肺功能检查的临床应用研究进展
Research Progress of Clinical Application of Pulmonary Function Test
摘要: 肺功能检查(pulmonary function test, PFT)发展由来已久,随着研究的不断深入,PFT的扩展内容得到丰富发展,不仅在慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)、支气管哮喘等常见呼吸系统疾病中具有重要价值,在其他临床实践中也逐渐显现出重要指导意义。但PFT在临床实践中仍存在局限性,当前PFT报告解读标准亟待完善确立,人工智能的辅助判读应用还需进一步探究,PFT的临床应用仍有较大普及和发展空间。
Abstract: The development of pulmonary function tests (PFTs) has a long history, and with the continuous advancement of research, the expanded content of PFTs has been enriched and developed, not only having significant value in common respiratory systems diseases such as chronic obstructive pulmonary disease (COPD) and bronchial asthma, but also gradually showing important guidance significance in other clinical practices. However, there are still limitations in the clinical practice of PFTs, and the current standard for interpreting PFT reports urgently needs to be improved and established. The application of artificial intelligence assisted judgment needs further exploration, and there is still considerable room for the popularization and development of PFT clinical applications.
文章引用:徐美子, 刘丽, 王吉, 胡应雪, 黄志文. 肺功能检查的临床应用研究进展[J]. 临床医学进展, 2025, 15(1): 1533-1543. https://doi.org/10.12677/acm.2025.151205

1. 引言

PFT是COPD准确诊断、评估严重程度和评价治疗效果的核心[1]。除COPD外的其他呼吸系统疾病中,PFT在评估预后、降低死亡率、提升治疗效果和改善生活质量方面亦发挥了越来越重要的作用[2]。随着近年来对PFT研究逐渐深入,各类呼吸系统疾病的筛查、诊断及预后方面也存在着亟待解决的问题。因此,本研究旨在通过综述PFT在临床工作中的应用,探讨其目前存在的问题与争议,尝试提出可能的解决方案并展望其未来发展趋势,为今后临床应用提供更多的参考依据。

2. PFT的历史发展

肺功能的研究由来已久,距今已有近300年历史。自1679年肺容积成功测定以来[3],肺功能研究得到迅猛发展,用力肺活量(forced vital capacity, FVC)、最大通气量(maximal ventilatory volume, MVV)、第一秒用力呼气容积(forced expiratory volume in one second, FEV1)等指标相继投入临床。在这样的时代背景下,各项相关指标的发现及验证催生了肺功能检测技术的发展,第一个PFT的应用指南及技术标准也应运而生[4],从此肺功能检查技术逐渐成熟。ATS及ERS对指南的及时更新也为PFT的规范化使用提供了一定技术指导[5] [6]。我国的肺功能发展研究应用已有80余年的历史,中国肺功能联盟[7]的建立、中华医学会系列指南的制定[8]-[15]为中国呼吸病学的发展奠定了坚实基础。当前指南的标准化和规范化是我国PFT得到广泛推广和应用的前提,PFT作为常规体检项目,也是基层医疗机构开展慢性呼吸系统疾病管理防治工作的中心。

3. PFT的当前发展

经过三个世纪的蓬勃发展,PFT逐渐演变形成了一套完整的测试体系。广义的PFT包括:肺通气功能检查、肺容积检查、肺弥散功能检查、气道阻力测定、支气管舒张试验(bronchodilation test, BDT)、支气管激发试验(bronchial provocation test, BPT)、动脉血气分析、呼出气一氧化氮(fractional exhaled nitric oxide, FeNO)检测以及脉冲振荡技术(impulse oscillometry, IOS)和心肺运动试验(cardiopulmonary exercise test, CPET)等项目[16]。在临床常规肺通气功能检查中,FEV1是评估COPD严重程度的最重要测量指标,且FEV1降低是反映COPD患者长期死亡率的重要预测因子[17]-[19];FEV1占预计值百分比(forced expiratory volume in 1 second/excepted value, FEV1%pred)是患者肺功能分级的标准,FEV1及FEV1%pred指标下降可提示COPD患者气流受限的程度随疾病进展、病情加重而逐渐降低[20];FEV1/FVC反映受试者的通气流量情况,是受试者是否存在气流受限的良好指标[21],也是目前诊断COPD的金标准[22]。在肺容积测定中,更新慢性阻塞性肺疾病全球倡议(global initiative for chronic obstructive lung disease, GOLD) 2024关注了残气量(residual volume, RV)这一指标,其在病理生理上是反映肺气肿的客观指标,RV对临床判断患者是否存在过度充气或肺气肿具有十分重要的意义[22] [23]。除常规肺通气功能及肺容积检查外,Balasubramanian [24]等的研究显示,在COPD患者中,肺一氧化碳弥散量(diffusing capacity of the lungs for carbon monoxide, DLCO)的下降与COPD症状增加、运动能力下降和急性加重风险具有较高的相关性,未来DLCO很可能具有纳入评估COPD严重程度的多维评价指标的趋势。小气道疾病是COPD的一个重要病理生理特征,最大呼气中期流量(maximal mid-expiratory flow, MMEF)、用力呼出50%肺活量时的瞬间呼气流量(forced expiratory flow50%, FEF50%)和用力呼出75%肺活量时的瞬间呼气流量(forced expiratory flow75%, FEF75%)是反映小气道功能的三个主要肺功能指标。Majid等人[25]的研究还发现,MMEF和FVC的比值(MMEF/FVC)也是可靠地评估小气道的气道阻塞指标,使用常规肺活量即可测定MMEF/FVC比值,便于COPD的早期诊断和评估。BDT及BPT对于慢性咳嗽、反复发作的胸闷、呼吸困难的查因、哮喘治疗效果评估、筛查可能发展为哮喘的变应性鼻炎患者、围手术期管理等也具有一定的诊断价值[26]。对于呼吸困难患者的通气评估需求常规PFT受限,此时动脉血气分析结果解读可及时准确评估动脉血中含氧量[27]。FeNO作为提示气道炎症反应的指标,其安全、无创、便捷、可重复的优势使其成为检测气道炎症反应的首选[28];然FeNO在评估COPD患者肺功能病变程度方面仅可作为PFT辅助检测手段[29]。IOS是一种由强迫震荡技术发展来的通过测量呼吸阻抗的评估气道阻力的方法,其操作简便、患者配合度要求低,在COPD、哮喘患者中可作为常规肺通气功能检查小气道功能障碍的有效补充[30]。CPET作为非侵入性的检测方法,可反映COPD患者的肺通气功能、肺换气功能、代谢反应情况,是评估COPD合并肺动脉高压患者严重程度的有效工具[31]。综上所述,近些年肺功能检查新兴技术不断涌现,对于肺功能的补充检查正向着多方面、综合化的趋势探索,为临床早期诊断各项慢性呼吸系统疾病提供更为灵敏、高效、准确的检查指标。

4. PFT的临床应用

4.1. COPD

GOLD2024虽仍采用BDT后FEV1/FVC < 0.7作为诊断COPD的标准,但有研究指出该标准导致了一部分COPD患者诊断不足及过度诊断[32];基于此AST/ESR [33]提出了预计值公式法。然相较于GOLD标准,预计值公式法在临床实践推广中难以得到应用,目前对于COPD诊断临界值方面两种主流观点均有一定缺陷,由于GOLD标准操作简单、易普及的优势,故目前我国继续采用FEV1/FVC作为其诊断标准。而对于COPD疾病严重程度的分类方法探索,早期研究尝试使用Z评分对FEV1的严重程度进行分类[34],新型STAR严重程度分类显示出了更为细致的疾病严重程度分级,有报道称STAR与基于FEV1的现有分类方法相比能更好地区分患者症状、反映疾病负担及预后情况[35]。但这些方法尚未在临床得到充分验证,其可行性还需进一步研究。PFT在COPD患者诊断、评估方面发挥了极其重要的作用,COPD的风险预测也离不开其多维指标的更新发展。肺功能下降可导致日常活动受限、运动耐量降低、体能失调、生活质量受损以及出现越来越多的其他症状和加重情况,定期PFT是识别COPD肺功能下降患者的关键手段[1]。除FEV1及FEV1%pred外,PFT多维指标在COPD风险预测方面优势逐渐显现。例如,Balasubramanian [36]等认为与FEV1%pred相比,第1秒用力呼气量商(forced expiratory volume in 1s quotient, FEV1Q)可以更好地预测生存期。Casanova [37]等的研究发现吸气量(inspiratory capacity, IC)与总肺活量(total lung capacity, TLC)的比值(IC/TLC)是全因及呼吸系统死亡率的极好预测指标。另一项前瞻性研究也表明,以RV/TLC表示的肺过度充气是COPD患者死亡率的强有力预测因子,且与急性加重较为相关[38]-[41]。此外,de-Torres [42]等通过随访GOLD 1期COPD患者,发现DLCO%pred < 60%与全因死亡率相关。Saint-Pierre [43]等通过对比分析患者FEV1/FVC的比值和FEV1和慢肺活量(slow vital capacity, SVC)的比值(FEV1/SVC)后发现FEV1/FVC正常而FEV1/SVC比值偏低者可达20.4%,该研究指出在检测年轻肥胖患者轻度气流受限时采用SVC可提高PFT的检出率,但由于较低的FEV1/SVC可能会导致气流受限的结果出现假阳性,因此在正常FEV1/FVC的老年患者中FEV1/SVC应当谨慎使用。Lopes [44]的研究发现测定第6秒用力呼气容积(FEV6)可简化PFT流程,相较FVC更为安全便捷,且降低了数据可变性,提高了诊断的准确性,可能更适用于筛查COPD。此外,Alter [45]等人认为FVC是RV/TLC的替代值,代表空气潴留或肺过度充气,尤其是不能使用体积描记法的情况下,FVC可替代RV/TLC作为COPD疾病恶化的预测因子[46]。还有报道称胸腺和活化调节趋化因子(TARC)是FEV1快速下降的独立预测生物标志物,通过测定血清TARC水平预测FEV1下降可能有助于COPD患者的治疗[47]。这些肺功能指标的选择和变化,是医学技术不断发展的证据,为了更准确地寻找指标在疾病中的意义,临床医生需进行更深层次的研究。

4.2. 支气管哮喘

PFT是诊断哮喘的主要方法[48]。FeNO可为哮喘的诊断及反映糖皮质激素治疗效果提供临床参考[49]。众多研究证实,FeNO水平升高与哮喘病情恶化存在显著相关性[50] [51],全球哮喘防治倡议(global initiative for asthma, GINA) 2024也强调了FeNO对重度哮喘的重要临床作用[52]。当临床肺活量参数无法评估患者哮喘发作时的状态,IOS作为肺活量测定的补充检查手段在哮喘的诊疗评估中发挥着重要作用[53]。Arvind [54]等人的研究表明在持续性哮喘患者中IOS可作为哮喘潜在标志物。Stanley [55]等更是推荐将IOS添加进指南以帮助识别病情恶化的哮喘患者。Grell [56]等的研究还发现,部分患有持续性哮喘的学龄前儿童,其IOS参数可预测学龄期肺活量测定的异常。

4.3. 间质性肺病

PFT也可评估肺部纤维化的进展及反映治疗效果。Lee [57]等的研究发现在初始诊断为特发性肺纤维化(idiopathic pulmonary fibrosis, IPF)后的第一年内预计DLCO下降10%及以上,与未来死亡风险增加具有相关性。抗纤维化治疗可有效减缓IPF中FVC的下降[58],在一项临床试验的事后分析中,发现使用尼达尼布的IPF患者12个月的FVC下降速度慢于吡非尼酮[59]。而对于职业性肺病,如石棉肺等,PFT可用于评估其肺部损伤程度及监测健康状况。Wang [60]等人通过观察243名大量接触石棉的工人在5年和10年后肺功能对比数据发现,在该项研究队列中最高暴露水平导致FVC每年下降45 ml。M Barnikel [61]等人的研究结果显示FVC每年减少31 ml,且超过20%的患者FVC的年丢失量大于100毫升,这也说明了FVC的下降。Yang [62]等人对249例不同分期石棉肺患者的肺功能研究也显示,不同分期石棉肺患者均有不同程度的气体交换障碍、小气道功能障碍伴或不伴通气功能障碍,DLCO的下降早于肺容积变化也可反映疾病的严重程度。

4.4. 慢性咳嗽的病因分析

慢性咳嗽的常见病因包括:咳嗽变异性哮喘(cough variant asthma, CVA)、嗜酸粒细胞性支气管炎(eosinophilic bronchitis, EB)、胃食管反流病(gastroesophageal reflux disease, GERD)、上气道咳嗽综合征(upper airway cough syndrome, UACS)及变应性咳嗽(atopic cough, AC),同时也包括一些罕见病因,如感染(如肺结核)、原发性纤毛运动障碍、气管支气管软化症及气管食管瘘等[63]。对于慢性咳嗽迁延不愈患者,早期诊断以明确病因至关重要,而胸片、血常规等检查手段仅提供部分参考,临床缺乏客观评价指标致使后续治疗难以迅速开展。目前普遍认为CVA及EB是慢性咳嗽的最常见病因[64]。2024年中国咳嗽基层诊疗与管理指南指出肺通气功能检查及BPT对于慢性咳嗽的病因诊断具有重要价值,应作为其诊断治疗的首选检测项目,BPT阳性是诊断CVA的重要标准[65]。除单独采用肺通气功能检测外,研究表明FeNO水平的测定有助于评估气道炎症情况,可迅速明确嗜酸粒细胞性气道炎症疾病[66]。近年来多项研究表明FeNO联合PFT应用于慢性咳嗽有利于判断病因,同时可辅助鉴别鼻炎、胃肠疾病等引起的咳嗽[67]-[69]。慢性咳嗽的诊治任重道远,虽国内外相关研究逐步推进,但依旧存在未解决的现实问题,未来仍需探寻其发生机制,多方位全方面的从心理身体双管齐下,提高患者生活幸福感。

4.5. 呼吸困难的病因分析

呼吸困难病因常涉及多个系统,临床通常见于呼吸系统及心血管系统,也包括中毒性、神经精神系统、血液系统等。对于呼吸困难患者,初始检查可采用动脉血气分析精准判断低氧血症程度及分析酸碱失衡情况[70]。PFT还可鉴别由胸内(甲状腺肿大)或胸外(气管肿瘤)阻塞引起的呼吸困难[71]。在评估急性肺栓塞对肺功能的长期影响中PFT也发挥了一定作用,研究显示DLCO下降与呼吸困难有关[72],且DLCO在急性肺栓塞后3年的随访中仍然低于正常水平[73]。肺弥散功能减退同样可致慢性心衰患者呼吸困难,研究表明DLCO在轻度心衰患者中即可下降[74],且DLCO可能有助于预测心衰的严重程度[75]。IOS为心血管状态不稳定患者提供了丰富的呼吸功能参数[76],可在一定程度上鉴别AECOPD和慢性心衰所致呼吸困难[77]。诊断评估呼吸困难虽依赖于全面的病史及体格检查,但特异性检查如肺通气功能、肺弥散功能、动脉血气分析、IOS、CEPT等在特定的环境下仍具有诊断效用[78]

4.6. 手术耐受能力评价

术前PFT是用于评估手术资格和手术肺切除最佳范围的有效手段,对于全肺切除术患者,部分指南指出其筛查标准为FEV > 2.0 L [79] [80]。但有研究显示在缺乏手术指南或共识的情况下,术前肺功能标准FEV > 2 L可能不是肺破坏患者进行肺切除术的合适指征[81]。而对于囊性纤维化患者,研究表明PFT可能是有效手段,可用于囊性纤维化患者术后住院时间的预测[82]。鉴于目前缺乏令人信服的证据,有必要进一步研究以确定PFT的真正预测价值从而合理评估术后风险。

4.7. 肺功能损害严重程度评价

对于严重的细菌性肺炎或病毒性肺炎,PFT有助于评价感染造成的肺功能损害严重程度。Hsieh [83]等人在出院后1个月、3个月和6个月随访了因严重H1N1肺炎而引起ARDS的幸存者,出院后1至3个月PFT包括FEV1、FVC、TLC、DLCO和6分钟步行距离(six minutes walk test, 6MWD)显著改善,但出院后3至6个月没有进一步改善。Carrie [84]等人的研究数据还表明了早期呼吸道合胞病毒感染对肺部结构及功能的长期预后,炎症反应将会在后续生活中产生更为严重的致病反应。在肺癌患者中,部分研究显示肺活量测定指标FEV1、FVC、FEV1/FVC与疾病预后具有相关性[85] [86],Kahnert [87]等的研究显示肺过度充气和弥散能力降低与SCLC患者的不良预后密切相关。

4.8. 药物临床试验效果评价

在临床试验中,PFT可以用来评估新药物的疗效及用来确定药物的剂量范围。例如,在一项IIb期剂量探索研究中选择FEV1作为符合当前监管指南的主要终点,观察到囊性纤维化跨膜传导调节因子增强剂治疗的COPD患者潜在临床相关益处,并确定其未来发展的潜在剂量(300 mg,每日两次),以控制COPD和慢性支气管炎患者的症状及恶化程度[88]

5. PFT的未来

近年来,PFT的经典指标FEV1在临床实践中的优势地位逐渐动摇,Casanova [89]等人发现确诊为COPD的患者肺功能下降具有显著异质性,数据显示只有18%的COPD患者FEV1下降,并不是所有的COPD患者均有FEV1的下降。Peter [90]等人还指出FEV1从正常水平的加速下降并不是COPD的必要指征。这说明了在不能进行完整PFT的情况下,仅采用FEV1评估COPD严重程度似乎具有一定偏差[91]。虽然层出不穷的研究发现了可替代、准确性高的新兴指标,但其选择应用、临床价值横向比较分析等仍需要更为全面的研究,以寻找PFT多维指标在疾病中更为准确的意义。因此,在临床实践中PFT多维指标的更新比较及风险预测能力可能是未来发展的趋势。

尽管PFT检查内容得以丰富,但在基层医疗机构中普及应用仍然是一大难题。调查显示,亚太地区只有37%的患者接受了PFT [92],另一项来自韩国研究数据发现仅36.8%的患者接受了PFT,特别是在初级或二级医疗机构,PFT的使用率仅为11.1% [93]。另有数据表明,现阶段我国成年人的PFT开展率为9.7%,COPD患者仅为12.0% [94]。一项对中国40岁以上人群PFT表现的调查研究显示,2019~2020年中国40岁及以上的人群PFT率为6.7%,总体PFT率仍处于低水平[95]。65.24%的基层医疗卫生机构尚未配备肺功能仪,能够解读PFT报告的医务人员平均每家基层医疗卫生机构不足1人[96] [97]。在一项具有全国代表性的横断面研究中发现,只有不到10%的参与者曾经接受过PFT;不到1%的人报告既往诊断为COPD;不超过13%的人接受过药物治疗[98]。因此,未来应着重推行基层医疗机构PFT应用,合理分配医疗资源,科普早防早治理念,加强基层慢性呼吸系统防控。除加强公众对PFT认知以外,受检者依从性差、专业技术人员水平及报告解读能力参差不齐也是PFT当前面临的问题。基于此,一方面要增加专业技术人员的定期培训,提高受检者对于检查要求的理解配合,另一方面还要增强临床呼吸科医师对肺功能报告知识的掌握程度,从而能够使医患双方配合度增高,检查效率得以提升。随时代进展,人工智能在呼吸医学领域也将带来变革性影响。傅[99]等基于人工智能技术可完成对肺功能报告的处理,构建高质量数据库并开发肺功能辅助诊断系统。郭[100]等通过综述人工智能技术在COPD中的研究,发现其可辅助指导临床决策,在远程医疗方面具有一定实用性。因此,未来人工智能的发展可使得通过远程指导来辅助临床医生综合判读及分析结果成为可能[101],并在强化临床医师对于PFT的判读技能方面具有显著意义。

慢性呼吸系统疾病并不是PFT发展的终点,PFT的应用领域逐步扩大,在其他系统中也发挥了重要作用。Silvestre [102]等的研究发现肺功能指标的快速下降与后续心血管疾病(尤其是心衰)的高发生率显著相关。Cheng [103]等研究结果显示中重度气流阻塞患者发生心源性猝死风险较高,肺功能受损与心源性猝死存在一定的相关性。Lee [104]等还认为肺功能是心血管疾病风险的独立预测因子。Zheng [105]等对30,442名糖尿病患者的横断面研究中发现肺功能下降是患糖尿病的危险因素。PFT可用于测量肌萎缩侧索硬化症,Carvalho [106]等的研究显示MVV是肌萎缩侧索硬化症中肺功能的潜在标志物。此外,Shrestha [107]等的研究结果显示较高的FEV1和FVC与痴呆减少相关,表明更好的肺功能与更有利的认知结果相关。

总而言之,PFT发展朝着多系统、严标准方向不断前进,为临床应用提供了更多可能。推广基层医疗机构PFT应用,规范报告解读不仅有利于疾病的早期筛查诊断,也能够及时有效提供诊疗,减缓疾病进程,改善预后。

参考文献

[1] Neder, J.A., de-Torres, J.P., Milne, K.M. and O’Donnell, D.E. (2020) Lung Function Testing in Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 41, 347-366.
https://doi.org/10.1016/j.ccm.2020.06.004
[2] Distler, O., Assassi, S., Cottin, V., Cutolo, M., Danoff, S.K., Denton, C.P., et al. (2020) Predictors of Progression in Systemic Sclerosis Patients with Interstitial Lung Disease. European Respiratory Journal, 55, Article 1902026.
https://doi.org/10.1183/13993003.02026-2019
[3] Maquet, P. (1989) Borelli: De Motu Animalium. A First Treatise on Biomechanics. Acta Orthopaedica Belgica, 55, 541-546.
[4] Sorensen, J.B., Morris, A.H., Crapo, R.O. and Gardner, R.M. (1980) Selection of the Best Spirometric Values for Interpretation. American Review of Respiratory Disease, 122, 802-805.
https://doi.org/10.1164/arrd.1980.122.5.802
[5] Graham, B.L., Steenbruggen, I., Miller, M.R., Barjaktarevic, I.Z., Cooper, B.G., Hall, G.L., et al. (2019) Standardization of Spirometry 2019 Update. an Official American Thoracic Society and European Respiratory Society Technical Statement. American Journal of Respiratory and Critical Care Medicine, 200, e70-e88.
https://doi.org/10.1164/rccm.201908-1590st
[6] Bhakta, N.R., Mcgowan, A., Ramsey, K.A., et al. (2023) European Respiratory Society/American Thoracic Society Technical Statement: Standardization of the Measurement of Lung Volumes, 2023 Update. The European Respiratory Journal, 62, Article 2201519.
[7] 郑劲平. 中国肺功能联盟介绍[J]. 中国实用内科杂志, 2013, 33(S1): 5-6.
[8] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第一部分): 概述及一般要求[J]. 中华结核和呼吸杂志, 2014, 37(6): 402-405.
[9] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第二部分): 肺量计检查[J]. 中华结核和呼吸杂志, 2014, 37(7): 481-486.
[10] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第三部分): 组织胺和乙酰甲胆碱支气管激发试验[J]. 中华结核和呼吸杂志, 2014, 37(8): 566-571.
[11] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南(第四部分): 支气管舒张试验[J]. 中华结核和呼吸杂志, 2014, 37(9): 655-658.
[12] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南: 肺弥散功能测定[J]. 中华结核和呼吸杂志, 2015, 38(3): 164-169.
[13] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南: 肺容量检查[J]. 中华结核和呼吸杂志, 2015, 38(4): 255-260.
[14] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南: 体积描记法肺容量和气道阻力检查[J]. 中华结核和呼吸杂志, 2015, 38(5): 342-347.
[15] 中华医学会呼吸病学分会肺功能专业组. 肺功能检查指南: 呼气峰值流量及其变异率检查[J]. 中华结核和呼吸杂志, 2017, 40(6): 426-430.
[16] 梁丽娜, 李允, 郑劲平, 等. 国内指南与2020年ARTP肺功能检查声明的异同解读[J]. 中国循证医学杂志, 2024, 24(4): 445-450.
[17] Menezes, A.M.B., Pérez-Padilla, R., Wehrmeister, F.C., Lopez-Varela, M.V., Muiño, A., Valdivia, G., et al. (2014) FEV1 Is a Better Predictor of Mortality than FVC: The PLATINO Cohort Study. PLOS ONE, 9, e109732.
https://doi.org/10.1371/journal.pone.0109732
[18] Fletcher, C. and Peto, R. (1977) The Natural History of Chronic Airflow Obstruction. British Medical Journal, 1, 1645-1648.
https://doi.org/10.1136/bmj.1.6077.1645
[19] Drummond, M.B., Hansel, N.N., Connett, J.E., Scanlon, P.D., Tashkin, D.P. and Wise, R.A. (2012) Spirometric Predictors of Lung Function Decline and Mortality in Early Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 185, 1301-1306.
https://doi.org/10.1164/rccm.201202-0223oc
[20] Venkatesan, P. (2024) GOLD COPD Report: 2024 Update. The Lancet Respiratory Medicine, 12, 15-16.
https://doi.org/10.1016/s2213-2600(23)00461-7
[21] Finch, D., Lange, P., Halpin, D., O’Donnell, D. and MacNee, W. (2016) Diagnosis, Assessment, and Phenotyping of COPD: Beyond FEV1. International Journal of Chronic Obstructive Pulmonary Disease, 11, 3-12.
https://doi.org/10.2147/copd.s85976
[22] 陈典, 隆寰宇, 李姝润, 等. 2024年GOLD慢性阻塞性肺疾病诊断、治疗、管理及预防全球策略更新要点解读[J]. 中国全科医学, 2024, 27(13): 1533-1543.
[23] O’Donnell, D.E. (2006) Hyperinflation, Dyspnea, and Exercise Intolerance in Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 3, 180-184.
https://doi.org/10.1513/pats.200508-093do
[24] Balasubramanian, A., MacIntyre, N.R., Henderson, R.J., Jensen, R.L., Kinney, G., Stringer, W.W., et al. (2019) Diffusing Capacity of Carbon Monoxide in Assessment of COPD. Chest, 156, 1111-1119.
https://doi.org/10.1016/j.chest.2019.06.035
[25] Mirsadraee, M., Boskabady, M.H. and Attaran, D. (2013) Diagnosis of Chronic Obstructive Pulmonary Disease Earlier than Current Global Initiative for Obstructive Lung Disease Guidelines Using a Feasible Spirometry Parameter (Maximal-Mid Expiratory Flow/Forced Vital Capacity). Chronic Respiratory Disease, 10, 191-196.
https://doi.org/10.1177/1479972313507461
[26] 中华医学会呼吸病学分会哮喘学组. 支气管激发试验临床应用中国专家共识(2024版) [J]. 中华医学杂志, 2024(22): 2031-2040.
[27] Bokov, P. and Delclaux, C. (2016) Interprétation et utilisation des explorations fonctionnelles respiratoires de routine de l’adulte: Spirométrie, volumes non mobilisables, Diffusion, Hématose, Test de provocation bronchique à la métacholine et test de marche. La Revue de Médecine Interne, 37, 100-110.
https://doi.org/10.1016/j.revmed.2015.10.356
[28] 于淼, 刘喆, 王颖, 等. 呼出气一氧化氮在哮喘-慢阻肺重叠综合征患者测定的临床意义[J]. 航空航天医学杂志, 2020, 31(6): 700-726.
[29] 潘海洋, 卢立国, 严明月, 等. 慢阻肺急性加重期肺功能与呼出气一氧化氮、血清维生素D、IL-13水平的相关性分析[J]. 临床肺科杂志, 2021, 26(9): 1343-1347.
[30] 彭清. 脉冲震荡技术与肺量计检查在评估小气道功能中的应用[D]: [硕士学位论文]. 长沙: 中南大学, 2022.
[31] Skjørten, I., Hilde, J.M., Melsom, M.N., Hisdal, J., Hansteen, V., Steine, K., et al. (2017) Cardiopulmonary Exercise Test and PaO2 in Evaluation of Pulmonary Hypertension in COPD. International Journal of Chronic Obstructive Pulmonary Disease, 13, 91-100.
https://doi.org/10.2147/copd.s150034
[32] Ho, T., Cusack, R.P., Chaudhary, N., Satia, I. and Kurmi, O.P. (2019) Under-and Over-Diagnosis of COPD: A Global Perspective. Breathe, 15, 24-35.
https://doi.org/10.1183/20734735.0346-2018
[33] Pellegrino, R., Viegi, G., Brusasco, V., Crapo, R.O., Burgos, F., Casaburi, R., et al. (2005) Interpretative Strategies for Lung Function Tests. European Respiratory Journal, 26, 948-968.
https://doi.org/10.1183/09031936.05.00035205
[34] Quanjer, P.H., Pretto, J.J., Brazzale, D.J. and Boros, P.W. (2013) Grading the Severity of Airways Obstruction: New Wine in New Bottles. European Respiratory Journal, 43, 505-512.
https://doi.org/10.1183/09031936.00086313
[35] Calverley, P.M.A. (2023) A STAR Is Born: A New Approach to Assessing Chronic Obstructive Pulmonary Disease Severity. American Journal of Respiratory and Critical Care Medicine, 208, 647-648.
https://doi.org/10.1164/rccm.202306-1106ed
[36] Balasubramanian, A., Wise, R.A., Stanojevic, S., Miller, M.R. and McCormack, M.C. (2024) FEV1Q: A Race-Neutral Approach to Assessing Lung Function. European Respiratory Journal, 63, Article 2301622.
https://doi.org/10.1183/13993003.01622-2023
[37] Casanova, C., Cote, C., de Torres, J.P., Aguirre-Jaime, A., Marin, J.M., Pinto-Plata, V., et al. (2005) Inspiratory-to-Total Lung Capacity Ratio Predicts Mortality in Patients with Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 171, 591-597.
https://doi.org/10.1164/rccm.200407-867oc
[38] Zeng, S., Tham, A., Bos, B., Jin, J., Giang, B. and Arjomandi, M. (2018) Lung Volume Indices Predict Morbidity in Smokers with Preserved Spirometry. Thorax, 74, 114-124.
https://doi.org/10.1136/thoraxjnl-2018-211881
[39] Shin, T.R., Oh, Y., Park, J.H., Lee, K.S., Oh, S., Kang, D.R., et al. (2015) The Prognostic Value of Residual Volume/Total Lung Capacity in Patients with Chronic Obstructive Pulmonary Disease. Journal of Korean Medical Science, 30, 1459-1465.
https://doi.org/10.3346/jkms.2015.30.10.1459
[40] Kakavas, S., Kotsiou, O.S., Perlikos, F., Mermiri, M., Mavrovounis, G., Gourgoulianis, K., et al. (2021) Pulmonary Function Testing in COPD: Looking Beyond the Curtain of FEV1. NPJ Primary Care Respiratory Medicine, 31, Article No. 23.
https://doi.org/10.1038/s41533-021-00236-w
[41] Kim, Y., Kim, S.H., Rhee, C.K., Lee, J.S., Lee, C.Y., Kim, D.K., et al. (2022) Air Trapping and the Risk of COPD Exacerbation: Analysis from Prospective KOCOSS Cohort. Frontiers in Medicine, 9, Article 835069.
https://doi.org/10.3389/fmed.2022.835069
[42] de-Torres, J.P., O’Donnell, D.E., Marín, J.M., Cabrera, C., Casanova, C., Marín, M., et al. (2021) Clinical and Prognostic Impact of Low Diffusing Capacity for Carbon Monoxide Values in Patients with Global Initiative for Obstructive Lung Disease I COPD. Chest, 160, 872-878.
https://doi.org/10.1016/j.chest.2021.04.033
[43] Saint-Pierre, M., Ladha, J., Berton, D.C., Reimao, G., Castelli, G., Marillier, M., et al. (2019) Is the Slow Vital Capacity Clinically Useful to Uncover Airflow Limitation in Subjects with Preserved FEV1/FVC Ratio? Chest, 156, 497-506.
https://doi.org/10.1016/j.chest.2019.02.001
[44] Lopes, A.J. (2019) Advances in Spirometry Testing for Lung Function Analysis. Expert Review of Respiratory Medicine, 13, 559-569.
https://doi.org/10.1080/17476348.2019.1607301
[45] Alter, P., Orszag, J., Kellerer, C., Kahnert, K., Speicher, T., Watz, H., et al. (2020) Prediction of Air Trapping or Pulmonary Hyperinflation by Forced Spirometry in COPD Patients: Results from Cosyconet. ERJ Open Research, 6, Article 00092-2020.
https://doi.org/10.1183/23120541.00092-2020
[46] An, T.J., Rhee, C.K., Park, Y.B., Yoo, K. and Yoon, H.K. (2022) FVC, but Not FEV1, Is Associated with Clinical Outcomes of Asthma-COPD Overlap. Scientific Reports, 12, Article 13820.
https://doi.org/10.1038/s41598-022-15612-w
[47] Machida, H., Inoue, S., Shibata, Y., Kimura, T., Sato, K., Abe, K., et al. (2021) Thymus and Activation-Regulated Chemokine (TARC/CCL17) Predicts Decline of Pulmonary Function in Patients with Chronic Obstructive Pulmonary Disease. Allergology International, 70, 81-88.
https://doi.org/10.1016/j.alit.2020.04.004
[48] 雷佳慧, 赵丽敏. 全球哮喘防治倡议(GINA) 2024更新要点解读[J]. 中华实用诊断与治疗杂志, 2024, 38(7): 649-655.
[49] Louis, R., Satia, I., Ojanguren, I., Schleich, F., Bonini, M., Tonia, T., et al. (2022) European Respiratory Society Guidelines for the Diagnosis of Asthma in Adults. European Respiratory Journal, 60, Article 2101585.
https://doi.org/10.1183/13993003.01585-2021
[50] Korevaar, D.A., Damen, J.A., Heus, P., Moen, M.J., Spijker, R., van Veen, I.H., et al. (2023) Effectiveness of FeNO-Guided Treatment in Adult Asthma Patients: A Systematic Review and Meta-Analysis. Clinical & Experimental Allergy, 53, 798-808.
https://doi.org/10.1111/cea.14359
[51] Escamilla-Gil, J.M., Fernandez-Nieto, M. and Acevedo, N. (2022) Understanding the Cellular Sources of the Fractional Exhaled Nitric Oxide (FeNO) and Its Role as a Biomarker of Type 2 Inflammation in Asthma. BioMed Research International, 2022, Article 5753524.
https://doi.org/10.1155/2022/5753524
[52] Ramsey, K.A., Stanojevic, S., Chavez, L., Johnson, N., Bowerman, C., Hall, G.L., et al. (2024) Global Lung Function Initiative Reference Values for Multiple Breath Washout Indices. European Respiratory Journal, 64, Article 2400524.
https://doi.org/10.1183/13993003.00524-2024
[53] Yun, H., Eom, S. and Hahn, Y. (2023) Assessing Asthma Control by Impulse Oscillometry and Fractional Expiratory Nitric Oxide in Children with Normal Spirometry. The Journal of Allergy and Clinical Immunology: In Practice, 11, 2822-2829.e1.
https://doi.org/10.1016/j.jaip.2023.04.039
[54] Manoharan, A., Anderson, W.J., Lipworth, J. and Lipworth, B.J. (2014) Assessment of Spirometry and Impulse Oscillometry in Relation to Asthma Control. Lung, 193, 47-51.
https://doi.org/10.1007/s00408-014-9674-6
[55] Galant, S.P. and Morphew, T. (2024) Adding Oscillometry to Spirometry in Guidelines Better Identifies Uncontrolled Asthma, Future Exacerbations, and Potential Targeted Therapy. Annals of Allergy, Asthma & Immunology, 132, 21-29.
https://doi.org/10.1016/j.anai.2023.08.011
[56] Grell, A.V., Vera, R.G., Yarur, A.M., Castro-Rodriguez, J.A., Montenegro, M.A.P., Colodro, O.F., et al. (2023) Impulse Oscillometry in Preschool Children with Persistent Asthma Can Predict Spirometry at School Age. Pediatric Pulmonology, 58, 1411-1416.
https://doi.org/10.1002/ppul.26333
[57] Lee, H., Kim, S.Y., Park, Y.S., Choi, S.M., Lee, J.H. and Park, J. (2024) Prognostic Implication of 1-Year Decline in Diffusing Capacity in Newly Diagnosed Idiopathic Pulmonary Fibrosis. Scientific Reports, 14, Article No. 8857.
https://doi.org/10.1038/s41598-024-59649-5
[58] Maher, T.M. (2024) Interstitial Lung Disease. Journal of the American Medical Association, 331, Article 1655.
https://doi.org/10.1001/jama.2024.3669
[59] Kim, J.S., Murray, S., Yow, E., Anstrom, K.J., Kim, H.J., Flaherty, K.R., et al. (2024) Comparison of Pirfenidone and Nintedanib. Chest, 165, 1163-1173.
https://doi.org/10.1016/j.chest.2023.11.035
[60] Wang, X., Wang, M., Qiu, H., Yu, I. and Yano, E. (2010) Longitudinal Changes in Pulmonary Function of Asbestos Workers. Journal of Occupational Health, 52, 272-277.
https://doi.org/10.1539/joh.l10062
[61] Barnikel, M., Million, P.M., Knoop, H. and Behr, J. (2019) The Natural Course of Lung Function Decline in Asbestos Exposed Subjects with Pleural Plaques and Asbestosis. Respiratory Medicine, 154, 82-85.
https://doi.org/10.1016/j.rmed.2019.06.013
[62] Yang, X.L., Zhu, X.L., Li, A., et al. (2016) Characteristics of Lung Function in Patients with Asbestosis of Different Stages. Chinese Journal of Industrial Hygiene and Occupational Diseases, 34, 687-690.
[63] Chung, K.F. and Pavord, I.D. (2008) Prevalence, Pathogenesis, and Causes of Chronic Cough. The Lancet, 371, 1364-1374.
https://doi.org/10.1016/s0140-6736(08)60595-4
[64] Sadeghi, M.H. and Morice, A.H. (2017) The Emerging Role of the Eosinophil and Its Measurement in Chronic Cough. The Open Respiratory Medicine Journal, 11, 17-30.
https://doi.org/10.2174/1874306401711010017
[65] 中华医学会, 中华医学会杂志社, 中华医学会全科医学分会, 等. 中国咳嗽基层诊疗与管理指南(2024年) [J]. 中华全科医师杂志, 2024, 23(8): 793-812.
[66] 梁松倩. FeNO联合肺功能检测对慢性咳嗽病因诊断的价值[D]: [硕士学位论文]. 太原: 山西医科大学, 2023.
[67] 殷军民, 刘麒彦, 花梅娟, 等. 肺功能联合呼出气一氧化氮测定在儿童慢性咳嗽中的价值分析[J]. 系统医学, 2023, 8(14): 14-16.
[68] 屈平. 呼出气一氧化氮与肺功能联合检测用于慢性咳嗽的诊断价值[J]. 中国社区医师, 2022, 38(25): 79-81.
[69] 丁金盾, 邱章伟, 徐晓婷, 等. 呼出气一氧化氮与小气道功能预测咳嗽变异性哮喘患者支气管高反应性[J]. 临床肺科杂志, 2022, 27(2): 169-173.
[70] Budhwar, N. and Syed, Z. (2020) Chronic Dyspnea: Diagnosis and Evaluation. American Family Physician, 101, 542-548.
[71] Stoller, J.K. (1992) Spirometry: A Key Diagnostic Test in Pulmonary Medicine. Cleveland Clinic Journal of Medicine, 59, 75-78.
https://doi.org/10.3949/ccjm.59.1.75
[72] Wimalaratna, H.S.K., Farrell, J. and Lee, H.Y. (1989) Measurement of Diffusing Capacity in Pulmonary Embolism. Respiratory Medicine, 83, 481-485.
https://doi.org/10.1016/s0954-6111(89)80130-1
[73] Bastas, D., Brandão, L.R., Vincelli, J., Wilson, D., Perrem, L., Guerra, V., et al. (2024) Long-Term Outcomes of Pulmonary Embolism in Children and Adolescents. Blood, 143, 631-640.
https://doi.org/10.1182/blood.2023021953
[74] 陈荣, 孙兴国, 张也, 等. 重症心力衰竭患者运动病理生理学特征的临床研究[J]. 中国应用生理学杂志, 2021, 37(2): 162-168.
[75] Izadi, S., Esmaili, S., Emami, S., Izadi, S., Eskandari, M., Yadollahzadeh, M., et al. (2022) Association between DLCO Index and the Severity of Heart Failure: A Cross-Sectional Study. Acta Cardiologica, 78, 250-255.
https://doi.org/10.1080/00015385.2022.2066776
[76] 中国医师协会呼吸医师分会肺功能与临床呼吸生理工作委员会, 中华医学会呼吸病学分会肺功能学组, 中国老年医学会呼吸分会肺功能学组. 肺功能检查技术规范——脉冲振荡技术检查[J]. 中华结核和呼吸杂志, 2022, 45(10): 960-969.
[77] 金兵, 朱述阳, 陈碧, 等. 脉冲振荡肺功能在鉴别慢性阻塞性肺疾病急性加重期和慢性心力衰竭所致呼吸困难的价值[J]. 江苏医药, 2014, 40(15): 1788-1790.
[78] Parshall, M.B., Schwartzstein, R.M., Adams, L., Banzett, R.B., Manning, H.L., Bourbeau, J., et al. (2012) An Official American Thoracic Society Statement: Update on the Mechanisms, Assessment, and Management of Dyspnea. American Journal of Respiratory and Critical Care Medicine, 185, 435-452.
https://doi.org/10.1164/rccm.201111-2042st
[79] British Thoracic Society, (2001) Guidelines on the Selection of Patients with Lung Cancer for Surgery. Thorax, 56, 89-108.
https://doi.org/10.1136/thorax.56.2.89
[80] Colice, G.L., Shafazand, S., Griffin, J.P., Keenan, R. and Bolliger, C.T. (2007) Physiologic Evaluation of the Patient with Lung Cancer Being Considered for Resectional Surgery. Chest, 132, 161S-177S.
https://doi.org/10.1378/chest.07-1359
[81] Li, W., Zhao, J., Gong, C., Zhou, R., Yan, D., Ruan, H., et al. (2024) Value of Preoperative Evaluation of FEV1 in Patients with Destroyed Lung Undergoing Pneumonectomy—A 20-Year Real-World Study. BMC Pulmonary Medicine, 24, Article No. 39.
https://doi.org/10.1186/s12890-024-02858-5
[82] Mariel, M., Gabor, A. and Koichi, Y. (2022) The Role of Pulmonary Function Test in Perioperative Management of Patients with Cystic Fibrosis. Translational Perioperative and Pain Medicine, 9, 438-444.
https://doi.org/10.31480/2330-4871/155
[83] Hsieh, M., Lee, W., Cho, H., Wu, M., Hu, H., Kao, K., et al. (2018) Recovery of Pulmonary Functions, Exercise Capacity, and Quality of Life after Pulmonary Rehabilitation in Survivors of ARDS Due to Severe Influenza a (H1N1) Pneumonitis. Influenza and Other Respiratory Viruses, 12, 643-648.
https://doi.org/10.1111/irv.12566
[84] Malinczak, C., Fonseca, W., Hrycaj, S.M., Morris, S.B., Rasky, A.J., Yagi, K., et al. (2024) Early-Life Pulmonary Viral Infection Leads to Long-Term Functional and Lower Airway Structural Changes in the Lungs. American Journal of Physiology-Lung Cellular and Molecular Physiology, 326, L280-L291.
https://doi.org/10.1152/ajplung.00300.2023
[85] Cho, O., Oh, Y., Chun, M., Noh, O.K. and Heo, J. (2018) Prognostic Implication of FEV1/FVC Ratio for Limited-Stage Small Cell Lung Cancer. Journal of Thoracic Disease, 10, 1797-1805.
https://doi.org/10.21037/jtd.2018.02.14
[86] Kang, H.S., Shin, A.Y., Yeo, C.D., Kim, J.S., Kim, Y.H., Kim, J.W., et al. (2018) A Lower Level of Forced Expiratory Volume in One Second Predicts the Poor Prognosis of Small Cell Lung Cancer. Journal of Thoracic Disease, 10, 2179-2185.
https://doi.org/10.21037/jtd.2018.03.121
[87] Kahnert, K., Lempert, L.M., Behr, J., Elsner, L., Bolt, T., Tufman, A., et al. (2023) Hyperinflation and Reduced Diffusing Capacity Predict Prognosis in SCLC: Value of Extended Pre-Therapeutic Lung Function Testing. Therapeutic Advances in Respiratory Disease, 17, Article 1611188298.
https://doi.org/10.1177/17534666231199670
[88] Martinez, F.J., Criner, G.J., Gessner, C., Jandl, M., Scherbovsky, F., Shinkai, M., et al. (2023) Icenticaftor, a CFTR Potentiator, in COPD: A Multicenter, Parallel-Group, Double-Blind Clinical Trial. American Journal of Respiratory and Critical Care Medicine, 208, 417-427.
https://doi.org/10.1164/rccm.202303-0458oc
[89] Casanova, C., de Torres, J.P., Aguirre-Jaíme, A., Pinto-Plata, V., Marin, J.M., Cordoba, E., et al. (2011) The Progression of Chronic Obstructive Pulmonary Disease Is Heterogeneous. American Journal of Respiratory and Critical Care Medicine, 184, 1015-1021.
https://doi.org/10.1164/rccm.201105-0831oc
[90] Lange, P., Celli, B., Agustí, A., Boje Jensen, G., Divo, M., Faner, R., et al. (2015) Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. New England Journal of Medicine, 373, 111-122.
https://doi.org/10.1056/nejmoa1411532
[91] Zhang, X., Gray, A.R. and Hancox, R.J. (2024) Predictors of Lung Function in Early Adulthood: A Population-Based Cohort Study. Respirology, 29, 897-904.
https://doi.org/10.1111/resp.14732
[92] Lim, S., Lam, D.C., Muttalif, A.R., Yunus, F., Wongtim, S., Lan, L.T.T., et al. (2015) Impact of Chronic Obstructive Pulmonary Disease (COPD) in the Asia-Pacific Region: The EPIC Asia Population-Based Survey. Asia Pacific Family Medicine, 14, Article No. 4.
https://doi.org/10.1186/s12930-015-0020-9
[93] Kim, C., Yoo, K.H., Rhee, C.K., Yoon, H.K., Kim, Y.S., Lee, S.W., et al. (2014) Health Care Use and Economic Burden of Patients with Diagnosed Chronic Obstructive Pulmonary Disease in Korea. The International Journal of Tuberculosis and Lung Disease, 18, 737-743.
https://doi.org/10.5588/ijtld.13.0634
[94] Wang, C., Xu, J., Yang, L., Xu, Y., Zhang, X., Bai, C., et al. (2018) Prevalence and Risk Factors of Chronic Obstructive Pulmonary Disease in China (The China Pulmonary Health [CPH] Study): A National Cross-Sectional Study. The Lancet, 391, 1706-1717.
https://doi.org/10.1016/s0140-6736(18)30841-9
[95] Tong, H., Cong, S., Fang, L.W., et al. (2023) Performance of Pulmonary Function Test in People Aged 40 Years and above in China, 2019-2020. Chinese Journal of Epidemiology, 44, 727-734.
[96] Peng, B., Zhang, X., Jiang, X., et al. (2022) The Availability of Essential Medicines and Diagnostic Devices for Chronic Obstructive Pulmonary Disease in Primary Care. Chinese General Practice, 25, 771-781.
[97] Liu, R., Jia, C. and Zhang, C. (2021) Investigation and Analysis of the Allocation of Medical Resources Related to Chronic Obstructive Pulmonary Disease in Primary Medical Institutions. Chinese Hospital Management, 41, 43-46.
[98] Lei, J., Huang, K., Wu, S., Xu, J., Xu, Y., Zhao, J., et al. (2024) Heterogeneities and Impact Profiles of Early Chronic Obstructive Pulmonary Disease Status: Findings from the China Pulmonary Health Study. The Lancet Regional HealthWestern Pacific, 45, Article 101021.
https://doi.org/10.1016/j.lanwpc.2024.101021
[99] 傅唯佳, 汤梁峰, 叶成杰, 等. 运用人工智能技术进行肺功能数据库构建并辅助诊断实践[J]. 中国医疗器械信息, 2022, 28(14): 147-150.
[100] 郭静, 陶莲德, 闫祥云, 等. 机器学习在慢性阻塞性肺疾病中的研究进展[J]. 四川医学, 2024, 45(11): 1272-1276.
[101] 汪哲宇. 数字化慢病管理系统的研究与实践[D]: [博士学位论文]. 杭州: 浙江大学, 2021.
[102] Silvestre, O.M., Nadruz, W., Querejeta Roca, G., Claggett, B., Solomon, S.D., Mirabelli, M.C., et al. (2018) Declining Lung Function and Cardiovascular Risk. Journal of the American College of Cardiology, 72, 1109-1122.
https://doi.org/10.1016/j.jacc.2018.06.049
[103] Cheng, Y., Chen, Z., Yao, F., Liu, L., Zhang, M. and Wu, S. (2021) Airflow Obstruction, Impaired Lung Function and Risk of Sudden Cardiac Death: A Prospective Cohort Study. Thorax, 77, 652-662.
https://doi.org/10.1136/thoraxjnl-2020-215632
[104] Lee, T.Y. and Sadatsafavi, M. (2023) Lung Function as Independent Predictor of Cardiovascular Disease Risk: Implications for Practice and Policy. Thorax, 79, 196-197.
https://doi.org/10.1136/thorax-2023-221166
[105] Zhang, R., Zhou, J., Cai, Y., Shu, L., Simó, R. and Lecube, A. (2020) Non-Linear Association between Diabetes Mellitus and Pulmonary Function: A Population-Based Study. Respiratory Research, 21, Article No. 292.
https://doi.org/10.1186/s12931-020-01538-2
[106] de Carvalho, M., Fernandes, S.R., Pereira, M., Gromicho, M., Santos, M.O., Alves, I., et al. (2022) Respiratory Function Tests in Amyotrophic Lateral Sclerosis: The Role of Maximal Voluntary Ventilation. Journal of the Neurological Sciences, 434, Article 120143.
https://doi.org/10.1016/j.jns.2022.120143
[107] Shrestha, S., Zhu, X., London, S.J., Sullivan, K.J., Lutsey, P.L., Windham, B.G., et al. (2023) Association of Lung Function with Cognitive Decline and Incident Dementia in the Atherosclerosis Risk in Communities Study. American Journal of Epidemiology, 192, 1637-1646.
https://doi.org/10.1093/aje/kwad140