慢性肾脏病非免疫抑制治疗药物研究进展
Advancements in the Research of Non-Immunosuppressive Therapies for Chronic Kidney Disease
DOI: 10.12677/acm.2025.151288, PDF, HTML, XML,   
作者: 王欣菲, 杨 毅*:浙江大学医学院附属第四医院,国际医学院,国际健康医学研究院,肾脏病中心,浙江 义乌
关键词: 慢性肾脏病新兴疗法RAASiSGLT2iMRAChronic Kidney Disease New Therapies RAASi SGLT2i MRA
摘要: 慢性肾脏病正影响全世界越来越多的人。随着疾病不断进展,不少患者最终进入肾脏替代治疗阶段,生活质量下降、经济负担加重。因此,目前针对改善肾脏预后药物的研究层出不穷。近年来临床上出现了一系列被建议用于慢性肾脏病患者长期管理的新药物。在慢性肾脏病患者中适当应用这些新型药物,对延缓肾衰竭进程、推迟进入肾脏替代治疗时间、减少并发症的发生、改善患者的生活质量至关重要。本综述讨论了在CKD管理中一系列非免疫抑制药物的研究进展,例如肾素–血管紧张素–醛固酮系统抑制剂、钠–葡萄糖协同转运蛋白2抑制剂、胰高血糖素样肽-1受体激动剂、非甾体选择性盐皮质激素受体拮抗剂和内皮素受体拮抗剂等,旨在加深人们对于这些药物对疾病作用的理解,推动慢性肾脏病的长期良好管理,改善患者的预后,减小社会负担。
Abstract: Chronic kidney disease (CKD) is increasingly affecting a growing number of individuals worldwide. As the disease progresses, patients inevitably enter the stage of renal replacement therapy, leading to a decline in quality of life and an increased economic burden. Consequently, there is a burgeoning body of research focused on developing medications to improve renal prognosis. In recent years, a series of new drugs have been recommended for the long-term management of patients with CKD in clinical practice. The appropriate application of these novel drugs in patients with CKD is crucial for delaying the progression of renal failure, postponing the initiation of renal replacement therapy, reducing the incidence of complications, and improving patients’ quality of life. This review discusses the research advancements of a range of non-immunosuppressive drugs in CKD management, such as renin-angiotensin-aldosterone system inhibitors, sodium-glucose co-transporter 2 inhibitors, glucagon-like peptide-1 receptor agonists, nonsteroidal selective mineralocorticoid receptor antagonists, and endothelin receptor antagonists. The aim is to deepen the understanding of the role of these drugs in the disease, promote long-term effective management of CKD, improve patient outcomes, and reduce the societal burden.
文章引用:王欣菲, 杨毅. 慢性肾脏病非免疫抑制治疗药物研究进展[J]. 临床医学进展, 2025, 15(1): 2193-2202. https://doi.org/10.12677/acm.2025.151288

1. 引言

慢性肾脏病(CKD)是一种进行性疾病。定义为肾脏结构及功能异常持续超过3个月,并且这种异常对健康产生影响[1]。据2017年进行的流行病学调查显示,CKD影响全球超过8亿人[2],全世界大约10%的成年人受到不同形式的慢性肾病的影响,每年导致1200万人死亡。到2040年,慢性肾病预计将成为全球第五大死因[3] [4]。CKD在老年人、女性、高血压、糖尿病患者以及某些种群(如非裔人群)中更常见,常导致巨大的经济及健康负担[5]

肾脏病的护理涉及两项关键任务:预防CKD和延缓其进展[6]。糖尿病、高血压、原发性肾脏疾病是发生慢性肾脏病的主要病因[7] [8]。对于CKD的预防及延缓进展治疗离不开对于血糖、血压等因素的严格控制。为实现这些目标,调整特定生活方式,如适度参加活动锻炼以增加活动量、控制体重、戒烟、限钠、地中海饮食模式(食用植物性食物、全谷物、鱼和橄榄油,以及红肉和加工肉类的摄入量低)等措施正在被实施,并被认为是具有一系列健康益处的主要非药物疗法[9]-[13]

此外,随着科学技术的发展,越来越多药物被研究用于延缓CKD进展。如ACEI/ARB、SGLT2抑制剂等已被多个指南推荐用于CKD治疗。本文主要聚焦于CKD的非免疫抑制治疗药物,旨在加深人们对于慢性肾脏病治疗中非免疫抑制药物的了解,推动这些高效疗法在CKD人群中的适当应用,改善CKD患者的生活,并降低全球肾衰竭的发病率[14]

2. 各类非免疫抑制治疗药物

2.1. 肾素–血管紧张素–醛固酮系统抑制剂(RAASi)

RAAS在血压调节、维持体液和钠平衡中起重要作用,该系统的过度活跃参与多种临床疾病的发病机制,包括动脉粥样硬化、高血压、左心室肥大、心肌梗死和心力衰竭等[15]。肾内RAAS的过度活动被认为与CKD进展相关。阻断RAAS是治疗心肾疾病的重大突破,可以降低高血压、CKD、心肌梗塞和心力衰竭患者的死亡率并改善生活质量[16]-[18]。RAASi包括肾素抑制剂(DRIs)、血管紧张素转换酶抑制剂(ACEI)、1型血管紧张素II受体阻滞剂(ARB)和盐皮质激素受体拮抗剂(MRA)。

2.1.1. 血管紧张素转换酶抑制剂(ACEI)及血管紧张素II受体拮抗剂(ARB)

ACEI/ARB分别通过抑制血管紧张素I~II的转换和阻断血管紧张素II的1型受体来阻断RAAS激活。ACEI/ARB对肾脏的保护作用除血压调节外,还可通过舒张出球小动脉压力降低肾小球球内压进而减少蛋白尿。在纳入了422名中晚期非糖尿病性CKD患者的一项随机对照研究中,贝那普利组蛋白尿较基线降低52%。这一结果无疑令人振奋[19]。此外,ACEI/ARB可通过减少促进肾小球硬化和纤维化的细胞因子,如转化生长因子-β(TGF-β)的产生实现肾脏保护[20] [21]

目前,ACEI/ARB在降低CKD患者心血管事件风险和延缓终末期肾病方面的益处已得到充分证实[22]-[24]。并被KDIGO指南推荐为慢性肾脏病的一线用药[1]

ACEI/ARB在CKD 2~3期应用对改善蛋白尿以及延缓肾功能衰竭的益处是无可争议的。但是,部分研究者指出在晚期肾功能不全(CKD 4~5期)的患者中使用ACEI/ARB导致的急性肾损伤、低血压以及高钾血症风险可能会使患者更快进入肾脏替代治疗。是否可以在晚期CKD患者中应用此类药物仍有争议[25]。一项在52例CKD 4~5期成年患者展开的小型研究表明在本阶段停止ACEI/ARB的使用可延迟患者进入肾脏替代治疗的时间[26]。而在针对晚期儿童CKD患者的研究表明在4~5期停用ACEI/ARB加速了肾衰竭的进展[27]。这截然不同的结果可能与其年龄差异所带来的疾病谱差异以及生理学差异相关[28]。但无论是在成人研究还是在儿童研究,都发现了停用ACEI/ARB后蛋白尿升高,并且也有证据表明,使用RAAS抑制剂后GFR初始急性下降幅度越大,随后肾功能的下降就越慢[29]。随后进行的STOP-ACEi临床随机对照试验结果表明停用RAASi并未减缓eGFR的下降速度。并且STOP和ACEI治疗组低血压、急性肾损伤、高钾血症不良事件的发生率相似。在晚期CKD患者中停用RAASi并未看到明显获益[30]。2024版KDIGO指南提出即使eGFR低于30 ml/min per 1.73 m2,仍推荐已经开始使用ACEI/ARB的患者继续使用该类药物。并且针对其可能出现的高钾血症风险,建议采用降钾措施而非减少或停用ACEI/ARB类药物[1]

晚期CKD患者病情重,用药选择少,而RAASi具有明确的肾脏及心血管保护作用。目前尚没有明确证据表明RASSi在晚期慢性肾脏病患者中的应用禁忌。不可否认,应用RAASi时,晚期肾脏病患者可能更容易受到RAASi的血流动力学影响,发生高钾血症、低血压风险升高。针对这些潜在的不良事件风险应更注重预防。具体措施包括临床用药前医生充分向患者告知用药风险及药物对于疾病的获益,增加患者依从性。加强用药过程中患者对于血压、血钾以及肾功能的监测,以尽力预防不良事件的发生,而非直接停用药物。此外,区分因舒张出球小动脉导致的血肌酐升高和药物导致的急性肾损伤非常重要,前者通常通过停药可逆转。避免不必要的停药,延长RAASi的使用时间,以达到对患者最大的肾脏、心血管获益。

2.1.2. 非甾体类盐皮质激素受体拮抗剂(MRA)

作为一种新型非甾体高选择性MRA,不同于甾体类MRA (如螺内酯和依普利酮),非奈利酮(Finerenone)对盐皮质激素受体具有更高的选择性、更强的亲和力,能够高效地阻断醛固酮导致的MR过度激活,从而抑制炎症反应、纤维化,延缓对肾脏结构和功能造成的损伤[31]-[33]

已有大量研究表明非奈利酮对糖尿病患者具有心肾获益。在一项荟萃分析中,研究者调查了在CKD患者中使用MRA治疗的疗效及安全性,结果表明在ACEI/ARB基线治疗的基础上加入MRA导致患者收缩压、舒张压、肾小球滤过率及尿蛋白均较基线降低[34]。随后在同时患有2型糖尿病和CKD的更大人群中进行的双盲、随机对照临床试验的长期随访数据中进一步证明了MRA的心肾保护作用[35] [36]

在安全性方面,新一代MRA非奈利酮出现不良反应如高钾血症、男性乳房发育风险更小,药物的总体耐受性良好[37]。在患有糖尿病的CKD患者中,应用新型非甾体类盐皮质激素受体拮抗剂目前被多项国内外指南所推荐[1] [38]。2021年7月,美国食品药品监督管理局(FDA)批准非奈利酮用于降低2DM相关患者肾功能下降、心血管死亡、心肌梗塞、肾衰竭和高血压心力衰竭的风险。2022年6月,非奈利酮在我国获批上市,逐渐进入临床。但在临床的使用中,肾脏病医生仍需注意监测其发生高钾血症以及肾功能短期急速下降风险。目前仍需更多研究去证实新一代MRA在糖尿病肾病之外的应用范围以及其与其他护肾药物的联合应用疗效。

2.2. 钠–葡萄糖协同转运蛋白2抑制剂(SGLT2i)

SGLT2i靶向作用于位于肾脏近端小管上皮细胞的管腔面的SGLT2蛋白。抑制SGLT2蛋白可以减少肾小管对葡萄糖的重吸收,从而产生降糖效应[39]。此外,SGLT2i还通过增强了Na+/H+交换蛋白3 (通常占近端肾小管钠重吸收的30%)的磷酸化以减少其活性。近端肾小管钠重吸收减少增加了钠向远曲小管中肾小球致密斑的输送,随后增加肾小球入球小动脉的张力,从而降低肾小球内压。这种机制导致肾小球滤过的可逆减少,这被认为是观察到在肾病中尿蛋白减少的基础[40] [41]。并且,有研究者指出由于进入肾小管的蛋白质较少,肾小管细胞重新吸收的蛋白质较少,SGLT2i还可以防止肾小管间质毒性[42]。除了降糖、利钠、利水、减少蛋白滤过作用,SGLT2i还被认为具有抗炎、抗氧化、抗肾脏纤维化作用[39] [43] [44]

如今,SGLT2i以其良好的降糖疗效和安全性以及日益明确的心肾保护作用机制和证据,已被众多指南推荐用于治疗成人CKD合并2型糖尿病患者[1] [45] [46]。在EMPA-REG OUTCOME随机对照实验中,在2型糖尿病患者中使用恩格列净治疗导致患者进展为大量蛋白尿的风险降低38%,发生肾病或原有肾病恶化的风险降低39% [47]。随后,纳入了未合并糖尿病的CKD患者的DAPA-CKD和EMPA-KIDNEY临床随机对照试验进一步证实了SGLT2i在糖尿病肾病以及无糖尿病的慢性肾病中都具有显著的保护作用,且低血糖风险较安慰组无明显差异[48] [49]。2022年,英国国家卫生与临床优化研究所(NICE)推荐在T2DM患者或uACR为22.6 mg/mol或更高患者(无论是否患有糖尿病)中使用达格列净和RASi。[50]表明SGLT2i的使用不应局限于糖尿病合并慢性肾脏病患者。其对于显著改善蛋白尿、降低心血管不良事件发生率的重要作用以及即使在非糖尿病患者中应用仍具有安全性的特点大大扩宽了SGLT2i在临床的应用范围。

2024版KDIGO指南已将SGLT2i列为CKD一线治疗药物。除在代谢性因素导致的CKD患者中应用之外,SGLT2i在IgA肾病中作为基线治疗依旧具有保护作用。在使用了全剂量的RAASi的IgA肾病患者中应用SGLT2i同样观察到蛋白尿的明显减少,患者发展至肾衰竭风险下降[51]。此外,在先前的DAPA-CKD和EMPA-KIDNEY试验提示达格列净或恩格列净降低CKD进展的风险32%。其中纳入了136名膜性肾病患者。然而,膜性肾病的结果并没有被专门报道。SGLT2i在膜性肾病中的保护作用仍需更多研究。

除在慢性肾病中的应用,SGLT2i在减肥、非酒精性脂肪性肝病、血压控制、贫血管理和预防新发心房颤动均表现出患者获益[52]。然而,这些疗法的证据基础仍然存在重要空白,包括它们在肾衰竭患者、肾移植后患者、多囊肾患者或1型糖尿病患者中的使用,目前仍需要更多的临床试验来进一步扩大SGLT2i在患病人群中的使用。

2.3. 胰高血糖素样肽-1受体激动剂(GLP-1RA)

GLP‐1RA是一种肠促胰素类降糖药物,通过激活GLP-1受体以葡萄糖浓度依赖的方式刺激胰岛素分泌并抑制胰高糖素分泌,同时增加肌肉和脂肪组织摄取葡萄糖、抑制肝脏葡萄糖的生成而发挥降糖作用。此外,GLP‐1RA可以通过减慢胃排空、减少大脑中的食欲刺激抑制食欲,是一种治疗2型糖尿病的新型药物[53]。GLP-1RA对于2型糖尿病患者发生心血管事件和肾脏不良事件的保护作用已在多项研究中被证实[54]-[56]。其肾脏保护机制可通过直接或间接作用产生。直接影响包括抑制近端肾小管细胞中的NHE3来利钠利尿以及减少氧化应激和炎症[57] [58]。此外,GLP1-RA还可以通过减肥和改善血糖控制、利钠改善血压等间接途径来影响肾脏。

研究认为,无论eGFR是否较低,GLP1-RA都 SGLT2i具有更多的降低糖化血红蛋白、降脂和减轻体重作用[59]。KDIGO指南建议将GLP1-RA作为SGLT2i治疗开始后进一步控制血糖或高ASCVD风险患者的下一线治疗药物。但值得注意的是,目前在CKD 5期、透析、肾移植、1型糖尿病患者中使用GLP1-RA的数据有限,仍需更多研究进一步探索。

2.4. 血管紧张素受体–脑啡肽酶抑制剂(ARNI)

ARNI是一种同时作用于RAAS系统和利钠肽双系统的药物。在《2023中国高血压防治指南》要点展望和讨论中,ARNI首次作为高血压常用药进入指南推荐,目前全球上市的ARNI类药物仅有沙库巴曲缬沙坦一种[60]

ARNI可通过抵消ACEI或ARB单药治疗的神经激素激活、增加心肌细胞中的环磷酸鸟苷水平和抑制RAAS使射血分数保留的心衰患者群体获益。动物研究表明,ARNI在减少炎症和心肾纤维化方面优于ACEI/ARB [61]。在PARADIGM-HF和PARAGON-HF两项随机临床试验中均报告,与ACEi或ARB单药治疗相比,ARNI明显降低心血管事件死亡和心衰入院率。PARADIGM-HF和PARAGON-HF的汇总分析表明ARNI降低严重不良肾脏结局和eGFR下降的风险[62]-[64]

值得注意的是,在随机实验中观察到高钾血症、肌酐短期内上升以及低血压风险,目前尚无证据表明将此类药物用于无心衰的CKD患者,仅用于预防CKD进展,临床对CKD患者应用ARNI时应注意告知患者不良反应风险以及促进定期监测实验室指标。

2.5. 内皮素受体拮抗剂(ERA)

内皮素(ET)是一类由21个氨基酸组成的血管收缩肽,具有调节血压、改变心输出量、改变全身血管阻力以及调节中枢和周围神经系统活动等作用。在肾脏中,ET激活可通过ET-1和ETA介导的促纤维化途径加速CKD的进展,在糖尿病肾病、高血压肾病、局灶节段性肾小球硬化症和常染色体显性遗传性多囊肾病等疾病中发挥作用。此外,研究表明ET-1对肾血管床具有强大的血管收缩作用,导致GFR降低、滤过分数增加以及钠和液体潴留,进一步加速肾脏病进展[65]-[68]

在高血压肾病的大鼠模型中联合使用ARB和ERA发现大鼠的蛋白尿和死亡率较两者单用均更低[69]。进一步在局灶节段性肾小球硬化患者中进行的一项评估内皮素受体拮抗剂sparsentan与单独ARB (厄贝沙坦)治疗的疗效和安全性的2期研究(DUET研究)结果表明,与厄贝沙坦相比,sparsentan的8周疗程安全、耐受性良好,并且导致蛋白尿显著减少[70]。在联合应用ERA和SGLT2i的研究中观察到尿白蛋白减少幅度较单独使用ERA组更大,体重和B型利钠肽水平增加幅度也更小[71]

目前,内皮素受体拮抗剂sparsentan和aprocitentan已分别获得FDA批准用于治疗IgA肾病和难治性高血压。考虑到体液潴留和心力衰竭的风险,ERA在心血管事件风险更高的2型糖尿病和CKD人群中的应用疗效及安全性还需更多临床试验去证明[72]

2.6. 已酮可可碱(PTF)

己酮可可碱(PTF)是一种非特异性磷酸二酯酶抑制剂。其作用机制包括抑制环状-3’,5’-磷酸二酯酶(PDE),导致环磷酸腺苷(cAMP)的细胞内浓度增加,并引起蛋白激酶A(PKA)的激活。它可以改善微循环并具有很强的造血特性。另一个优点是其强大的抗增殖和抗炎特性[73]

一些临床试验已证明PTF 可以减少糖尿病患者的白蛋白尿并减缓肾脏疾病的进展,随后一项小型随机对照试验进一步表明了PTF长期治疗可减缓肾脏疾病的进展速度并降低心血管风险[74]-[76]。在晚期CKD患者中同样观察到肾脏保护作用[77]

但目前的研究大多在小数量及单样本人群中展开,且随访时间短。并且,在研究中观察到明显高于安慰剂组的胃肠道不适症状也在一定程度上限制了此药物的临床应用[78]

3. 结论

CKD患者面临着许多不良结局的高风险。幸运的是,在过去十年中,CKD领域取得了重大进展,出现了许多延缓肾脏病进展的新疗法。本综述主要介绍了一系列新兴非免疫治疗药物。新疗法的出现及应用可以为CKD进展和发生心血管不良事件提供有效的预防策略。

NOTES

*通讯作者。

参考文献

[1] Stevens, P.E., Ahmed, S.B., Carrero, J.J., Foster, B., Francis, A., Hall, R.K., et al. (2024) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314.
https://doi.org/10.1016/j.kint.2023.10.018
[2] Jager, K.J., Kovesdy, C., Langham, R., Rosenberg, M., Jha, V. and Zoccali, C. (2019) A Single Number for Advocacy and Communication—Worldwide More than 850 Million Individuals Have Kidney Diseases. Kidney International, 96, 1048-1050.
https://doi.org/10.1016/j.kint.2019.07.012
[3] Rhee, C.M. and Kovesdy, C.P. (2015) Spotlight on CKD Deaths—Increasing Mortality Worldwide. Nature Reviews Nephrology, 11, 199-200.
https://doi.org/10.1038/nrneph.2015.25
[4] (2015) Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet, 385, 117-171.
[5] Kovesdy, C.P. (2022) Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney International Supplements, 12, 7-11.
https://doi.org/10.1016/j.kisu.2021.11.003
[6] Pethő, Á.G., Tapolyai, M., Csongrádi, É. and Orosz, P. (2024) Management of Chronic Kidney Disease: The Current Novel and Forgotten Therapies. Journal of Clinical & Translational Endocrinology, 36, Article ID: 100354.
https://doi.org/10.1016/j.jcte.2024.100354
[7] National Institute for Health and Care Excellence: Guidelines (2015) Chronic Kidney Disease in Adults: Assessment and Management. National Institute for Health and Care Excellence (NICE).
[8] Hamrahian, S.M. and Falkner, B. (2016) Hypertension in Chronic Kidney Disease. In: Islam, M.S., Ed., Hypertension: From Basic Research to Clinical Practice, Springer, 307-325.
https://doi.org/10.1007/5584_2016_84
[9] Kalantar-Zadeh, K., Jafar, T.H., Nitsch, D., Neuen, B.L. and Perkovic, V. (2021) Chronic Kidney Disease. The Lancet, 398, 786-802.
https://doi.org/10.1016/s0140-6736(21)00519-5
[10] Aucella, F., Valente, G.L. and Catizone, L. (2014) The Role of Physical Activity in the CKD Setting. Kidney and Blood Pressure Research, 39, 97-106.
https://doi.org/10.1159/000355783
[11] Borrelli, S., Provenzano, M., Gagliardi, I., Michael, A., Liberti, M., De Nicola, L., et al. (2020) Sodium Intake and Chronic Kidney Disease. International Journal of Molecular Sciences, 21, Article 4744.
https://doi.org/10.3390/ijms21134744
[12] Schrauben, S.J., Apple, B.J. and Chang, A.R. (2022) Modifiable Lifestyle Behaviors and CKD Progression: A Narrative Review. Kidney360, 3, 752-778.
https://doi.org/10.34067/kid.0003122021
[13] Valente, A., Jesus, J., Breda, J., Dinis, A., Correia, A., Godinho, J., et al. (2022) Dietary Advice in Hemodialysis Patients: Impact of a Telehealth Approach during the COVID-19 Pandemic. Journal of Renal Nutrition, 32, 319-325.
https://doi.org/10.1053/j.jrn.2021.04.002
[14] Chen, T.K., Hoenig, M.P., Nitsch, D. and Grams, M.E. (2023) Advances in the Management of Chronic Kidney Disease. BMJ, 383, e074216.
https://doi.org/10.1136/bmj-2022-074216
[15] Zhang, F., Liu, H., Liu, D., Liu, Y., Li, H., Tan, X., et al. (2017) Effects of RAAS Inhibitors in Patients with Kidney Disease. Current Hypertension Reports, 19, Article No. 72.
https://doi.org/10.1007/s11906-017-0771-9
[16] Lewis, E.J., Hunsicker, L.G., Clarke, W.R., Berl, T., Pohl, M.A., Lewis, J.B., et al. (2001) Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. New England Journal of Medicine, 345, 851-860.
https://doi.org/10.1056/nejmoa011303
[17] Brenner, B.M., Cooper, M.E., de Zeeuw, D., Keane, W.F., Mitch, W.E., Parving, H., et al. (2001) Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 345, 861-869.
https://doi.org/10.1056/nejmoa011161
[18] Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R. and Dagenais, G. (2000) Effects of an Angiotensin-Converting-enzyme Inhibitor, Ramipril, on Cardiovascular Events in High-Risk Patients. The New England Journal of Medicine, 342, 145-153.
[19] Hou, F.F., Zhang, X., Zhang, G.H., Xie, D., Chen, P.Y., Zhang, W.R., et al. (2006) Efficacy and Safety of Benazepril for Advanced Chronic Renal Insufficiency. New England Journal of Medicine, 354, 131-140.
https://doi.org/10.1056/nejmoa053107
[20] Dandona, P., Dhindsa, S., Ghanim, H. and Chaudhuri, A. (2006) Angiotensin II and Inflammation: The Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockade. Journal of Human Hypertension, 21, 20-27.
https://doi.org/10.1038/sj.jhh.1002101
[21] Zhao, M., Bai, M., Ding, G., Zhang, Y., Huang, S., Jia, Z., et al. (2018) Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction. Kidney Diseases, 4, 83-94.
https://doi.org/10.1159/000488242
[22] Koppe, L. and Fouque, D. (2019) The Role for Protein Restriction in Addition to Renin-Angiotensin-Aldosterone System Inhibitors in the Management of CKD. American Journal of Kidney Diseases, 73, 248-257.
https://doi.org/10.1053/j.ajkd.2018.06.016
[23] Bhandari, S., Mehta, S., Khwaja, A., Cleland, J.G.F., Ives, N., Brettell, E., et al. (2022) Renin-Angiotensin System Inhibition in Advanced Chronic Kidney Disease. New England Journal of Medicine, 387, 2021-2032.
https://doi.org/10.1056/nejmoa2210639
[24] Zhang, Y., He, D., Zhang, W., Xing, Y., Guo, Y., Wang, F., et al. (2020) ACE Inhibitor Benefit to Kidney and Cardiovascular Outcomes for Patients with Non-Dialysis Chronic Kidney Disease Stages 3-5: A Network Meta-Analysis of Randomised Clinical Trials. Drugs, 80, 797-811.
https://doi.org/10.1007/s40265-020-01290-3
[25] Weir, M.R., Lakkis, J.I., Jaar, B., Rocco, M.V., Choi, M.J., Kramer, H.J., et al. (2018) Use of Renin-Angiotensin System Blockade in Advanced CKD: An NKF-KDOQI Controversies Report. American Journal of Kidney Diseases, 72, 873-884.
https://doi.org/10.1053/j.ajkd.2018.06.010
[26] Ahmed, A.K., Kamath, N.S., El Kossi, M. and El Nahas, A.M. (2009) The Impact of Stopping Inhibitors of the Renin-Angiotensin System in Patients with Advanced Chronic Kidney Disease. Nephrology Dialysis Transplantation, 25, 3977-3982.
https://doi.org/10.1093/ndt/gfp511
[27] van den Belt, S.M., Heerspink, H.J.L., Kirchner, M., Gracchi, V., Thurn-Valsassina, D., Bayazit, A.K., et al. (2020) Discontinuation of RAAS Inhibition in Children with Advanced CKD. Clinical Journal of the American Society of Nephrology, 15, 625-632.
https://doi.org/10.2215/cjn.09750819
[28] Gaudreault-Tremblay, M. and Foster, B.J. (2020) Benefits of Continuing RAAS Inhibitors in Advanced CKD. Clinical Journal of the American Society of Nephrology, 15, 592-593.
https://doi.org/10.2215/cjn.02920320
[29] Holtkamp, F.A., de Zeeuw, D., Thomas, M.C., Cooper, M.E., de Graeff, P.A., Hillege, H.J.L., et al. (2011) An Acute Fall in Estimated Glomerular Filtration Rate during Treatment with Losartan Predicts a Slower Decrease in Long-Term Renal Function. Kidney International, 80, 282-287.
https://doi.org/10.1038/ki.2011.79
[30] Bhandari, S., Mehta, S., Khawaja, A., Cleland, J.G.F., Ives, N. and Cockwell, P. (2024) Evaluation of the Stopping Angiotensin Converting Enzyme Inhibitor Compared to Angiotensin Receptor Blocker (STOP Acei Trial) in Advanced and Progressive Chronic Kidney Disease. Kidney International, 105, 200-208.
https://doi.org/10.1016/j.kint.2023.09.012
[31] Barrera-Chimal, J., Girerd, S. and Jaisser, F. (2019) Mineralocorticoid Receptor Antagonists and Kidney Diseases: Pathophysiological Basis. Kidney International, 96, 302-319.
https://doi.org/10.1016/j.kint.2019.02.030
[32] Barrera-Chimal, J., Estrela, G.R., Lechner, S.M., Giraud, S., El Moghrabi, S., Kaaki, S., et al. (2018) The Myeloid Mineralocorticoid Receptor Controls Inflammatory and Fibrotic Responses after Renal Injury via Macrophage Interleukin-4 Receptor Signaling. Kidney International, 93, 1344-1355.
https://doi.org/10.1016/j.kint.2017.12.016
[33] Guo, C., Martinez-Vasquez, D., Mendez, G.P., Toniolo, M.F., Yao, T.M., Oestreicher, E.M., et al. (2006) Mineralocorticoid Receptor Antagonist Reduces Renal Injury in Rodent Models of Types 1 and 2 Diabetes Mellitus. Endocrinology, 147, 5363-5373.
https://doi.org/10.1210/en.2006-0944
[34] Currie, G., Taylor, A.H.M., Fujita, T., Ohtsu, H., Lindhardt, M., Rossing, P., et al. (2016) Effect of Mineralocorticoid Receptor Antagonists on Proteinuria and Progression of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. BMC Nephrology, 17, Article No. 127.
https://doi.org/10.1186/s12882-016-0337-0
[35] Filippatos, G., Anker, S.D., Agarwal, R., Ruilope, L.M., Rossing, P., Bakris, G.L., et al. (2022) Finerenone Reduces Risk of Incident Heart Failure in Patients with Chronic Kidney Disease and Type 2 Diabetes: Analyses from the FIGARO-DKD Trial. Circulation, 145, 437-447.
https://doi.org/10.1161/circulationaha.121.057983
[36] Pitt, B., Filippatos, G., Agarwal, R., Anker, S.D., Bakris, G.L., Rossing, P., et al. (2021) Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. New England Journal of Medicine, 385, 2252-2263.
https://doi.org/10.1056/nejmoa2110956
[37] Bakris, G.L., Agarwal, R., Anker, S.D., Pitt, B., Ruilope, L.M., Rossing, P., et al. (2020) Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. New England Journal of Medicine, 383, 2219-2229.
https://doi.org/10.1056/nejmoa2025845
[38] 《非奈利酮在糖尿病合并慢性肾脏病患者中应用的中国专家共识(版)》专家组. 非奈利酮在糖尿病合并慢性肾脏病患者中应用的中国专家共识(2023版) [J]. 中华肾脏病杂志, 2023, 39(10): 800-888.
[39] Cowie, M.R. and Fisher, M. (2020) SGLT2 Inhibitors: Mechanisms of Cardiovascular Benefit Beyond Glycaemic Control. Nature Reviews Cardiology, 17, 761-772.
https://doi.org/10.1038/s41569-020-0406-8
[40] Thomas, M.C. and Cherney, D.Z.I. (2018) The Actions of SGLT2 Inhibitors on Metabolism, Renal Function and Blood Pressure. Diabetologia, 61, 2098-2107.
https://doi.org/10.1007/s00125-018-4669-0
[41] Hou, Y., Zheng, C., Yen, T. and Lu, K. (2020) Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. International Journal of Molecular Sciences, 21, Article 7833.
https://doi.org/10.3390/ijms21217833
[42] Cravedi, P. and Remuzzi, G. (2013) Pathophysiology of Proteinuria and Its Value as an Outcome Measure in Chronic Kidney Disease. British Journal of Clinical Pharmacology, 76, 516-523.
https://doi.org/10.1111/bcp.12104
[43] Peyton, K.J., Behnammanesh, G., Durante, G.L. and Durante, W. (2022) Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1. International Journal of Molecular Sciences, 23, Article 8777.
https://doi.org/10.3390/ijms23158777
[44] Abdollahi, E., Keyhanfar, F., Delbandi, A., Falak, R., Hajimiresmaiel, S.J. and Shafiei, M. (2022) Dapagliflozin Exerts Anti-Inflammatory Effects via Inhibition of LPS-Induced TLR-4 Overexpression and NF-κB Activation in Human Endothelial Cells and Differentiated Macrophages. European Journal of Pharmacology, 918, Article ID: 174715.
https://doi.org/10.1016/j.ejphar.2021.174715
[45] National Institute for Health and Care Excellence Dapagliflozin for Treating Chronic Kidney Disease (2022) Technology Appraisal Guidance.
https://www.nice.org.uk/guidance/ta775
[46] 《钠-葡萄糖转运体2抑制剂在慢性肾脏病患者临床应用的中国专家共识(2023年版)》专家组. 钠-葡萄糖转运体2抑制剂在慢性肾脏病患者临床应用的中国专家共识(2023年版) [J]. 中华肾脏病杂志, 2023, 39(11): 879-888.
[47] Wanner, C., Inzucchi, S.E., Lachin, J.M., Fitchett, D., von Eynatten, M., Mattheus, M., et al. (2016) Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. New England Journal of Medicine, 375, 323-334.
https://doi.org/10.1056/nejmoa1515920
[48] Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/nejmoa2024816
[49] Herrington, W.G., Staplin, N., Wanner, C., Green, J.B., Hauske, S.J., Emberson, J.R., et al. (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127.
https://doi.org/10.1056/nejmoa2204233
[50] National Institute for Health and Care Excellence: Guidelines (2022) Dapagliflozin for Treating Chronic Kidney Disease.
[51] Dong, Y., Shi, S., Liu, L., Zhou, X., Lv, J. and Zhang, H. (2023) Effect of SGLT2 Inhibitors on the Proteinuria Reduction in Patients with Iga Nephropathy. Frontiers in Medicine, 10, Article 1242241.
https://doi.org/10.3389/fmed.2023.1242241
[52] O’Hara, D.V., Lam, C.S.P., McMurray, J.J.V., Yi, T.W., Hocking, S., Dawson, J., et al. (2024) Applications of SGLT2 Inhibitors Beyond Glycaemic Control. Nature Reviews Nephrology, 20, 513-529.
https://doi.org/10.1038/s41581-024-00836-y
[53] Samms, R.J., Coghlan, M.P. and Sloop, K.W. (2020) How May GIP Enhance the Therapeutic Efficacy of GLP-1? Trends in Endocrinology & Metabolism, 31, 410-421.
https://doi.org/10.1016/j.tem.2020.02.006
[54] Sattar, N., Lee, M.M.Y., Kristensen, S.L., Branch, K.R.H., Del Prato, S., Khurmi, N.S., et al. (2021) Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. The Lancet Diabetes & Endocrinology, 9, 653-662.
https://doi.org/10.1016/s2213-8587(21)00203-5
[55] Kristensen, S.L., Rørth, R., Jhund, P.S., Docherty, K.F., Sattar, N., Preiss, D., et al. (2019) Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. The Lancet Diabetes & Endocrinology, 7, 776-785.
https://doi.org/10.1016/s2213-8587(19)30249-9
[56] Tuttle, K.R., Lakshmanan, M.C., Rayner, B., Busch, R.S., Zimmermann, A.G., Woodward, D.B., et al. (2018) Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-To-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. The Lancet Diabetes & Endocrinology, 6, 605-617.
https://doi.org/10.1016/s2213-8587(18)30104-9
[57] Greco, E., Russo, G., Giandalia, A., Viazzi, F., Pontremoli, R. and De Cosmo, S. (2019) GLP-1 Receptor Agonists and Kidney Protection. Medicina, 55, Article 233.
https://doi.org/10.3390/medicina55060233
[58] Lee, Y. and Jun, H. (2016) Anti-Inflammatory Effects of GLP-1-Based Therapies Beyond Glucose Control. Mediators of Inflammation, 2016, Article ID: 3094642.
https://doi.org/10.1155/2016/3094642
[59] Michos, E.D., Bakris, G.L., Rodbard, H.W. and Tuttle, K.R. (2023) Glucagon-Like Peptide-1 Receptor Agonists in Diabetic Kidney Disease: A Review of Their Kidney and Heart Protection. American Journal of Preventive Cardiology, 14, Article ID: 100502.
https://doi.org/10.1016/j.ajpc.2023.100502
[60] 中国高血压防治指南修订委员会, 高血压联盟(中国), 中国医疗保健国际交流促进会高血压病学分会, 等. 中国高血压防治指南(2024年修订版) [J]. 中华高血压杂志(中英文), 2024, 32(7): 603-700.
[61] Tarun, T., Ghanta, S.N., Ong, V., Kore, R., Menon, L., Kovesdy, C., et al. (2024) Updates on New Therapies for Patients with Ckd. Kidney International Reports, 9, 16-28.
https://doi.org/10.1016/j.ekir.2023.10.006
[62] McMurray, J.J.V., Packer, M., Desai, A.S., Gong, J., Lefkowitz, M.P., Rizkala, A.R., et al. (2014) Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. New England Journal of Medicine, 371, 993-1004.
https://doi.org/10.1056/nejmoa1409077
[63] Solomon, S.D., McMurray, J.J.V., Anand, I.S., Ge, J., Lam, C.S.P., Maggioni, A.P., et al. (2019) Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine, 381, 1609-1620.
https://doi.org/10.1056/nejmoa1908655
[64] Mc Causland, F.R., Lefkowitz, M.P., Claggett, B., Anavekar, N.S., Senni, M., Gori, M., et al. (2020) Angiotensin-Neprilysin Inhibition and Renal Outcomes in Heart Failure with Preserved Ejection Fraction. Circulation, 142, 1236-1245.
https://doi.org/10.1161/circulationaha.120.047643
[65] Pernow, J., Franco-Cereceda, A., Matran, R. and Lundberg, J.M. (1989) Effect of Endothelin-1 on Regional Vascular Resistances in the Pig. Journal of Cardiovascular Pharmacology, 13, S205-206.
https://doi.org/10.1097/00005344-198900135-00058
[66] Kohan, D.E., Rossi, N.F., Inscho, E.W. and Pollock, D.M. (2011) Regulation of Blood Pressure and Salt Homeostasis by Endothelin. Physiological Reviews, 91, 1-77.
https://doi.org/10.1152/physrev.00060.2009
[67] Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., et al. (1988) A Novel Potent Vasoconstrictor Peptide Produced by Vascular Endothelial Cells. Nature, 332, 411-415.
https://doi.org/10.1038/332411a0
[68] Wesson, D.E. (2006) Endothelin Role in Kidney Acidification. Seminars in Nephrology, 26, 393-398.
https://doi.org/10.1016/j.semnephrol.2006.07.006
[69] Baltatu, O.C., Zaugg, C.E., Schumacher, C., Louie, P., Campos, L.A. and Bader, M. (2014) Avosentan Is Protective in Hypertensive Nephropathy at Doses Not Causing Fluid Retention. Pharmacological Research, 80, 9-13.
https://doi.org/10.1016/j.phrs.2013.12.003
[70] Trachtman, H., Nelson, P., Adler, S., Campbell, K.N., Chaudhuri, A., Derebail, V.K., et al. (2018) DUET: A Phase 2 Study Evaluating the Efficacy and Safety of Sparsentan in Patients with FSGS. Journal of the American Society of Nephrology, 29, 2745-2754.
https://doi.org/10.1681/asn.2018010091
[71] Heerspink, H.J.L., Kohan, D.E. and de Zeeuw, D. (2021) New Insights from SONAR Indicate Adding Sodium Glucose Co-Transporter 2 Inhibitors to an Endothelin Receptor Antagonist Mitigates Fluid Retention and Enhances Albuminuria Reduction. Kidney International, 99, 346-349.
https://doi.org/10.1016/j.kint.2020.09.026
[72] Smeijer, J.D., Kohan, D.E., Dhaun, N., Noronha, I.L., Liew, A. and Heerspink, H.J.L. (2024) Endothelin Receptor Antagonists in Chronic Kidney Disease. Nature Reviews Nephrology.
https://doi.org/10.1038/s41581-024-00908-z
[73] Lin, S., Chen, Y., Chien, C., Chiang, W., Tsai, C. and Tsai, T. (2002) Pentoxifylline Attenuated the Renal Disease Progression in Rats with Remnant Kidney. Journal of the American Society of Nephrology, 13, 2916-2929.
https://doi.org/10.1097/01.asn.0000034909.10994.8a
[74] de Morales, A.M., Goicoechea, M., Verde, E., Carbayo, J., Barbieri, D., Delgado, A., et al. (2019) Pentoxifylline, Progression of Chronic Kidney Disease (CKD) and Cardiovascular Mortality: Long-Term Follow-Up of a Randomized Clinical Trial. Journal of Nephrology, 32, 581-587.
https://doi.org/10.1007/s40620-019-00607-0
[75] McCormick, B.B., Sydor, A., Akbari, A., Fergusson, D., Doucette, S. and Knoll, G. (2008) The Effect of Pentoxifylline on Proteinuria in Diabetic Kidney Disease: A Meta-Analysis. American Journal of Kidney Diseases, 52, 454-463.
https://doi.org/10.1053/j.ajkd.2008.01.025
[76] Badri, S., Dashti-Khavidaki, S., Lessan-Pezeshki, M. and Abdollahi, M. (2011) A Review of the Potential Benefits of Pentoxifylline in Diabetic and Non-Diabetic Proteinuria. Journal of Pharmacy & Pharmaceutical Sciences, 14, 128-137.
https://doi.org/10.18433/j3bp4g
[77] Chen, P., Lai, T., Chen, P., Lai, C., Wu, V., Chiang, W., et al. (2014) Renoprotective Effect of Combining Pentoxifylline with Angiotensin-Converting Enzyme Inhibitor or Angiotensin II Receptor Blocker in Advanced Chronic Kidney Disease. Journal of the Formosan Medical Association, 113, 219-226.
https://doi.org/10.1016/j.jfma.2014.01.002
[78] Chen, Y., Chiang, W., Lin, S. and Tsai, T. (2017) Therapeutic Efficacy of Pentoxifylline on Proteinuria and Renal Progression: An Update. Journal of Biomedical Science, 24, Article No. 84.
https://doi.org/10.1186/s12929-017-0390-4