M., et al. (2021) FLUID Study: Study Protocol for an Open-Label, Single-Centre Pilot Study to Investigate the Effect of Lemborexant on Sleep Management in Japanese Subjects Aged 50 Years and Older with Insomnia Disorder. BMJ Open, 11, e054885. https://doi.org/10.1136/bmjopen-2021-054885
|
[31]
|
Hu, P., Yuan, Y., Zou, Y., Xiong, R., Dai, J., Zhao, X., et al. (2024) Alterations in the DTI-ALPS Index and Choroid Plexus Volume Are Associated with Clinical Symptoms in Participants with Narcolepsy Type 1. Sleep Medicine, 124, 471-478. https://doi.org/10.1016/j.sleep.2024.10.019
|
[32]
|
Gumeler, E., Aygun, E., Tezer, F.I., Saritas, E.U. and Oguz, K.K. (2023) Assessment of Glymphatic Function in Narcolepsy Using DTI-ALPS Index. Sleep Medicine, 101, 522-527. https://doi.org/10.1016/j.sleep.2022.12.002
|
[33]
|
Liu, X., Hao, J., Yao, E., Cao, J., Zheng, X., Yao, D., et al. (2020) Polyunsaturated Fatty Acid Supplement Alleviates Depression-Incident Cognitive Dysfunction by Protecting the Cerebrovascular and Glymphatic Systems. Brain, Behavior, and Immunity, 89, 357-370. https://doi.org/10.1016/j.bbi.2020.07.022
|
[34]
|
Shen, M.D. (2018) Cerebrospinal Fluid and the Early Brain Development of Autism. Journal of Neurodevelopmental Disorders, 10, Article No. 39. https://doi.org/10.1186/s11689-018-9256-7
|
[35]
|
Sotgiu, M.A., Lo Jacono, A., Barisano, G., Saderi, L., Cavassa, V., Montella, A., et al. (2023) Brain Perivascular Spaces and Autism: Clinical and Pathogenic Implications from an Innovative Volumetric MRI Study. Frontiers in Neuroscience, 17, Article 1205489. https://doi.org/10.3389/fnins.2023.1205489
|
[36]
|
Garic, D., McKinstry, R.C., Rutsohn, J., Slomowitz, R., Wolff, J., MacIntyre, L.C., et al. (2023) Enlarged Perivascular Spaces in Infancy and Autism Diagnosis, Cerebrospinal Fluid Volume, and Later Sleep Problems. JAMA Network Open, 6, e2348341. https://doi.org/10.1001/jamanetworkopen.2023.48341
|
[37]
|
Liao, X., Chen, M. and Li, Y. (2023) The Glial Perspective of Autism Spectrum Disorder Convergent Evidence from Postmortem Brain and PET Studies. Frontiers in Neuroendocrinology, 70, Article 101064. https://doi.org/10.1016/j.yfrne.2023.101064
|
[38]
|
Li, X., Ruan, C., Zibrila, A.I., Musa, M., Wu, Y., Zhang, Z., et al. (2022) Children with Autism Spectrum Disorder Present Glymphatic System Dysfunction Evidenced by Diffusion Tensor Imaging along the Perivascular Space. Medicine, 101, e32061. https://doi.org/10.1097/md.0000000000032061
|
[39]
|
Kraguljac, N.V., McDonald, W.M., Widge, A.S., Rodriguez, C.I., Tohen, M. and Nemeroff, C.B. (2021) Neuroimaging Biomarkers in Schizophrenia. American Journal of Psychiatry, 178, 509-521. https://doi.org/10.1176/appi.ajp.2020.20030340
|
[40]
|
Clancy, U., Gilmartin, D., Jochems, A.C.C., Knox, L., Doubal, F.N. and Wardlaw, J.M. (2021) Neuropsychiatric Symptoms Associated with Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. The Lancet Psychiatry, 8, 225-236. https://doi.org/10.1016/s2215-0366(20)30431-4
|
[41]
|
Duperron, M., Knol, M.J., Le Grand, Q., Evans, T.E., Mishra, A., Tsuchida, A., et al. (2023) Genomics of Perivascular Space Burden Unravels Early Mechanisms of Cerebral Small Vessel Disease. Nature Medicine, 29, 950-962. https://doi.org/10.1038/s41591-023-02268-w
|
[42]
|
Xu, J., Su, Y., Fu, J., Wang, X., Nguchu, B.A., Qiu, B., et al. (2022) Glymphatic Dysfunction Correlates with Severity of Small Vessel Disease and Cognitive Impairment in Cerebral Amyloid Angiopathy. European Journal of Neurology, 29, 2895-2904. https://doi.org/10.1111/ene.15450
|
[43]
|
Hong, H., Tozer, D.J. and Markus, H.S. (2024) Relationship of Perivascular Space Markers with Incident Dementia in Cerebral Small Vessel Disease. Stroke, 55, 1032-1040. https://doi.org/10.1161/strokeaha.123.045857
|
[44]
|
Li, C., Lin, L., Sun, C., Hao, X., Yin, L., Zhang, X., et al. (2022) Glymphatic System in the Thalamus, Secondary Degeneration Area Was Severely Impaired at 2nd Week after Transient Occlusion of the Middle Cerebral Artery in Rats. Frontiers in Neuroscience, 16, Article 997743. https://doi.org/10.3389/fnins.2022.997743
|
[45]
|
Zhang, J., Zhao, H., Xue, Y., Liu, Y., Fan, G., Wang, H., et al. (2022) Impaired Glymphatic Transport Kinetics Following Induced Acute Ischemic Brain Edema in a Mouse pMCAO Model. Frontiers in Neurology, 13, Article 860255. https://doi.org/10.3389/fneur.2022.860255
|
[46]
|
Sun, C., Lin, L., Yin, L., Hao, X., Tian, J., Zhang, X., et al. (2022) Acutely Inhibiting AQP4 with TGN-020 Improves Functional Outcome by Attenuating Edema and Peri-Infarct Astrogliosis after Cerebral Ischemia. Frontiers in Immunology, 13, Article 870029. https://doi.org/10.3389/fimmu.2022.870029
|
[47]
|
Li, X., Xie, Z., Zhou, Q., Tan, X., Meng, W., Pang, Y., et al. (2023) TGN-020 Alleviate Inflammation and Apoptosis after Cerebral Ischemia-Reperfusion Injury in Mice through Glymphatic and ERK1/2 Signaling Pathway. Molecular Neurobiology, 61, 1175-1186. https://doi.org/10.1007/s12035-023-03636-w
|
[48]
|
Johnson, S.E., McKnight, C.D., Lants, S.K., Juttukonda, M.R., Fusco, M., Chitale, R., et al. (2019) Choroid Plexus Perfusion and Intracranial Cerebrospinal Fluid Changes after Angiogenesis. Journal of Cerebral Blood Flow & Metabolism, 40, 1658-1671. https://doi.org/10.1177/0271678x19872563
|
[49]
|
Park, M., Roh, J., Ahn, S., Cho, J.W., Park, K. and Baik, S.K. (2024) Dilated Perivascular Spaces and Steno-Occlusive Changes in Children and Adults with Moyamoya Disease. BMC Neurology, 24, Article No. 14. https://doi.org/10.1186/s12883-023-03520-z
|
[50]
|
Jin, L., Hu, J., Han, G., Li, Y., Zhu, J., Zhu, Y., et al. (2024) Glymphatic System Impairment in the Advanced Stage of Moyamoya Disease. Journal of Neuroscience Research, 102, e25381. https://doi.org/10.1002/jnr.25381
|
[51]
|
Morris, H.R., Spillantini, M.G., Sue, C.M. and Williams-Gray, C.H. (2024) The Pathogenesis of Parkinson’s Disease. The Lancet, 403, 293-304. https://doi.org/10.1016/s0140-6736(23)01478-2
|
[52]
|
Shen, T., Yue, Y., Ba, F., He, T., Tang, X., Hu, X., et al. (2022) Diffusion along Perivascular Spaces as Marker for Impairment of Glymphatic System in Parkinson’s Disease. npj Parkinson’s Disease, 8, Article No. 174. https://doi.org/10.1038/s41531-022-00437-1
|
[53]
|
He, P., Shi, L., Li, Y., Duan, Q., Qiu, Y., Feng, S., et al. (2023) The Association of the Glymphatic Function with Parkinson’s Disease Symptoms: Neuroimaging Evidence from Longitudinal and Cross‐Sectional Studies. Annals of Neurology, 94, 672-683. https://doi.org/10.1002/ana.26729
|
[54]
|
Wood, K.H., Nenert, R., Miften, A.M., Kent, G.W., Sleyster, M., Memon, R.A., et al. (2024) diffusion Tensor Imaging‐along the Perivascular‐Space Index Is Associated with Disease Progression in Parkinson's Disease. Movement Disorders, 39, 1504-1513. https://doi.org/10.1002/mds.29908
|
[55]
|
Pang, H., Wang, J., Yu, Z., Yu, H., Li, X., Bu, S., et al. (2024) Glymphatic Function from Diffusion-Tensor MRI to Predict Conversion from Mild Cognitive Impairment to Dementia in Parkinson’s Disease. Journal of Neurology, 271, 5598-5609. https://doi.org/10.1007/s00415-024-12525-8
|
[56]
|
Self, W.K. and Holtzman, D.M. (2023) Emerging Diagnostics and Therapeutics for Alzheimer Disease. Nature Medicine, 29, 2187-2199. https://doi.org/10.1038/s41591-023-02505-2
|
[57]
|
Hsu, J., Wei, Y., Toh, C.H., Hsiao, I., Lin, K., Yen, T., et al. (2022) magnetic Resonanceimages Implicate That Glymphatic Alterations Mediate Cognitive Dysfunction Inalzheimer Disease. Annals of Neurology, 93, 164-174. https://doi.org/10.1002/ana.26516
|
[58]
|
Hong, H., Hong, L., Luo, X., Zeng, Q., Li, K., Wang, S., et al. (2024) The Relationship between Amyloid Pathology, Cerebral Small Vessel Disease, Glymphatic Dysfunction, and Cognition: A Study Based on Alzheimer’s Disease Continuum Participants. Alzheimer’s Research & Therapy, 16, Article No. 43. https://doi.org/10.1186/s13195-024-01407-w
|
[59]
|
Wang, X., Huang, W., Su, L., Xing, Y., Jessen, F., Sun, Y., et al. (2020) Neuroimaging Advances Regarding Subjective Cognitive Decline in Preclinical Alzheimer’s Disease. Molecular Neurodegeneration, 15, Article No. 55. https://doi.org/10.1186/s13024-020-00395-3
|
[60]
|
Li, Y., Wang, L., Zhong, J., Xu, H., Han, Y., Zuo, C., et al. (2024) Impaired Glymphatic Function as a Biomarker for Subjective Cognitive Decline: An Exploratory Dual Cohort Study. Alzheimer’s & Dementia, 20, 6542-6555. https://doi.org/10.1002/alz.14149
|
[61]
|
Gallina, P., Porfirio, B. and Lolli, F. (2020) iNPH as a ‘2-Hit’ Intracranial Hydrodynamic Derangement Disease. Trends in Molecular Medicine, 26, 531-532. https://doi.org/10.1016/j.molmed.2020.04.002
|
[62]
|
Bae, Y.J., Choi, B.S., Kim, J., Choi, J., Cho, S.J. and Kim, J.H. (2021) Altered Glymphatic System in Idiopathic Normal Pressure Hydrocephalus. Parkinsonism & Related Disorders, 82, 56-60. https://doi.org/10.1016/j.parkreldis.2020.11.009
|
[63]
|
Georgiopoulos, C., Tisell, A., Holmgren, R.T., Eleftheriou, A., Rydja, J., Lundin, F., et al. (2024) Noninvasive Assessment of Glymphatic Dysfunction in Idiopathic Normal Pressure Hydrocephalus with Diffusion Tensor Imaging. Journal of Neurosurgery, 140, 612-620. https://doi.org/10.3171/2023.6.jns23260
|
[64]
|
Kikuta, J., Kamagata, K., Taoka, T., Takabayashi, K., Uchida, W., Saito, Y., et al. (2022) Water Diffusivity Changes along the Perivascular Space after Lumboperitoneal Shunt Surgery in Idiopathic Normal Pressure Hydrocephalus. Frontiers in Neurology, 13, Article 843883. https://doi.org/10.3389/fneur.2022.843883
|
[65]
|
Taoka, T., Ito, R., Nakamichi, R., Kamagata, K., Sakai, M., Kawai, H., et al. (2021) Reproducibility of Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) for Evaluating Interstitial Fluid Diffusivity and Glymphatic Function: Changes in Alps Index on Multiple Condition Acquisition Experiment (CHAMONIX) Study. Japanese Journal of Radiology, 40, 147-158. https://doi.org/10.1007/s11604-021-01187-5
|
[66]
|
Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-González, J., Routier, A., Bottani, S., et al. (2020) Convolutional Neural Networks for Classification of Alzheimer’s Disease: Overview and Reproducible Evaluation. Medical Image Analysis, 63, Article 101694. https://doi.org/10.1016/j.media.2020.101694
|
[67]
|
Li, W., Liu, Z., Zhai, F., Han, F., Li, M., Zhou, L., et al. (2024) Automated Diffusion‐Weighted Image Analysis along the Perivascular Space Index Reveals Glymphatic Dysfunction in Association with Brain Parenchymal Lesions. Human Brain Mapping, 45, e26790. https://doi.org/10.1002/hbm.26790
|
[68]
|
Taoka, T., Ito, R., Nakamichi, R., Nakane, T., Sakai, M., Ichikawa, K., et al. (2022) Diffusion-Weighted Image Analysis along the Perivascular Space (DWI-ALPS) for Evaluating Interstitial Fluid Status: Age Dependence in Normal Subjects. Japanese Journal of Radiology, 40, 894-902. https://doi.org/10.1007/s11604-022-01275-0
|
[69]
|
Taoka, T., Ito, R., Nakamichi, R., Nakane, T., Kawamura, M., Ishihara, S., et al. (2023) Evaluation of Alterations in Interstitial Fluid Dynamics in Cases of Whole‐Brain Radiation Using the Diffusion‐Weighted Image Analysis along the Perivascular Space Method. NMR in Biomedicine, 37, e5030. https://doi.org/10.1002/nbm.5030
|