HGMB1在心血管疾病严重程度的诊断、预后的研究进展
Research Progress of HGMB1 in the Diagnosis and Prognosis of Cardiovascular Disease Severity
摘要: 随着人们饮食的多样性,随着经济水平的升高,随着晚睡的生活方式越来越普遍,心脑血管疾病的发病率逐渐升高,尤其是心血管疾病,心血管疾病是当前全球死亡的主要原因,早发现、早诊断及早治疗在心血管疾病的预后起到了不可代替的作用。其中血指标,如肌钙蛋白、肌酸激酶同工酶等,对早发现、早诊断起到了至关重要的作用,但血指标同时在其他疾病中也会明显升高,如肌钙蛋白、肌酸激酶同工酶在炎症性疾病中也会升高,寻找更多评估心血管疾病的血指标显得尤为重要及急迫。近年来研究发现,高迁移率族蛋白1 (HGMB1)参与冠心病、心肌炎、心力衰竭、心房纤颤、高血压等心血管疾病的进程,进一步辅助心血管疾病的诊断及指导心血管疾病的预后。本文就HMGB1心血管疾病的诊断及预后的作用研究的进展做一综述。
Abstract: With the increasing diversity of people’s diets, the rising economic standards, and the growing prevalence of late-night lifestyles, the incidence of cardiovascular and cerebrovascular diseases is gradually increasing, especially cardiovascular diseases. Cardiovascular diseases are the main causes of global death. Early detection, early diagnosis and early treatment play an irreplaceable role in the prognosis of cardiovascular diseases. Among them, blood indicators, such as troponin and creatine kinase isoenzyme, play a vital role in early detection and early diagnosis. However, blood indicators will also increase significantly in other diseases. For example, troponin and creatine kinase isoenzyme will also increase inflammatory diseases. It is particularly important and urgent to find more blood indicators to evaluate cardiovascular diseases. In recent years, studies have found that high mobility group protein 1 (HGMB1) is involved in the process of cardiovascular diseases such as coronary heart disease, myocarditis, heart failure, atrial fibrillation, hypertension, etc., and further assists the diagnosis of cardiovascular diseases and guides prognosis of cardiovascular diseases. This article reviews the progress of research on the diagnosis and prognosis of HMGB1 cardiovascular disease.
文章引用:王丹, 杨萌甜, 何端, 王星玉, 潘军强. HGMB1在心血管疾病严重程度的诊断、预后的研究进展[J]. 临床医学进展, 2025, 15(1): 1613-1619. https://doi.org/10.12677/acm.2025.151216

1. 引言

随着老龄化社会的到来,心血管疾病的认知和治疗受到越来越多的重视,特别是在探索病理生理过程中的信号通路,已经成为当今学术界的一个重要课题。在研究过程中,研究者发现HMGB1也是免疫细胞分泌的重要介质,参与一系列病理疾病,包括传染病、缺血再灌注损伤、自身免疫、心血管和神经退行性疾病、代谢紊乱和癌症[1]

HGMB1是一种重要的晚期炎症介质,它不仅可以与DNA结合,还能够参与多种生物学过程,如促进炎症反应和凝血反应,而且它还可以被释放到细胞外,从而发挥多种生物学活性。HMGB1是一种重要的炎症因子,它在心血管疾病中的表达量很高,并且通过多种途径参与心血管疾病的发生和发展。本文从HMGB1的来源、与心血管疾病的相关研究进展等方面做一综述。

2. HGMB1的来源

HMGB家族由4种蛋白组成:HMGB-1、HMGB-2、HMGB-3和HMGB-4 [2]。HMGB家族中最丰富的非组蛋白HMGB1蛋白的性质和结构的描述。然而,一旦HMGB1离开细胞核,它就会获得完全不同的功能、翻译后修饰和氧化还原状态的改变。这种非组蛋白核蛋白的特殊结构,使得其能够跨越细胞核与细胞核的界限[3],并且对多种疾病的病理学过程都具有重要的意义[4]。HMGB1是一种复杂的DNA,其中包含Box A和Box B的折叠DNA,以及一条具有谷氨酸、天冬氨酸等多种氨基酸的酸性末端。最近,研究发现HMGB1参与了蛋白激酶R (PKR)/炎性小体的自噬活性和活化[5]。HMGB1也存在于细胞表面并与膜结合,在早期神经元和活化血小板的神经进展和恢复过程中参与神经突生长[6]。一旦释放,HMGB1具有多种调节功能,包括通过作为信号分子向附近的免疫细胞发出危险信号来调节许多免疫反应[1]。此外,HMGB1结构域的23、45和106位氨基酸是三个易受氧化还原依赖性修饰的半胱氨酸残基。

3. 在心血管疾病严重程度诊断、预后的作用

研究发现使用Gensini冠状动脉得分系统评估冠状动脉狭窄的程度。Gensini得分随着HMGB1水平的增加显著增加。HMGB1水平较高的组hs-CRP也升高。具有最高HMGB1水平的组中糖尿病患病率较高[7]。在心力衰竭(HF)患者中,随着NYHA分级的提高,血清HMGB1水平也会显著升高。此外,HMGB1与NT-proBNP之间存在着正相关性,而与LVEF之间则存在着负相关性。死亡患者的HMGB1平较高,并且HMGB1增加是死亡的独立预测因子[8]。对不同研究结果进行比较和分析,突出HMGBI在不同心血管疾病的作用差异,并探讨其潜在的机制。现就心血管系统各疾病与HMGB1的关系做一综述。

3.1. HMGB1和动脉粥样硬化

在正常人主动脉中,HMGB1在内皮细胞、平滑肌细胞和靠近内膜的CD68阳性巨噬细胞以及外膜微血管中组成性表达[9]。在动脉粥样硬化病变坏死核心附近的区域也观察到强烈的HMGB1表达[10]

HMGB1可从动脉粥样硬化斑块中的几种细菌形态中发现,主要是平滑肌细菌、内皮细胞、泡沫细菌、巨噬细菌和活性血小板[9]。HMGB1一旦大量放出,会对内皮细胞、平滑肌细胞和巨噬细胞形成各种炎症作用。重组HMGB1已被证明可以刺激血管内皮细胞,导致细胞间粘附分子1 (ICAM-1)、血管细胞粘附分子1 (VCAM-1)、e-选择素、粒细胞集落刺激因子(G-CSF)、RAGE、TNFα、单核细胞趋化蛋白1 (MCP-1)、IL-8、纤溶酶原激活剂抑制剂1和组织纤溶酶原激活剂的表现和作用[11]。对于来自动脉粥样硬化斑块的平滑肌细胞,HMGB1促进其增殖、向内膜迁移,促进其释放更多HMGB1和c反应蛋白,促进其表达MMP2、MMP3和MMP9 [12]

研究表明,抗HMGB1抗体可以显著减轻动脉粥样硬化的症状,其中抗体可以有效抑制E缺乏小鼠体内巨噬细胞、DC和CD4+ T细胞的增殖,同时还能够降低VCAM-1和MCP-1的表达水平[13],从而使动脉粥样硬化的程度减轻55%。

颈动脉粥样硬化可能会导致严重的后果。特别是,斑块不稳定有助于疾病进展和卒中发生率。高迁移率组框1 (HMGB1)是一种参与动脉粥样硬化和心血管疾病促进和进展的核蛋白。研究结果显示,HMGB1是一种潜在的抗血小板聚集剂,它可以作为糖尿病患者颈动脉斑块的一个独特的危险因素,有望成为一种治疗不稳定颈动脉斑块和预防卒中的重要分子靶点[14]

3.2. HMGB1和与冠心病

冠心病是心血管疾病发病率最高的疾病,分为慢性冠脉综合征和急性冠脉综合征。急性冠脉综合征包括不稳定型心绞痛、心肌梗死;慢性冠脉综合征包括缺血性心脏病、稳定型心绞痛。冠心病患者血清高迁移率组盒1蛋白水平明显高于健康人[15]。沙库巴曲缬沙坦对老年冠心病患者疗效显著,可降低血清NT-proBNP、Hcy和HMGB1水平,减轻细胞炎性反应[16]

3.2.1. 急性心肌梗死

多项临床研究表明,急性心肌梗死患者血液循环中HMGB1水平明显超出正常人群[17],而且与年龄和性别相比,这种情况更加明显[18]。因此,建议将HMGB1水平设定为一个更加合理的参考值,以便更好地治疗这类疾病。HMGB1的峰值水平与心脏破裂、泵衰竭、院内心源性死亡和CRP水平独立相关[19]。在另一项评估st段抬高型心肌梗死(STEMI)和非st段抬高型心肌梗死(NSTEMI)患者的研究中,HMGB1血清水平与STEMI和NSTEMI分别在心肌梗死后2~4天通过心脏磁共振成像测量梗死面积。此外,心肌梗死6个月后再次进行心脏磁共振成像以估计剩余心室功能,结果显示心肌梗死期间HMGB1水平与STEMI和NSTEMI患者的剩余射血分数分别呈负相关[20]。死亡患者的HMGB1平均基线水平高于存活患者。HMGB1水平翻倍会增加死亡风险[21]。综上所述,这些研究表明,亚临床CAD患者和显性ACS患者的HMGB1水平更高。HMGB1水平也被证明是ACS的预后因素,因为HMGB1水平与较大的梗死面积、残余心功能和死亡率相关。

研究表明,入院时循环HMGB1浓度可能是UA/NSTEMI患者发病24 h内心血管死亡率的潜在独立预测因子[22]。但在不同的研究条件下,Kitahara等人观察到,与对照小鼠相比,心肌过表达HMGB1的转基因小鼠在诱导心肌梗死后梗死面积更小,心功能改善,存活率更高[23]

将HMGB1施用于梗死周围区域也发现了良好的结果。治疗4周后,与注射变性HMGB1的小鼠相比,左心室功能得到改善,左心室体积减小,梗死壁厚度增加,心肌胶原沉积减少。此外,心脏再生随着c-kit+细胞数量、新形成的肌细胞和小动脉长度密度的增加而增加。HMGB1还导致胶原酶(MMP2和MMP9)活性增强,金属蛋白酶-3组织抑制剂(TIMP-3)水平降低,表明胶原溶解活性增加[24]。HMGB1对心脏c-kit+干细胞增殖和分化的影响已被证明是通过旁分泌刺激心脏成纤维细胞产生多种炎症细胞因子和生长因子间接介导的[25]。HMGB1刺激内皮祖细胞向缺血组织的归巢,并促进内皮细胞迁移、发芽和新生血管形成[26]

Abarbanell等人使用Langendorff方法证明了HMGB1对大鼠心脏急性全局缺血/再灌注损伤后心肌恢复的剂量依赖性作用。再灌注1 min后给予HMGB1 200 ng或1 μg,HMGB1可显著改善心肌功能恢复,缩小梗死面积,降低IL-1、IL-6、IL-10和VEGF水平。尽管HMGB1的剂量可以显著减少心肌炎症和梗死的发生率,但是它却无法显著改善缺血/再灌注后左心室的功能[27]

3.2.2. 心绞痛

临床研究表明,血清HMGB1水平与动脉病变严重程度高度相关。选取严重冠状动脉狭窄患者104例,根据症状分为稳定型心绞痛组(SAP)、不稳定型心绞痛组(USAP)和对照组(无心绞痛)。结果显示,尽管潜在的分子机制尚不清楚,但SAP和USAP组,特别是SAP患者,HMGB1水平明显升高[28]

3.2.3. 高血压

高迁移率组框1 (HMGB1)在压力过载(PO)心肌中升高,并参与PO诱导的心脏重构。这些结果表明,在PO下,血清和心肌中HMGB1的上调(部分来源于心肌细胞)可能是由Ang II通过AT1和AT2受体诱导的。此外,氯沙坦治疗后po诱导的心肌肥厚的改善可能与通过AT1受体减少HMGB1表达有关[29]

3.2.4. 缺血性心脏病

HMGB1在缺血性心脏病中被认为是一种炎症介质,可导致心肌组织损伤增加。确实,心脏缺血再灌注损伤在体内诱导心肌细胞质HMGB1表达增加。在体外,缺氧–再氧化刺激诱导离体心肌细胞HMGB1细胞内水平和细胞外释放增加。HMGB1 box A是一种功能性HMGB1细胞因子活性的拮抗剂。通过对小鼠进行重组HMGB1注射,我们发现它会增加心肌损伤的程度。然而,使用HMGB1作为特异性拮抗剂,我们可以减少梗死面积和降低组织损伤标志物。重组HMGB1或HMGB1 box A对rage缺陷小鼠无影响,表明HMGB1-rage相互作用在心脏缺血再灌注损伤中起重要作用[30]。在实验研究中,缺血损伤后几小时给药HMGB1也能取得较好的效果。然而,实验研究结果表明,HMGB1不仅是缺血再灌注损伤早期的促炎介质,而且是心肌梗死后期恢复的重要因素。在缺血-再灌注损伤中,特别是再灌注后,氧源性自由基的释放引起组织损伤,导致炎症和心肌凋亡,HMGB1均可增强这些损伤。

3.2.5. 心肌炎

心肌炎定义为心肌的炎症,并随之引起心肌损伤,常导致心肌病。它是导致年轻患者心力衰竭的主要原因。最近,HMGB1被发现在介导组织损伤和感染的免疫反应中起重要作用[31]。我们之前的工作集中在HMGB1在各种心脏和代谢应激模型中的作用,表征HMGB1是炎症和纤维化的重要发起者[32]

在研究中,我们观察到自身免疫性心肌炎(EAM)小鼠接种TnI后血清和炎症心肌中HMGB1蛋白水平升高。此外,我们在急性心肌炎患者的炎症心肌组织中检测到HMGB1沉积升高,与没有任何炎症迹象的患者的活检相比作为对照。因此,此时可以假设小鼠和心肌炎患者HMGB1水平升高是由于心肌细胞损伤或由免疫细胞主动触发的。然而,两者的结合也是可能的。为了研究Tni诱导EAM的炎症过程,我们进一步分析了已建立的抑制剂甘草酸和Ab-HMGB1对HMGB1的抑制作用[33]。因此,我们发现抗HMGB1抗体可以减轻心肌炎症,减轻Tni诱导的心肌炎。同样,HMGB1抑制介导的心脏保护作用也可以在其他模型中显示,如I/R损伤[34]。综上所述,这些数据表明HMGB1似乎促进了心脏炎症的进展。

4. HMGB1的临床意义

在临床上,超敏-CRP、肌钙蛋白、肌酸激酶、脑钠肽等指标可进一步诊断心脏病及评估心脏疾病的预后,尤其是肌钙蛋白在心肌梗死的意义,肌酸激酶及肌酸激酶同工酶在心肌病的诊断,但HMGB1尤其是复合物HMGB-1/CXCL 12 (也称为基质细胞衍生因子1)影响G蛋白偶联受体通路,已知其参与巨噬细胞和树突状细胞的迁移[35]最后,已经证明HMGB-1可以发挥一种自我调节机制,因为它激活了血栓蛋白[36]和CD2490途径。反过来,这些通路似乎能够调节HMGB-1对凝血和炎症的影响。

研究强调,RAGE和Toll样受体(TLRs)都可能在促进炎症反应方面发挥重要作用,但是这种影响并不总是单独存在。这些发现可以通过HMGB1和sRAGE的临床相关性得到证实。所以,中断其中一种分子可能是治疗EAM和炎症性心肌病的一种新的治疗策略。Western blot分析进一步显示,HMGB1处理组活化的STAT3、JAK2和JNK蛋白水平显著升高[35]

5. 小结与展望

Meta研究发现,HMGB1对于许多心血管疾病都起着重要的作用,包括心脏病、冠状动脉粥样硬化、高血压、糖尿病、高血脂症以及慢性肾脏病。心肌缺血再灌注损伤大鼠HMGB1表达水平的Meta分析。通过与受体的结合介导多种信号转导通路。但在现有的研究条件下,HMGB1对心脏是有损害作用的,如何将HMGB1转换为心脏的有利因子,更值得我们研究。而且有研究发现HMGB1是一种重要的介质,它可以在多种医疗环境下发挥作用,并且已经被证实是多种疾病的药物靶蛋白[37],尤其是阿司匹林,它的出现使得它的临床应用更加广泛,也为改善现有药物提供了新的思路。

NOTES

*通讯作者。

参考文献

[1] Tang, D., Kang, R., Zeh, H.J. and Lotze, M.T. (2023) The Multifunctional Protein HMGB1: 50 Years of Discovery. Nature Reviews Immunology, 23, 824-841.
https://doi.org/10.1038/s41577-023-00894-6
[2] Cirillo, P., Giallauria, F., Palma, V.D., Maresca, F., Ziviello, F., Bevilacqua, M., et al. (2012) Cardiovascular Disease and High-Mobility Group Box 1—Is a New Inflammatory Killer in Town? Angiology, 64, 343-355.
https://doi.org/10.1177/0003319712458032
[3] Wahid, A., Chen, W., Wang, X. and Tang, X. (2021) High-Mobility Group Box 1 Serves as an Inflammation Driver of Cardiovascular Disease. Biomedicine & Pharmacotherapy, 139, Article 111555.
https://doi.org/10.1016/j.biopha.2021.111555
[4] Voong, C.K., Goodrich, J.A. and Kugel, J.F. (2021) Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules, 11, Article 1451.
https://doi.org/10.3390/biom11101451
[5] Dash, U.K., Mazumdar, D. and Singh, S. (2024) High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Molecular Neurobiology, 61, 8188-8205.
https://doi.org/10.1007/s12035-024-04081-z
[6] Li, J., Wang, Z., Li, J., Zhao, H. and Ma, Q. (2024) HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Translational Stroke Research.
https://doi.org/10.1007/s12975-024-01258-5
[7] Hu, X., Jiang, H., Bai, Q., Zhou, X., Xu, C., Lu, Z., et al. (2009) Increased Serum HMGB1 Is Related to the Severity of Coronary Artery Stenosis. Clinica Chimica Acta, 406, 139-142.
https://doi.org/10.1016/j.cca.2009.06.016
[8] Liu, T., Zhang, D., Zhou, Y., Han, Q., Wang, L., Wu, L., et al. (2015) Increased Serum HMGB1 Level May Predict the Fatal Outcomes in Patients with Chronic Heart Failure. International Journal of Cardiology, 184, 318-320.
https://doi.org/10.1016/j.ijcard.2015.02.088
[9] Liang, W., Wei, R., Zhu, X., Li, J., Lin, A., Chen, J., et al. (2024) Downregulation of HMGB1 Carried by Macrophage-Derived Extracellular Vesicles Delays Atherosclerotic Plaque Formation through Caspase-11-Dependent Macrophage Pyroptosis. Molecular Medicine, 30, Article No. 38.
https://doi.org/10.1186/s10020-023-00753-z
[10] Boyer, M.J., Kimura, Y., Akiyama, T., Baggett, A.Y., Preston, K.J., Scalia, R., et al. (2020) Endothelial Cell‐Derived Extracellular Vesicles Alter Vascular Smooth Muscle Cell Phenotype through High‐Mobility Group Box Proteins. Journal of Extracellular Vesicles, 9, Article ID: 1781427.
https://doi.org/10.1080/20013078.2020.1781427
[11] Hilgendorf, I., Frantz, S. and Frangogiannis, N.G. (2024) Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circulation Research, 134, 1718-1751.
https://doi.org/10.1161/circresaha.124.323658
[12] Olejarz, W., Łacheta, D. and Kubiak-Tomaszewska, G. (2020) Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. International Journal of Molecular Sciences, 21, Article 3946.
https://doi.org/10.3390/ijms21113946
[13] Mohammadmoradi, S. (2023) The Role of High Mobility Group Box-1 Pathobiology in Angiotensin II-Induced Abdominal Aortic Aneurysms. Doctoral Dissertation, University of Kentucky.
[14] Biscetti, F., Tinelli, G., Rando, M.M., Nardella, E., Cecchini, A.L., Angelini, F., et al. (2021) Association between Carotid Plaque Vulnerability and High Mobility Group Box-1 Serum Levels in a Diabetic Population. Cardiovascular Diabetology, 20, Article No. 114.
https://doi.org/10.1186/s12933-021-01304-8
[15] Benlier, N., Erdoğan, M.B., Keçioğlu, S., Orhan, N. and Çiçek, H. (2019) Association of High Mobility Group Box 1 Protein with Coronary Artery Disease. Asian Cardiovascular and Thoracic Annals, 27, 251-255.
https://doi.org/10.1177/0218492319835725
[16] 汪克定, 熊纤, 田胜兰. 沙库巴曲缬沙坦对老年冠心病患者血清NT-proBNP、Hcy和HMGB1水平及细胞因子的影响[J]. 中国老年学杂志, 2024, 44(12): 2826-2829.
[17] Foglio, E., Pellegrini, L., Russo, M.A. and Limana, F. (2022) HMGB1-Mediated Activation of the Inflammatory-Reparative Response Following Myocardial Infarction. Cells, 11, Article 216.
https://doi.org/10.3390/cells11020216
[18] Zhang, X., Wang, T., Chen, Z., Wang, H., Yin, Y., Wang, L., et al. (2022) HMGB1‐Promoted Neutrophil Extracellular Traps Contribute to Cardiac Diastolic Dysfunction in Mice. Journal of the American Heart Association, 11, e023800.
https://doi.org/10.1161/jaha.121.023800
[19] Kohno, T., Anzai, T., Naito, K., Miyasho, T., Okamoto, M., Yokota, H., et al. (2008) Role of High-Mobility Group Box 1 Protein in Post-Infarction Healing Process and Left Ventricular Remodelling. Cardiovascular Research, 81, 565-573.
https://doi.org/10.1093/cvr/cvn291
[20] Arbustini, E., Giuliani, L., Di Toro, A. and Favalli, V. (2018) Inherited Cardiac Muscle Disease: Dilated Cardiomyopathy. In: Kumar, D. and Elliott, P., Eds., Cardiovascular Genetics and Genomics, Springer International Publishing, 319-366.
https://doi.org/10.1007/978-3-319-66114-8_10
[21] Narumi, T., Shishido, T., Otaki, Y., Kadowaki, S., Honda, Y., Funayama, A., et al. (2015) High-Mobility Group Box 1-Mediated Heat Shock Protein Beta 1 Expression Attenuates Mitochondrial Dysfunction and Apoptosis. Journal of Molecular and Cellular Cardiology, 82, 1-12.
https://doi.org/10.1016/j.yjmcc.2015.02.018
[22] DeWulf, B., Minsart, L., Verdonk, F., Kruys, V., Piagnerelli, M., Maze, M., et al. (2023) High Mobility Group Box 1 (HMGB1): Potential Target in Sepsis-Associated Encephalopathy. Cells, 12, Article 1088.
https://doi.org/10.3390/cells12071088
[23] Feng, W., Wang, J., Yan, X., Zhang, Q., Chai, L., Wang, Q., et al. (2021) ERK/Drp1‐Dependent Mitochondrial Fission Contributes to HMGB1‐Induced Autophagy in Pulmonary Arterial Hypertension. Cell Proliferation, 54, e13048.
https://doi.org/10.1111/cpr.13048
[24] Bauer, E.M., Shapiro, R., Zheng, H., Ahmad, F., Ishizawar, D., Comhair, S.A., et al. (2012) High Mobility Group Box 1 Contributes to the Pathogenesis of Experimental Pulmonary Hypertension via Activation of Toll-Like Receptor 4. Molecular Medicine, 18, 1509-1518.
https://doi.org/10.2119/molmed.2012.00283
[25] Li, W., Hu, K., Yang, J., Xu, X. and Li, N. (2017) HMGB1 Affects the Development of Pulmonary Arterial Hypertension via RAGE. European Review for Medical and Pharmacological Sciences, 21, 3950-3958.
[26] Huang, Y., Su, W., Zhu, Z., Tang, L., Hu, X., Zhou, S., et al. (2016) Elevated Serum HMGB1 in Pulmonary Arterial Hypertension Secondary to Congenital Heart Disease. Vascular Pharmacology, 85, 66-72.
https://doi.org/10.1016/j.vph.2016.08.009
[27] Wang, J., Tian, X., Peng, Z., Li, W., Cao, Y., Li, Y., et al. (2019) HMGB1/TLR4 Promotes Hypoxic Pulmonary Hypertension via Suppressing BMPR2 Signaling. Vascular Pharmacology, 117, 35-44.
https://doi.org/10.1016/j.vph.2018.12.006
[28] Hu, X., Jiang, H., Bai, Q., Zhou, X., Xu, C., Lu, Z., et al. (2009) Increased Serum HMGB1 Is Related to the Severity of Coronary Artery Stenosis. Clinica Chimica Acta, 406, 139-142.
https://doi.org/10.1016/j.cca.2009.06.016
[29] Zhang, L., Zhang, B., Yu, Y., Wang, J., Wu, J., Su, Y., et al. (2021) Angiotensin II Increases HMGB1 Expression in the Myocardium through AT1 and AT2 Receptors When under Pressure Overload. International Heart Journal, 62, 162-170.
https://doi.org/10.1536/ihj.20-384
[30] Bangert, A., Andrassy, M., Müller, A., Bockstahler, M., Fischer, A., Volz, C.H., et al. (2015) Critical Role of RAGE and HMGB1 in Inflammatory Heart Disease. Proceedings of the National Academy of Sciences, 113, E155-E164.
https://doi.org/10.1073/pnas.1522288113
[31] Cicchinelli, S., Pignataro, G., Gemma, S., Piccioni, A., Picozzi, D., Ojetti, V., et al. (2024) PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. International Journal of Molecular Sciences, 25, Article 962.
https://doi.org/10.3390/ijms25020962
[32] Andrassy, M., Volz, H.C., Riedle, N., Gitsioudis, G., Seidel, C., Laohachewin, D., et al. (2011) HMGB1 as a Predictor of Infarct Transmurality and Functional Recovery in Patients with Myocardial Infarction. Journal of Internal Medicine, 270, 245-253.
https://doi.org/10.1111/j.1365-2796.2011.02369.x
[33] Gui, Y., Sun, J., You, W., Wei, Y., Tian, H. and Jiang, S. (2020) Glycyrrhizin Suppresses Epithelial-Mesenchymal Transition by Inhibiting High-Mobility Group Box1 via the TGF-β1/Smad2/3 Pathway in Lung Epithelial Cells. PeerJ, 8, e8514.
https://doi.org/10.7717/peerj.8514
[34] Yu, C., Xiang, Y., Zhang, M., Wen, J., Duan, X., Wang, L., et al. (2024) Glycyrrhizic Acid Alleviates Semen Strychni-Induced Neurotoxicity through the Inhibition of HMGB1 Phosphorylation and Inflammatory Responses. Journal of Neuroimmune Pharmacology, 19, Article No. 21.
https://doi.org/10.1007/s11481-024-10128-8
[35] Campana, L., Bosurgi, L., Bianchi, M.E., Manfredi, A.A. and Rovere-Querini, P. (2009) Requirement of HMGB1 for Stromal Cell-Derived Factor-1/CXCL12-Dependent Migration of Macrophages and Dendritic Cells. Journal of Leukocyte Biology, 86, 609-615.
https://doi.org/10.1189/jlb.0908576
[36] Perazzi, M., Piffero, R., Minisini, R., et al. (2023) High Mobility Group Box-1 as a Candidate Biomarker of Portal Vein Thrombosis in Patients with Hepatocellular Carcinoma. Preprints.
https://doi.org/10.20944/preprints202311.0389.v1
[37] Zheng, X., Lu, J., Liu, J., Zhou, L. and He, Y. (2023) HMGB Family Proteins: Potential Biomarkers and Mechanistic Factors in Cardiovascular Diseases. Biomedicine & Pharmacotherapy, 165, Article 115118.
https://doi.org/10.1016/j.biopha.2023.115118