[1]
|
Stevens, P.E., Ahmed, S.B., Carrero, J.J., Foster, B., Francis, A., Hall, R.K., et al. (2024) KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International, 105, S117-S314. https://doi.org/10.1016/j.kint.2023.10.018
|
[2]
|
Jager, K.J., Kovesdy, C., Langham, R., Rosenberg, M., Jha, V. and Zoccali, C. (2019) A Single Number for Advocacy and Communication—Worldwide More than 850 Million Individuals Have Kidney Diseases. Kidney International, 96, 1048-1050. https://doi.org/10.1016/j.kint.2019.07.012
|
[3]
|
Rhee, C.M. and Kovesdy, C.P. (2015) Spotlight on CKD Deaths—Increasing Mortality Worldwide. Nature Reviews Nephrology, 11, 199-200. https://doi.org/10.1038/nrneph.2015.25
|
[4]
|
(2015) Global, Regional, and National Age-Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990-2013: A Systematic Analysis for the Global Burden of Disease Study 2013. Lancet, 385, 117-171.
|
[5]
|
Kovesdy, C.P. (2022) Epidemiology of Chronic Kidney Disease: An Update 2022. Kidney International Supplements, 12, 7-11. https://doi.org/10.1016/j.kisu.2021.11.003
|
[6]
|
Pethő, Á.G., Tapolyai, M., Csongrádi, É. and Orosz, P. (2024) Management of Chronic Kidney Disease: The Current Novel and Forgotten Therapies. Journal of Clinical & Translational Endocrinology, 36, Article ID: 100354. https://doi.org/10.1016/j.jcte.2024.100354
|
[7]
|
National Institute for Health and Care Excellence: Guidelines (2015) Chronic Kidney Disease in Adults: Assessment and Management. National Institute for Health and Care Excellence (NICE).
|
[8]
|
Hamrahian, S.M. and Falkner, B. (2016) Hypertension in Chronic Kidney Disease. In: Islam, M.S., Ed., Hypertension: From Basic Research to Clinical Practice, Springer, 307-325. https://doi.org/10.1007/5584_2016_84
|
[9]
|
Kalantar-Zadeh, K., Jafar, T.H., Nitsch, D., Neuen, B.L. and Perkovic, V. (2021) Chronic Kidney Disease. The Lancet, 398, 786-802. https://doi.org/10.1016/s0140-6736(21)00519-5
|
[10]
|
Aucella, F., Valente, G.L. and Catizone, L. (2014) The Role of Physical Activity in the CKD Setting. Kidney and Blood Pressure Research, 39, 97-106. https://doi.org/10.1159/000355783
|
[11]
|
Borrelli, S., Provenzano, M., Gagliardi, I., Michael, A., Liberti, M., De Nicola, L., et al. (2020) Sodium Intake and Chronic Kidney Disease. International Journal of Molecular Sciences, 21, Article 4744. https://doi.org/10.3390/ijms21134744
|
[12]
|
Schrauben, S.J., Apple, B.J. and Chang, A.R. (2022) Modifiable Lifestyle Behaviors and CKD Progression: A Narrative Review. Kidney360, 3, 752-778. https://doi.org/10.34067/kid.0003122021
|
[13]
|
Valente, A., Jesus, J., Breda, J., Dinis, A., Correia, A., Godinho, J., et al. (2022) Dietary Advice in Hemodialysis Patients: Impact of a Telehealth Approach during the COVID-19 Pandemic. Journal of Renal Nutrition, 32, 319-325. https://doi.org/10.1053/j.jrn.2021.04.002
|
[14]
|
Chen, T.K., Hoenig, M.P., Nitsch, D. and Grams, M.E. (2023) Advances in the Management of Chronic Kidney Disease. BMJ, 383, e074216. https://doi.org/10.1136/bmj-2022-074216
|
[15]
|
Zhang, F., Liu, H., Liu, D., Liu, Y., Li, H., Tan, X., et al. (2017) Effects of RAAS Inhibitors in Patients with Kidney Disease. Current Hypertension Reports, 19, Article No. 72. https://doi.org/10.1007/s11906-017-0771-9
|
[16]
|
Lewis, E.J., Hunsicker, L.G., Clarke, W.R., Berl, T., Pohl, M.A., Lewis, J.B., et al. (2001) Renoprotective Effect of the Angiotensin-Receptor Antagonist Irbesartan in Patients with Nephropathy Due to Type 2 Diabetes. New England Journal of Medicine, 345, 851-860. https://doi.org/10.1056/nejmoa011303
|
[17]
|
Brenner, B.M., Cooper, M.E., de Zeeuw, D., Keane, W.F., Mitch, W.E., Parving, H., et al. (2001) Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 345, 861-869. https://doi.org/10.1056/nejmoa011161
|
[18]
|
Yusuf, S., Sleight, P., Pogue, J., Bosch, J., Davies, R. and Dagenais, G. (2000) Effects of an Angiotensin-Converting-enzyme Inhibitor, Ramipril, on Cardiovascular Events in High-Risk Patients. The New England Journal of Medicine, 342, 145-153.
|
[19]
|
Hou, F.F., Zhang, X., Zhang, G.H., Xie, D., Chen, P.Y., Zhang, W.R., et al. (2006) Efficacy and Safety of Benazepril for Advanced Chronic Renal Insufficiency. New England Journal of Medicine, 354, 131-140. https://doi.org/10.1056/nejmoa053107
|
[20]
|
Dandona, P., Dhindsa, S., Ghanim, H. and Chaudhuri, A. (2006) Angiotensin II and Inflammation: The Effect of Angiotensin-Converting Enzyme Inhibition and Angiotensin II Receptor Blockade. Journal of Human Hypertension, 21, 20-27. https://doi.org/10.1038/sj.jhh.1002101
|
[21]
|
Zhao, M., Bai, M., Ding, G., Zhang, Y., Huang, S., Jia, Z., et al. (2018) Angiotensin II Stimulates the NLRP3 Inflammasome to Induce Podocyte Injury and Mitochondrial Dysfunction. Kidney Diseases, 4, 83-94. https://doi.org/10.1159/000488242
|
[22]
|
Koppe, L. and Fouque, D. (2019) The Role for Protein Restriction in Addition to Renin-Angiotensin-Aldosterone System Inhibitors in the Management of CKD. American Journal of Kidney Diseases, 73, 248-257. https://doi.org/10.1053/j.ajkd.2018.06.016
|
[23]
|
Bhandari, S., Mehta, S., Khwaja, A., Cleland, J.G.F., Ives, N., Brettell, E., et al. (2022) Renin-Angiotensin System Inhibition in Advanced Chronic Kidney Disease. New England Journal of Medicine, 387, 2021-2032. https://doi.org/10.1056/nejmoa2210639
|
[24]
|
Zhang, Y., He, D., Zhang, W., Xing, Y., Guo, Y., Wang, F., et al. (2020) ACE Inhibitor Benefit to Kidney and Cardiovascular Outcomes for Patients with Non-Dialysis Chronic Kidney Disease Stages 3-5: A Network Meta-Analysis of Randomised Clinical Trials. Drugs, 80, 797-811. https://doi.org/10.1007/s40265-020-01290-3
|
[25]
|
Weir, M.R., Lakkis, J.I., Jaar, B., Rocco, M.V., Choi, M.J., Kramer, H.J., et al. (2018) Use of Renin-Angiotensin System Blockade in Advanced CKD: An NKF-KDOQI Controversies Report. American Journal of Kidney Diseases, 72, 873-884. https://doi.org/10.1053/j.ajkd.2018.06.010
|
[26]
|
Ahmed, A.K., Kamath, N.S., El Kossi, M. and El Nahas, A.M. (2009) The Impact of Stopping Inhibitors of the Renin-Angiotensin System in Patients with Advanced Chronic Kidney Disease. Nephrology Dialysis Transplantation, 25, 3977-3982. https://doi.org/10.1093/ndt/gfp511
|
[27]
|
van den Belt, S.M., Heerspink, H.J.L., Kirchner, M., Gracchi, V., Thurn-Valsassina, D., Bayazit, A.K., et al. (2020) Discontinuation of RAAS Inhibition in Children with Advanced CKD. Clinical Journal of the American Society of Nephrology, 15, 625-632. https://doi.org/10.2215/cjn.09750819
|
[28]
|
Gaudreault-Tremblay, M. and Foster, B.J. (2020) Benefits of Continuing RAAS Inhibitors in Advanced CKD. Clinical Journal of the American Society of Nephrology, 15, 592-593. https://doi.org/10.2215/cjn.02920320
|
[29]
|
Holtkamp, F.A., de Zeeuw, D., Thomas, M.C., Cooper, M.E., de Graeff, P.A., Hillege, H.J.L., et al. (2011) An Acute Fall in Estimated Glomerular Filtration Rate during Treatment with Losartan Predicts a Slower Decrease in Long-Term Renal Function. Kidney International, 80, 282-287. https://doi.org/10.1038/ki.2011.79
|
[30]
|
Bhandari, S., Mehta, S., Khawaja, A., Cleland, J.G.F., Ives, N. and Cockwell, P. (2024) Evaluation of the Stopping Angiotensin Converting Enzyme Inhibitor Compared to Angiotensin Receptor Blocker (STOP Acei Trial) in Advanced and Progressive Chronic Kidney Disease. Kidney International, 105, 200-208. https://doi.org/10.1016/j.kint.2023.09.012
|
[31]
|
Barrera-Chimal, J., Girerd, S. and Jaisser, F. (2019) Mineralocorticoid Receptor Antagonists and Kidney Diseases: Pathophysiological Basis. Kidney International, 96, 302-319. https://doi.org/10.1016/j.kint.2019.02.030
|
[32]
|
Barrera-Chimal, J., Estrela, G.R., Lechner, S.M., Giraud, S., El Moghrabi, S., Kaaki, S., et al. (2018) The Myeloid Mineralocorticoid Receptor Controls Inflammatory and Fibrotic Responses after Renal Injury via Macrophage Interleukin-4 Receptor Signaling. Kidney International, 93, 1344-1355. https://doi.org/10.1016/j.kint.2017.12.016
|
[33]
|
Guo, C., Martinez-Vasquez, D., Mendez, G.P., Toniolo, M.F., Yao, T.M., Oestreicher, E.M., et al. (2006) Mineralocorticoid Receptor Antagonist Reduces Renal Injury in Rodent Models of Types 1 and 2 Diabetes Mellitus. Endocrinology, 147, 5363-5373. https://doi.org/10.1210/en.2006-0944
|
[34]
|
Currie, G., Taylor, A.H.M., Fujita, T., Ohtsu, H., Lindhardt, M., Rossing, P., et al. (2016) Effect of Mineralocorticoid Receptor Antagonists on Proteinuria and Progression of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. BMC Nephrology, 17, Article No. 127. https://doi.org/10.1186/s12882-016-0337-0
|
[35]
|
Filippatos, G., Anker, S.D., Agarwal, R., Ruilope, L.M., Rossing, P., Bakris, G.L., et al. (2022) Finerenone Reduces Risk of Incident Heart Failure in Patients with Chronic Kidney Disease and Type 2 Diabetes: Analyses from the FIGARO-DKD Trial. Circulation, 145, 437-447. https://doi.org/10.1161/circulationaha.121.057983
|
[36]
|
Pitt, B., Filippatos, G., Agarwal, R., Anker, S.D., Bakris, G.L., Rossing, P., et al. (2021) Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. New England Journal of Medicine, 385, 2252-2263. https://doi.org/10.1056/nejmoa2110956
|
[37]
|
Bakris, G.L., Agarwal, R., Anker, S.D., Pitt, B., Ruilope, L.M., Rossing, P., et al. (2020) Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. New England Journal of Medicine, 383, 2219-2229. https://doi.org/10.1056/nejmoa2025845
|
[38]
|
《非奈利酮在糖尿病合并慢性肾脏病患者中应用的中国专家共识(版)》专家组. 非奈利酮在糖尿病合并慢性肾脏病患者中应用的中国专家共识(2023版) [J]. 中华肾脏病杂志, 2023, 39(10): 800-888.
|
[39]
|
Cowie, M.R. and Fisher, M. (2020) SGLT2 Inhibitors: Mechanisms of Cardiovascular Benefit Beyond Glycaemic Control. Nature Reviews Cardiology, 17, 761-772. https://doi.org/10.1038/s41569-020-0406-8
|
[40]
|
Thomas, M.C. and Cherney, D.Z.I. (2018) The Actions of SGLT2 Inhibitors on Metabolism, Renal Function and Blood Pressure. Diabetologia, 61, 2098-2107. https://doi.org/10.1007/s00125-018-4669-0
|
[41]
|
Hou, Y., Zheng, C., Yen, T. and Lu, K. (2020) Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection. International Journal of Molecular Sciences, 21, Article 7833. https://doi.org/10.3390/ijms21217833
|
[42]
|
Cravedi, P. and Remuzzi, G. (2013) Pathophysiology of Proteinuria and Its Value as an Outcome Measure in Chronic Kidney Disease. British Journal of Clinical Pharmacology, 76, 516-523. https://doi.org/10.1111/bcp.12104
|
[43]
|
Peyton, K.J., Behnammanesh, G., Durante, G.L. and Durante, W. (2022) Canagliflozin Inhibits Human Endothelial Cell Inflammation through the Induction of Heme Oxygenase-1. International Journal of Molecular Sciences, 23, Article 8777. https://doi.org/10.3390/ijms23158777
|
[44]
|
Abdollahi, E., Keyhanfar, F., Delbandi, A., Falak, R., Hajimiresmaiel, S.J. and Shafiei, M. (2022) Dapagliflozin Exerts Anti-Inflammatory Effects via Inhibition of LPS-Induced TLR-4 Overexpression and NF-κB Activation in Human Endothelial Cells and Differentiated Macrophages. European Journal of Pharmacology, 918, Article ID: 174715. https://doi.org/10.1016/j.ejphar.2021.174715
|
[45]
|
National Institute for Health and Care Excellence Dapagliflozin for Treating Chronic Kidney Disease (2022) Technology Appraisal Guidance. https://www.nice.org.uk/guidance/ta775
|
[46]
|
《钠-葡萄糖转运体2抑制剂在慢性肾脏病患者临床应用的中国专家共识(2023年版)》专家组. 钠-葡萄糖转运体2抑制剂在慢性肾脏病患者临床应用的中国专家共识(2023年版) [J]. 中华肾脏病杂志, 2023, 39(11): 879-888.
|
[47]
|
Wanner, C., Inzucchi, S.E., Lachin, J.M., Fitchett, D., von Eynatten, M., Mattheus, M., et al. (2016) Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. New England Journal of Medicine, 375, 323-334. https://doi.org/10.1056/nejmoa1515920
|
[48]
|
Heerspink, H.J.L., Stefánsson, B.V., Correa-Rotter, R., Chertow, G.M., Greene, T., Hou, F., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 383, 1436-1446. https://doi.org/10.1056/nejmoa2024816
|
[49]
|
Herrington, W.G., Staplin, N., Wanner, C., Green, J.B., Hauske, S.J., Emberson, J.R., et al. (2023) Empagliflozin in Patients with Chronic Kidney Disease. New England Journal of Medicine, 388, 117-127. https://doi.org/10.1056/nejmoa2204233
|
[50]
|
National Institute for Health and Care Excellence: Guidelines (2022) Dapagliflozin for Treating Chronic Kidney Disease.
|
[51]
|
Dong, Y., Shi, S., Liu, L., Zhou, X., Lv, J. and Zhang, H. (2023) Effect of SGLT2 Inhibitors on the Proteinuria Reduction in Patients with Iga Nephropathy. Frontiers in Medicine, 10, Article 1242241. https://doi.org/10.3389/fmed.2023.1242241
|
[52]
|
O’Hara, D.V., Lam, C.S.P., McMurray, J.J.V., Yi, T.W., Hocking, S., Dawson, J., et al. (2024) Applications of SGLT2 Inhibitors Beyond Glycaemic Control. Nature Reviews Nephrology, 20, 513-529. https://doi.org/10.1038/s41581-024-00836-y
|
[53]
|
Samms, R.J., Coghlan, M.P. and Sloop, K.W. (2020) How May GIP Enhance the Therapeutic Efficacy of GLP-1? Trends in Endocrinology & Metabolism, 31, 410-421. https://doi.org/10.1016/j.tem.2020.02.006
|
[54]
|
Sattar, N., Lee, M.M.Y., Kristensen, S.L., Branch, K.R.H., Del Prato, S., Khurmi, N.S., et al. (2021) Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. The Lancet Diabetes & Endocrinology, 9, 653-662. https://doi.org/10.1016/s2213-8587(21)00203-5
|
[55]
|
Kristensen, S.L., Rørth, R., Jhund, P.S., Docherty, K.F., Sattar, N., Preiss, D., et al. (2019) Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. The Lancet Diabetes & Endocrinology, 7, 776-785. https://doi.org/10.1016/s2213-8587(19)30249-9
|
[56]
|
Tuttle, K.R., Lakshmanan, M.C., Rayner, B., Busch, R.S., Zimmermann, A.G., Woodward, D.B., et al. (2018) Dulaglutide versus Insulin Glargine in Patients with Type 2 Diabetes and Moderate-To-Severe Chronic Kidney Disease (AWARD-7): A Multicentre, Open-Label, Randomised Trial. The Lancet Diabetes & Endocrinology, 6, 605-617. https://doi.org/10.1016/s2213-8587(18)30104-9
|
[57]
|
Greco, E., Russo, G., Giandalia, A., Viazzi, F., Pontremoli, R. and De Cosmo, S. (2019) GLP-1 Receptor Agonists and Kidney Protection. Medicina, 55, Article 233. https://doi.org/10.3390/medicina55060233
|
[58]
|
Lee, Y. and Jun, H. (2016) Anti-Inflammatory Effects of GLP-1-Based Therapies Beyond Glucose Control. Mediators of Inflammation, 2016, Article ID: 3094642. https://doi.org/10.1155/2016/3094642
|
[59]
|
Michos, E.D., Bakris, G.L., Rodbard, H.W. and Tuttle, K.R. (2023) Glucagon-Like Peptide-1 Receptor Agonists in Diabetic Kidney Disease: A Review of Their Kidney and Heart Protection. American Journal of Preventive Cardiology, 14, Article ID: 100502. https://doi.org/10.1016/j.ajpc.2023.100502
|
[60]
|
中国高血压防治指南修订委员会, 高血压联盟(中国), 中国医疗保健国际交流促进会高血压病学分会, 等. 中国高血压防治指南(2024年修订版) [J]. 中华高血压杂志(中英文), 2024, 32(7): 603-700.
|
[61]
|
Tarun, T., Ghanta, S.N., Ong, V., Kore, R., Menon, L., Kovesdy, C., et al. (2024) Updates on New Therapies for Patients with Ckd. Kidney International Reports, 9, 16-28. https://doi.org/10.1016/j.ekir.2023.10.006
|
[62]
|
McMurray, J.J.V., Packer, M., Desai, A.S., Gong, J., Lefkowitz, M.P., Rizkala, A.R., et al. (2014) Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure. New England Journal of Medicine, 371, 993-1004. https://doi.org/10.1056/nejmoa1409077
|
[63]
|
Solomon, S.D., McMurray, J.J.V., Anand, I.S., Ge, J., Lam, C.S.P., Maggioni, A.P., et al. (2019) Angiotensin-Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. New England Journal of Medicine, 381, 1609-1620. https://doi.org/10.1056/nejmoa1908655
|
[64]
|
Mc Causland, F.R., Lefkowitz, M.P., Claggett, B., Anavekar, N.S., Senni, M., Gori, M., et al. (2020) Angiotensin-Neprilysin Inhibition and Renal Outcomes in Heart Failure with Preserved Ejection Fraction. Circulation, 142, 1236-1245. https://doi.org/10.1161/circulationaha.120.047643
|
[65]
|
Pernow, J., Franco-Cereceda, A., Matran, R. and Lundberg, J.M. (1989) Effect of Endothelin-1 on Regional Vascular Resistances in the Pig. Journal of Cardiovascular Pharmacology, 13, S205-206. https://doi.org/10.1097/00005344-198900135-00058
|
[66]
|
Kohan, D.E., Rossi, N.F., Inscho, E.W. and Pollock, D.M. (2011) Regulation of Blood Pressure and Salt Homeostasis by Endothelin. Physiological Reviews, 91, 1-77. https://doi.org/10.1152/physrev.00060.2009
|
[67]
|
Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., et al. (1988) A Novel Potent Vasoconstrictor Peptide Produced by Vascular Endothelial Cells. Nature, 332, 411-415. https://doi.org/10.1038/332411a0
|
[68]
|
Wesson, D.E. (2006) Endothelin Role in Kidney Acidification. Seminars in Nephrology, 26, 393-398. https://doi.org/10.1016/j.semnephrol.2006.07.006
|
[69]
|
Baltatu, O.C., Zaugg, C.E., Schumacher, C., Louie, P., Campos, L.A. and Bader, M. (2014) Avosentan Is Protective in Hypertensive Nephropathy at Doses Not Causing Fluid Retention. Pharmacological Research, 80, 9-13. https://doi.org/10.1016/j.phrs.2013.12.003
|
[70]
|
Trachtman, H., Nelson, P., Adler, S., Campbell, K.N., Chaudhuri, A., Derebail, V.K., et al. (2018) DUET: A Phase 2 Study Evaluating the Efficacy and Safety of Sparsentan in Patients with FSGS. Journal of the American Society of Nephrology, 29, 2745-2754. https://doi.org/10.1681/asn.2018010091
|
[71]
|
Heerspink, H.J.L., Kohan, D.E. and de Zeeuw, D. (2021) New Insights from SONAR Indicate Adding Sodium Glucose Co-Transporter 2 Inhibitors to an Endothelin Receptor Antagonist Mitigates Fluid Retention and Enhances Albuminuria Reduction. Kidney International, 99, 346-349. https://doi.org/10.1016/j.kint.2020.09.026
|
[72]
|
Smeijer, J.D., Kohan, D.E., Dhaun, N., Noronha, I.L., Liew, A. and Heerspink, H.J.L. (2024) Endothelin Receptor Antagonists in Chronic Kidney Disease. Nature Reviews Nephrology. https://doi.org/10.1038/s41581-024-00908-z
|
[73]
|
Lin, S., Chen, Y., Chien, C., Chiang, W., Tsai, C. and Tsai, T. (2002) Pentoxifylline Attenuated the Renal Disease Progression in Rats with Remnant Kidney. Journal of the American Society of Nephrology, 13, 2916-2929. https://doi.org/10.1097/01.asn.0000034909.10994.8a
|
[74]
|
de Morales, A.M., Goicoechea, M., Verde, E., Carbayo, J., Barbieri, D., Delgado, A., et al. (2019) Pentoxifylline, Progression of Chronic Kidney Disease (CKD) and Cardiovascular Mortality: Long-Term Follow-Up of a Randomized Clinical Trial. Journal of Nephrology, 32, 581-587. https://doi.org/10.1007/s40620-019-00607-0
|
[75]
|
McCormick, B.B., Sydor, A., Akbari, A., Fergusson, D., Doucette, S. and Knoll, G. (2008) The Effect of Pentoxifylline on Proteinuria in Diabetic Kidney Disease: A Meta-Analysis. American Journal of Kidney Diseases, 52, 454-463. https://doi.org/10.1053/j.ajkd.2008.01.025
|
[76]
|
Badri, S., Dashti-Khavidaki, S., Lessan-Pezeshki, M. and Abdollahi, M. (2011) A Review of the Potential Benefits of Pentoxifylline in Diabetic and Non-Diabetic Proteinuria. Journal of Pharmacy & Pharmaceutical Sciences, 14, 128-137. https://doi.org/10.18433/j3bp4g
|
[77]
|
Chen, P., Lai, T., Chen, P., Lai, C., Wu, V., Chiang, W., et al. (2014) Renoprotective Effect of Combining Pentoxifylline with Angiotensin-Converting Enzyme Inhibitor or Angiotensin II Receptor Blocker in Advanced Chronic Kidney Disease. Journal of the Formosan Medical Association, 113, 219-226. https://doi.org/10.1016/j.jfma.2014.01.002
|
[78]
|
Chen, Y., Chiang, W., Lin, S. and Tsai, T. (2017) Therapeutic Efficacy of Pentoxifylline on Proteinuria and Renal Progression: An Update. Journal of Biomedical Science, 24, Article No. 84. https://doi.org/10.1186/s12929-017-0390-4
|