[1]
|
Wang, T., Shi, C., Luo, H., Zheng, H., Fan, L., Tang, M., et al. (2021) Neuroinflammation in Parkinson’s Disease: Triggers, Mechanisms, and Immunotherapies. The Neuroscientist, 28, 364-381. https://doi.org/10.1177/1073858421991066
|
[2]
|
Goel, A., Narayan, S.K. and Sugumaran, R. (2022) Neuropsychiatric Features, Health-Related Quality of Life, and Caregiver Burden in Parkinson’s Disease. Annals of Indian Academy of Neurology, 25, 1147-1152. https://doi.org/10.4103/aian.aian_38_22
|
[3]
|
Chaudhuri, K.R., Azulay, J., Odin, P., Lindvall, S., Domingos, J., Alobaidi, A., et al. (2024) Economic Burden of Parkinson’s Disease: A Multinational, Real-World, Cost-of-Illness Study. Drugs—Real World Outcomes, 11, 1-11. https://doi.org/10.1007/s40801-023-00410-1
|
[4]
|
Chu, Y., Hirst, W.D., Federoff, H.J., Harms, A.S., Stoessl, A.J. and Kordower, J.H. (2023) Nigrostriatal Tau Pathology in Parkinsonism and Parkinson’s Disease. Brain, 147, 444-457. https://doi.org/10.1093/brain/awad388
|
[5]
|
Prajjwal, P., Flores Sanga, H.S., Acharya, K., Tango, T., John, J., Rodriguez, R.S.C., et al. (2023) Parkinson’s Disease Updates: Addressing the Pathophysiology, Risk Factors, Genetics, Diagnosis, along with the Medical and Surgical Treatment. Annals of Medicine & Surgery, 85, 4887-4902. https://doi.org/10.1097/ms9.0000000000001142
|
[6]
|
Berg, D., Postuma, R.B., Bloem, B., Chan, P., Dubois, B., Gasser, T., et al. (2014) Time to Redefine PD? Introductory Statement of the MDS Task Force on the Definition of Parkinson’s Disease. Movement Disorders, 29, 454-462. https://doi.org/10.1002/mds.25844
|
[7]
|
Fereshtehnejad, S., Yao, C., Pelletier, A., Montplaisir, J.Y., Gagnon, J. and Postuma, R.B. (2019) Evolution of Prodromal Parkinson’s Disease and Dementia with Lewy Bodies: A Prospective Study. Brain, 142, 2051-2067. https://doi.org/10.1093/brain/awz111
|
[8]
|
Virameteekul, S., Revesz, T., Jaunmuktane, Z., Warner, T.T. and de Pablo-Fernández, E. (2023) Clinical Diagnostic Accuracy of Parkinson’s Disease: Where Do We Stand? Movement Disorders, 38, 558-566. https://doi.org/10.1002/mds.29317
|
[9]
|
Blesa, J., Trigo-Damas, I., Dileone, M., del Rey, N.L., Hernandez, L.F. and Obeso, J.A. (2017) Compensatory Mechanisms in Parkinson’s Disease: Circuits Adaptations and Role in Disease Modification. Experimental Neurology, 298, 148-161. https://doi.org/10.1016/j.expneurol.2017.10.002
|
[10]
|
Obeso, J.A., Stamelou, M., Goetz, C.G., Poewe, W., Lang, A.E., Weintraub, D., et al. (2017) Past, Present, and Future of Parkinson’s Disease: A Special Essay on the 200th Anniversary of the Shaking Palsy. Movement Disorders, 32, 1264-1310. https://doi.org/10.1002/mds.27115
|
[11]
|
Xie, L. and Hu, L. (2022) Research Progress in the Early Diagnosis of Parkinson’s Disease. Neurological Sciences, 43, 6225-6231. https://doi.org/10.1007/s10072-022-06316-0
|
[12]
|
Shin, H., Hong, S. and Youn, Y.C. (2022) Clinical Aspects of the Differential Diagnosis of Parkinson’s Disease and Parkinsonism. Journal of Clinical Neurology, 18, 259-270. https://doi.org/10.3988/jcn.2022.18.3.259
|
[13]
|
Becker, G., Seufert, J., Bogdahn, U., Reichmann, H. and Reiners, K. (1995) Degeneration of Substantia Nigra in Chronic Parkinson’s Disease Visualized by Transcranial Color-Coded Real-Time Sonography. Neurology, 45, 182-184. https://doi.org/10.1212/wnl.45.1.182
|
[14]
|
Berg, D., Roggendorf, W., Schröder, U., Klein, R., Tatschner, T., Benz, P., et al. (2002) Echogenicity of the Substantia Nigra. Archives of Neurology, 59, 999-1005. https://doi.org/10.1001/archneur.59.6.999
|
[15]
|
Ahmadi, S., Bötzel, K., Levin, J., Maiostre, J., Klein, T., Wein, W., et al. (2020) Analyzing the Co-Localization of Substantia Nigra Hyper-Echogenicities and Iron Accumulation in Parkinson’s Disease: A Multi-Modal Atlas Study with Transcranial Ultrasound and MRI. NeuroImage: Clinical, 26, Article 102185. https://doi.org/10.1016/j.nicl.2020.102185
|
[16]
|
Zhang, W., Yan, Z., Gao, J., Sun, L., Huang, X., Liu, Z., et al. (2013) Role and Mechanism of Microglial Activation in Iron-Induced Selective and Progressive Dopaminergic Neurodegeneration. Molecular Neurobiology, 49, 1153-1165. https://doi.org/10.1007/s12035-013-8586-4
|
[17]
|
Bartova, P., Skoloudik, D., Bar, M., Ressner, P., Hlustik, P., Herzig, R., et al. (2008) Transcranial Sonography in Movement Disorders. Biomedical Papers, 152, 251-258. https://doi.org/10.5507/bp.2008.039
|
[18]
|
Walter, U., Dressler, D., Wolters, A., Wittstock, M. and Benecke, R. (2007) Transcranial Brain Sonography Findings in Clinical Subgroups of Idiopathic Parkinson’s Disease. Movement Disorders, 22, 48-54. https://doi.org/10.1002/mds.21197
|
[19]
|
Huang, Y., Jeng, J., Tsai, C., Chen, L. and Wu, R. (2007) Movement Disorders, 22, 550-555. https://doi.org/10.1002/mds.21372
|
[20]
|
Behnke, S., Double, K.L., Duma, S., Broe, G.A., Guenther, V., Becker, G., et al. (2007) Substantia Nigra Echomorphology in the Healthy Very Old: Correlation with Motor Slowing. NeuroImage, 34, 1054-1059. https://doi.org/10.1016/j.neuroimage.2006.10.010
|
[21]
|
Schweitzer, K.J., Behnke, S., Liepelt, I., Wolf, B., Grosser, C., Godau, J., et al. (2007) Cross-Sectional Study Discloses a Positive Family History for Parkinson’s Disease and Male Gender as Epidemiological Risk Factors for Substantia Nigra Hyperechogenicity. Journal of Neural Transmission, 114, 1167-1171. https://doi.org/10.1007/s00702-007-0725-5
|
[22]
|
Yilmaz, R., Behnke, S., Liepelt-Scarfone, I., Roeben, B., Pausch, C., Runkel, A., et al. (2016) Substantia Nigra Hyperechogenicity Is Related to Decline in Verbal Memory in Healthy Elderly Adults. European Journal of Neurology, 23, 973-978. https://doi.org/10.1111/ene.12974
|
[23]
|
Berg, D. (2006) In Vivo Detection of Iron and Neuromelanin by Transcranial Sonography—A New Approach for Early Detection of Substantia Nigra Damage. Journal of Neural Transmission, 113, 775-780. https://doi.org/10.1007/s00702-005-0447-5
|
[24]
|
Berg, D., Behnke, S., Seppi, K., Godau, J., Lerche, S., Mahlknecht, P., et al. (2012) Enlarged Hyperechogenic Substantia Nigra as a Risk Marker for Parkinson’s Disease. Movement Disorders, 28, 216-219. https://doi.org/10.1002/mds.25192
|
[25]
|
Zhang, S., Tao, K., Wang, J., Duan, Y., Wang, B. and Liu, X. (2020) Substantia Nigra Hyperechogenicity Reflects the Progression of Dopaminergic Neurodegeneration in 6-OHDA Rat Model of Parkinson’s Disease. Frontiers in Cellular Neuroscience, 14, Article 216. https://doi.org/10.3389/fncel.2020.00216
|
[26]
|
Zhu, S., Wang, Y., Jiang, Y., Gu, R., Zhong, M., Jiang, X., et al. (2022) Clinical Features in Parkinson’s Disease Patients with Hyperechogenicity in Substantia Nigra: A Cross-Sectional Study. Neuropsychiatric Disease and Treatment, 18, 1593-1601. https://doi.org/10.2147/ndt.s374370
|
[27]
|
Li, T., Shi, J., Qin, B., Fan, D., Liu, N., Ni, J., et al. (2019) Increased Substantia Nigra Echogenicity Correlated with Visual Hallucinations in Parkinson’s Disease: A Chinese Population-Based Study. Neurological Sciences, 41, 661-667. https://doi.org/10.1007/s10072-019-04110-z
|
[28]
|
del Toro Pérez, C., Amaya Pascasio, L., Arjona Padillo, A., Olivares Romero, J., Mejías Olmedo, M., Fernández Pérez, J., et al. (2021) Neurosonological Findings Related to Non-Motor Features of Parkinson’s Disease: A Systematic Review. Brain Sciences, 11, Article 776. https://doi.org/10.3390/brainsci11060776
|
[29]
|
Yan, J., Li, K., Ge, Y., Li, W., Wang, P., Jin, H., et al. (2023) Quantitative Transcranial Sonography Evaluation of Substantia Nigra Hyperechogenicity Is Useful for Predicting Levodopa-Induced Dyskinesia in Parkinson Disease. Ultrasound in Medicine & Biology, 49, 607-615. https://doi.org/10.1016/j.ultrasmedbio.2022.10.019
|
[30]
|
Toomsoo, T., Liepelt-Scarfone, I., Berg, D., Kerner, R., Pool, A., Kadastik-Eerme, L., et al. (2019) Effect of Age on Substantia Nigra Hyper-Echogenicity in Parkinson’s Disease Patients and Healthy Controls. Ultrasound in Medicine & Biology, 45, 122-128. https://doi.org/10.1016/j.ultrasmedbio.2018.09.018
|
[31]
|
Fan, Y., Ma, J., Yang, D., Li, X., Liang, K., She, Z., et al. (2024) Clinical Findings of Hyperechoic Substantia Nigra in Patients with Parkinson’s Disease. European Journal of Neuroscience, 59, 2702-2714. https://doi.org/10.1111/ejn.16308
|
[32]
|
Sian-Hülsmann, J., Mandel, S., Youdim, M.B.H. and Riederer, P. (2011) The Relevance of Iron in the Pathogenesis of Parkinson’s Disease. Journal of Neurochemistry, 118, 939-957. https://doi.org/10.1111/j.1471-4159.2010.07132.x
|
[33]
|
Li, K., Ge, Y., Gu, C., Zhang, J., Jin, H., Li, J., et al. (2020) Substantia Nigra Echogenicity Is Associated with Serum Ferritin, Gender and Iron-Related Genes in Parkinson’s Disease. Scientific Reports, 10, Article No. 8660. https://doi.org/10.1038/s41598-020-65537-5
|
[34]
|
Tao, A., Chen, G., Deng, Y. and Xu, R. (2019) Accuracy of Transcranial Sonography of the Substantia Nigra for Detection of Parkinson’s Disease: A Systematic Review and Meta-Analysis. Ultrasound in Medicine & Biology, 45, 628-641. https://doi.org/10.1016/j.ultrasmedbio.2018.11.010
|
[35]
|
Mei, Y., Yang, J., Wu, Z., Yang, Y. and Xu, Y. (2021) Transcranial Sonography of the Substantia Nigra for the Differential Diagnosis of Parkinson’s Disease and Other Movement Disorders: A Meta-Analysis. Parkinson’s Disease, 2021, 1-9. Https://doi.org/10.1155/2021/8891874
|
[36]
|
Wang, L., Yu, T., Chai, B. and He, W. (2021) Transcranial Sonography in Differential Diagnosis of Parkinson Disease and Other Movement Disorders. Chinese Medical Journal, 134, 1726-1731. https://doi.org/10.1097/cm9.0000000000001503
|
[37]
|
Bowary, P. and Greenberg, B.D. (2018) Noninvasive Focused Ultrasound for Neuromodulation. Psychiatric Clinics of North America, 41, 505-514. https://doi.org/10.1016/j.psc.2018.04.010
|
[38]
|
Hutchinson, E., Dahleh, M. and Hynynen, K. (1998) The Feasibility of MRI Feedback Control for Intracavitary Phased Array Hyperthermia Treatments. International Journal of Hyperthermia, 14, 39-56. https://doi.org/10.3109/02656739809018213
|
[39]
|
Baek, H., Lockwood, D., Mason, E.J., Obusez, E., Poturalski, M., Rammo, R., et al. (2022) Clinical Intervention Using Focused Ultrasound (FUS) Stimulation of the Brain in Diverse Neurological Disorders. Frontiers in Neurology, 13, Article 880814. https://doi.org/10.3389/fneur.2022.880814
|
[40]
|
Martínez-Fernández, R., Rodríguez-Rojas, R., del Álamo, M., Hernández-Fernández, F., Pineda-Pardo, J.A., Dileone, M., et al. (2018) Focused Ultrasound Subthalamotomy in Patients with Asymmetric Parkinson’s Disease: A Pilot Study. The Lancet Neurology, 17, 54-63. https://doi.org/10.1016/s1474-4422(17)30403-9
|
[41]
|
Grogan, D.P., Abduhalikov, T., Kassell, N.F. and Moosa, S. (2024) Future Directions of MR-Guided Focused Ultrasound. Magnetic Resonance Imaging Clinics of North America, 32, 705-715. https://doi.org/10.1016/j.mric.2024.02.004
|
[42]
|
Zhong, Y., Liao, J., Liu, X., Tian, H., Deng, L. and Long, L. (2023) Low Intensity Focused Ultrasound: A New Prospect for the Treatment of Parkinson’s Disease. Annals of Medicine, 55, Article 2251145. https://doi.org/10.1080/07853890.2023.2251145
|
[43]
|
Gasca-Salas, C., Fernández-Rodríguez, B., Pineda-Pardo, J.A., Rodríguez-Rojas, R., Obeso, I., Hernández-Fernández, F., et al. (2021) Blood-Brain Barrier Opening with Focused Ultrasound in Parkinson’s Disease Dementia. Nature Communications, 12, Article No. 779. https://doi.org/10.1038/s41467-021-21022-9
|