[1]
|
Tang, D., Kang, R., Zeh, H.J. and Lotze, M.T. (2023) The Multifunctional Protein HMGB1: 50 Years of Discovery. Nature Reviews Immunology, 23, 824-841. https://doi.org/10.1038/s41577-023-00894-6
|
[2]
|
Cirillo, P., Giallauria, F., Palma, V.D., Maresca, F., Ziviello, F., Bevilacqua, M., et al. (2012) Cardiovascular Disease and High-Mobility Group Box 1—Is a New Inflammatory Killer in Town? Angiology, 64, 343-355. https://doi.org/10.1177/0003319712458032
|
[3]
|
Wahid, A., Chen, W., Wang, X. and Tang, X. (2021) High-Mobility Group Box 1 Serves as an Inflammation Driver of Cardiovascular Disease. Biomedicine & Pharmacotherapy, 139, Article 111555. https://doi.org/10.1016/j.biopha.2021.111555
|
[4]
|
Voong, C.K., Goodrich, J.A. and Kugel, J.F. (2021) Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules, 11, Article 1451. https://doi.org/10.3390/biom11101451
|
[5]
|
Dash, U.K., Mazumdar, D. and Singh, S. (2024) High Mobility Group Box Protein (HMGB1): A Potential Therapeutic Target for Diabetic Encephalopathy. Molecular Neurobiology, 61, 8188-8205. https://doi.org/10.1007/s12035-024-04081-z
|
[6]
|
Li, J., Wang, Z., Li, J., Zhao, H. and Ma, Q. (2024) HMGB1: A New Target for Ischemic Stroke and Hemorrhagic Transformation. Translational Stroke Research. https://doi.org/10.1007/s12975-024-01258-5
|
[7]
|
Hu, X., Jiang, H., Bai, Q., Zhou, X., Xu, C., Lu, Z., et al. (2009) Increased Serum HMGB1 Is Related to the Severity of Coronary Artery Stenosis. Clinica Chimica Acta, 406, 139-142. https://doi.org/10.1016/j.cca.2009.06.016
|
[8]
|
Liu, T., Zhang, D., Zhou, Y., Han, Q., Wang, L., Wu, L., et al. (2015) Increased Serum HMGB1 Level May Predict the Fatal Outcomes in Patients with Chronic Heart Failure. International Journal of Cardiology, 184, 318-320. https://doi.org/10.1016/j.ijcard.2015.02.088
|
[9]
|
Liang, W., Wei, R., Zhu, X., Li, J., Lin, A., Chen, J., et al. (2024) Downregulation of HMGB1 Carried by Macrophage-Derived Extracellular Vesicles Delays Atherosclerotic Plaque Formation through Caspase-11-Dependent Macrophage Pyroptosis. Molecular Medicine, 30, Article No. 38. https://doi.org/10.1186/s10020-023-00753-z
|
[10]
|
Boyer, M.J., Kimura, Y., Akiyama, T., Baggett, A.Y., Preston, K.J., Scalia, R., et al. (2020) Endothelial Cell‐Derived Extracellular Vesicles Alter Vascular Smooth Muscle Cell Phenotype through High‐Mobility Group Box Proteins. Journal of Extracellular Vesicles, 9, Article ID: 1781427. https://doi.org/10.1080/20013078.2020.1781427
|
[11]
|
Hilgendorf, I., Frantz, S. and Frangogiannis, N.G. (2024) Repair of the Infarcted Heart: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Circulation Research, 134, 1718-1751. https://doi.org/10.1161/circresaha.124.323658
|
[12]
|
Olejarz, W., Łacheta, D. and Kubiak-Tomaszewska, G. (2020) Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. International Journal of Molecular Sciences, 21, Article 3946. https://doi.org/10.3390/ijms21113946
|
[13]
|
Mohammadmoradi, S. (2023) The Role of High Mobility Group Box-1 Pathobiology in Angiotensin II-Induced Abdominal Aortic Aneurysms. Doctoral Dissertation, University of Kentucky.
|
[14]
|
Biscetti, F., Tinelli, G., Rando, M.M., Nardella, E., Cecchini, A.L., Angelini, F., et al. (2021) Association between Carotid Plaque Vulnerability and High Mobility Group Box-1 Serum Levels in a Diabetic Population. Cardiovascular Diabetology, 20, Article No. 114. https://doi.org/10.1186/s12933-021-01304-8
|
[15]
|
Benlier, N., Erdoğan, M.B., Keçioğlu, S., Orhan, N. and Çiçek, H. (2019) Association of High Mobility Group Box 1 Protein with Coronary Artery Disease. Asian Cardiovascular and Thoracic Annals, 27, 251-255. https://doi.org/10.1177/0218492319835725
|
[16]
|
汪克定, 熊纤, 田胜兰. 沙库巴曲缬沙坦对老年冠心病患者血清NT-proBNP、Hcy和HMGB1水平及细胞因子的影响[J]. 中国老年学杂志, 2024, 44(12): 2826-2829.
|
[17]
|
Foglio, E., Pellegrini, L., Russo, M.A. and Limana, F. (2022) HMGB1-Mediated Activation of the Inflammatory-Reparative Response Following Myocardial Infarction. Cells, 11, Article 216. https://doi.org/10.3390/cells11020216
|
[18]
|
Zhang, X., Wang, T., Chen, Z., Wang, H., Yin, Y., Wang, L., et al. (2022) HMGB1‐Promoted Neutrophil Extracellular Traps Contribute to Cardiac Diastolic Dysfunction in Mice. Journal of the American Heart Association, 11, e023800. https://doi.org/10.1161/jaha.121.023800
|
[19]
|
Kohno, T., Anzai, T., Naito, K., Miyasho, T., Okamoto, M., Yokota, H., et al. (2008) Role of High-Mobility Group Box 1 Protein in Post-Infarction Healing Process and Left Ventricular Remodelling. Cardiovascular Research, 81, 565-573. https://doi.org/10.1093/cvr/cvn291
|
[20]
|
Arbustini, E., Giuliani, L., Di Toro, A. and Favalli, V. (2018) Inherited Cardiac Muscle Disease: Dilated Cardiomyopathy. In: Kumar, D. and Elliott, P., Eds., Cardiovascular Genetics and Genomics, Springer International Publishing, 319-366. https://doi.org/10.1007/978-3-319-66114-8_10
|
[21]
|
Narumi, T., Shishido, T., Otaki, Y., Kadowaki, S., Honda, Y., Funayama, A., et al. (2015) High-Mobility Group Box 1-Mediated Heat Shock Protein Beta 1 Expression Attenuates Mitochondrial Dysfunction and Apoptosis. Journal of Molecular and Cellular Cardiology, 82, 1-12. https://doi.org/10.1016/j.yjmcc.2015.02.018
|
[22]
|
DeWulf, B., Minsart, L., Verdonk, F., Kruys, V., Piagnerelli, M., Maze, M., et al. (2023) High Mobility Group Box 1 (HMGB1): Potential Target in Sepsis-Associated Encephalopathy. Cells, 12, Article 1088. https://doi.org/10.3390/cells12071088
|
[23]
|
Feng, W., Wang, J., Yan, X., Zhang, Q., Chai, L., Wang, Q., et al. (2021) ERK/Drp1‐Dependent Mitochondrial Fission Contributes to HMGB1‐Induced Autophagy in Pulmonary Arterial Hypertension. Cell Proliferation, 54, e13048. https://doi.org/10.1111/cpr.13048
|
[24]
|
Bauer, E.M., Shapiro, R., Zheng, H., Ahmad, F., Ishizawar, D., Comhair, S.A., et al. (2012) High Mobility Group Box 1 Contributes to the Pathogenesis of Experimental Pulmonary Hypertension via Activation of Toll-Like Receptor 4. Molecular Medicine, 18, 1509-1518. https://doi.org/10.2119/molmed.2012.00283
|
[25]
|
Li, W., Hu, K., Yang, J., Xu, X. and Li, N. (2017) HMGB1 Affects the Development of Pulmonary Arterial Hypertension via RAGE. European Review for Medical and Pharmacological Sciences, 21, 3950-3958.
|
[26]
|
Huang, Y., Su, W., Zhu, Z., Tang, L., Hu, X., Zhou, S., et al. (2016) Elevated Serum HMGB1 in Pulmonary Arterial Hypertension Secondary to Congenital Heart Disease. Vascular Pharmacology, 85, 66-72. https://doi.org/10.1016/j.vph.2016.08.009
|
[27]
|
Wang, J., Tian, X., Peng, Z., Li, W., Cao, Y., Li, Y., et al. (2019) HMGB1/TLR4 Promotes Hypoxic Pulmonary Hypertension via Suppressing BMPR2 Signaling. Vascular Pharmacology, 117, 35-44. https://doi.org/10.1016/j.vph.2018.12.006
|
[28]
|
Hu, X., Jiang, H., Bai, Q., Zhou, X., Xu, C., Lu, Z., et al. (2009) Increased Serum HMGB1 Is Related to the Severity of Coronary Artery Stenosis. Clinica Chimica Acta, 406, 139-142. https://doi.org/10.1016/j.cca.2009.06.016
|
[29]
|
Zhang, L., Zhang, B., Yu, Y., Wang, J., Wu, J., Su, Y., et al. (2021) Angiotensin II Increases HMGB1 Expression in the Myocardium through AT1 and AT2 Receptors When under Pressure Overload. International Heart Journal, 62, 162-170. https://doi.org/10.1536/ihj.20-384
|
[30]
|
Bangert, A., Andrassy, M., Müller, A., Bockstahler, M., Fischer, A., Volz, C.H., et al. (2015) Critical Role of RAGE and HMGB1 in Inflammatory Heart Disease. Proceedings of the National Academy of Sciences, 113, E155-E164. https://doi.org/10.1073/pnas.1522288113
|
[31]
|
Cicchinelli, S., Pignataro, G., Gemma, S., Piccioni, A., Picozzi, D., Ojetti, V., et al. (2024) PAMPs and DAMPs in Sepsis: A Review of Their Molecular Features and Potential Clinical Implications. International Journal of Molecular Sciences, 25, Article 962. https://doi.org/10.3390/ijms25020962
|
[32]
|
Andrassy, M., Volz, H.C., Riedle, N., Gitsioudis, G., Seidel, C., Laohachewin, D., et al. (2011) HMGB1 as a Predictor of Infarct Transmurality and Functional Recovery in Patients with Myocardial Infarction. Journal of Internal Medicine, 270, 245-253. https://doi.org/10.1111/j.1365-2796.2011.02369.x
|
[33]
|
Gui, Y., Sun, J., You, W., Wei, Y., Tian, H. and Jiang, S. (2020) Glycyrrhizin Suppresses Epithelial-Mesenchymal Transition by Inhibiting High-Mobility Group Box1 via the TGF-β1/Smad2/3 Pathway in Lung Epithelial Cells. PeerJ, 8, e8514. https://doi.org/10.7717/peerj.8514
|
[34]
|
Yu, C., Xiang, Y., Zhang, M., Wen, J., Duan, X., Wang, L., et al. (2024) Glycyrrhizic Acid Alleviates Semen Strychni-Induced Neurotoxicity through the Inhibition of HMGB1 Phosphorylation and Inflammatory Responses. Journal of Neuroimmune Pharmacology, 19, Article No. 21. https://doi.org/10.1007/s11481-024-10128-8
|
[35]
|
Campana, L., Bosurgi, L., Bianchi, M.E., Manfredi, A.A. and Rovere-Querini, P. (2009) Requirement of HMGB1 for Stromal Cell-Derived Factor-1/CXCL12-Dependent Migration of Macrophages and Dendritic Cells. Journal of Leukocyte Biology, 86, 609-615. https://doi.org/10.1189/jlb.0908576
|
[36]
|
Perazzi, M., Piffero, R., Minisini, R., et al. (2023) High Mobility Group Box-1 as a Candidate Biomarker of Portal Vein Thrombosis in Patients with Hepatocellular Carcinoma. Preprints. https://doi.org/10.20944/preprints202311.0389.v1
|
[37]
|
Zheng, X., Lu, J., Liu, J., Zhou, L. and He, Y. (2023) HMGB Family Proteins: Potential Biomarkers and Mechanistic Factors in Cardiovascular Diseases. Biomedicine & Pharmacotherapy, 165, Article 115118. https://doi.org/10.1016/j.biopha.2023.115118
|