基于孟德尔随机化分析肠道微生物群与哮喘的因果关系
The Causal Relationship between Gut Microbiota and Asthma Based on Mendelian Randomization
DOI: 10.12677/acm.2025.153728, PDF, HTML, XML,   
作者: 华正钊, 朱 冰*:重庆医科大学附属第二医院胸心外科,重庆;袁建旭:重庆医科大学附属第二医院泌尿外科,重庆
关键词: 哮喘肠道微生物群孟德尔随机化因果关系Asthma Gut Microbiota Mendelian Randomization Causal Relationship
摘要: 目的:本研究旨在通过孟德尔随机化(Mendelian Randomization, MR)分析探讨肠道微生物群与哮喘之间的因果关系。方法:从MiBioGen数据库下载人类肠道微生物群数据集,包含18,340名参与者的遗传数据,保留196个细菌类群作为暴露因素。结局变量数据来自IEU OpenGWAS数据库,包含39,049例哮喘患者和298,110例对照。采用逆方差加权(Inverse Variance Weighted, IVW)、MR-Egger、简单模式(Simple Mode, SM)、加权中位数(Weighted Median, WM)和加权模式(Weighted Mode, WME)方法进行孟德尔随机化分析,其中IVW法作为主要分析方法。敏感性分析用于验证结果的可靠性。结果:IVW分析结果显示,Candidatus Soleaferrea属(OR = 1.009, 95% CI: 1.003~1.015, P = 0.002)、克里斯滕森菌科R-7群(OR = 1.019, 95% CI: 1.009~1.029, P < 0.001)、阿克曼氏菌(OR = 1.008, 95% CI: 1.000~1.016, P = 0.049)和毛螺菌属(OR = 1.027, 95% CI: 1.015~1.038, P < 0.001)与哮喘发病风险增加有关,而严格梭菌属1 (OR = 0.992, 95% CI: 0.984~1.000, P = 0.045)和双歧杆菌(OR = 0.989, 95% CI: 0.982~0.995, P < 0.001)与哮喘发病风险降低有关。此外,敏感性分析显示未发现异常SNPs。结论:本研究发现6种肠道微生物群与哮喘之间存在因果关系。Candidatus Soleaferrea属、克里斯滕森菌科R-7群、阿克曼氏菌和毛螺菌属与哮喘发病风险增加有关,而严格梭菌属1和双歧杆菌与哮喘发病风险降低有关。
Abstract: Objective: The aim of this study is to explore the causal relationship between intestinal microbiota and asthma through Mendelian Randomization (MR) analysis. Method: The human gut microbiota dataset, encompassing genetic data from 18,340 participants and including 196 bacterial taxa as exposure factors, was downloaded from the MiBioGen database. Outcome variable data were sourced from the IEU OpenGWAS database, comprising 39,049 asthma patients and 298,110 controls. Mendelian Randomization (MR) analysis was conducted using the Inverse Variance Weighted (IVW), MR-Egger, Simple Mode (SM), Weighted Median (WM), and Weighted Mode (WME) methods, with IVW serving as the primary analytical approach. Sensitivity analyses were performed to validate the reliability of the results. Results: The IVW analysis revealed that the genera Candidatus Soleaferrea (OR = 1.009, 95% CI: 1.003~1.015, P = 0.002), Christensenellaceae R-7 group (OR = 1.019, 95% CI: 1.009~1.029, P < 0.001), Akkermansia (OR = 1.008, 95% CI: 1.000~1.016, P = 0.049), and Lachnospira (OR = 1.027, 95% CI: 1.015~1.038, P < 0.001) were associated with an increased risk of asthma. In contrast, Clostridium sensu stricto 1 (OR = 0.992, 95% CI: 0.984~1.000, P = 0.045) and Bifidobacterium (OR = 0.989, 95% CI: 0.982~0.995, P < 0.001) were associated with a decreased risk of asthma. Sensitivity analysis did not identify any outlier SNPs. Conclusion: This study identified causal relationships between six gut microbiota and asthma. Specifically, the genera Candidatus Soleaferrea, Christensenellaceae R-7 group, Akkermansia, and Lachnospira were associated with an increased risk of asthma, whereas Clostridium sensu stricto 1 and Bifidobacterium were associated with a decreased risk of asthma.
文章引用:华正钊, 袁建旭, 朱冰. 基于孟德尔随机化分析肠道微生物群与哮喘的因果关系[J]. 临床医学进展, 2025, 15(3): 1191-1200. https://doi.org/10.12677/acm.2025.153728

1. 引言

支气管哮喘(以下简称“哮喘”)是一种常见的慢性气道炎症性疾病,临床表现为反复发作的喘息、气急,伴或不伴胸闷或咳嗽等症状,全球约有3.34亿人受其影响[1] [2]。在中国,哮喘的患病率也呈逐年上升趋势,据流行病学调查显示,我国20岁及以上人群的哮喘患病率约为4.2%,成年人哮喘总数约为4570万[3]。尽管哮喘的发病机制尚未完全阐明,但大量研究表明,遗传因素是其发作最重要的原因之一[4]。目前,哮喘已成为一种常见的终身疾病,由于医疗和经济水平的差异,哮喘造成的健康负担在发展中国家和地区尤为显著[5] [6]

近年来,随着对哮喘发病机制的深入研究,人们越来越关注肠道微生物群与哮喘之间的关系[7] [8]。肠道微生物群是指人类肠道内庞大的微生物生态系统的统称,含量和组成通常保持动态平衡,这种平衡与人类健康密切相关[9]。研究表明,肠道微生物群具有降解难以消化的食物成分、释放氨基酸和短链脂肪酸等营养物质的能力,并维持肠道功能[10]。肠道菌群的失衡已被发现与多种系统性疾病相关,包括肥胖、糖尿病、心血管疾病等[11]。越来越多的证据表明,肠道菌群可能通过肠–肺轴影响呼吸系统疾病的发生和发展,包括哮喘[7]

孟德尔随机化(Mendelian randomization, MR)分析是近年来在遗传流行病学因果推断中广泛使用的数据分析方法,它通过使用遗传变异作为工具变量来推断暴露与结果之间的因果关系。该分析方法基于孟德尔遗传法则,因此暴露因素与结局之间的关联不受产后环境、社会经济地位、行为因素和其他常见混杂因素的影响,进而产生的因果关系更为合理,更接近真实情况[12]。孟德尔随机化分析已成功应用于多种疾病的研究中,包括肠道菌群与糖尿病视网膜病变[13]、心血管疾病[14]等疾病之间关系的研究。

本研究旨在使用MiBioGen的数据和IEU OpenGWAS的数据进行孟德尔随机化分析探讨肠道微生物群与哮喘之间的因果关系,以期为哮喘的预防和治疗提供新的思路和潜在的生物标志物。

2. 资料与方法

2.1. 研究设计

本研究以肠道微生物群作为暴露因素,选取显著相关的单核苷酸多态性(single-nucleotide polymorphisms, SNPs)作为工具变量(instrumental variables, IVs),哮喘作为结局变量。孟德尔随机化分析的前提是工具变量(IVs)必须满足三个核心假设:1) 关联性假设,即IVs与肠道微生物群之间存在显著关联;2) 独立性假设,即IVs与肠道微生物群–哮喘的所有混杂因素均不相关;3) 排他性假设,即IVs只能通过肠道微生物群影响哮喘,而不能通过其他任何途径。基于上述标准,通过MR分析来探讨肠道微生物群与哮喘之间的因果关系。

2.2. 数据来源

从MiBioGen数据库(https://mibiogen.gcc.rug.nl/menu/main/home/)下载肠道微生物群数据集,该数据集包含18,340名参与者的遗传数据,共包括211个细菌类群(包括9门、16纲、20目、35科和131属),属是最低的细菌分类水平。为确保分析的可靠性,剔除了15个未知菌群,保留196个细菌类群(包括9门16纲20目32科119属)作为暴露因素。结局数据从IEU Open GWAS数据库(https://gwas.mrcieu.ac.uk/)下载,包括39,049名哮喘患者和298,110名对照人群。SNP的总数为10,894,596。

2.3. 工具变量选择

为满足关联性假设,SNPs必须与暴露因素强相关,同时为确保SNPs之间的独立性,去除因连锁不平衡带来的结果偏倚,通过R软件筛选从GWAS所得SNPs数据,过滤标准:1) 纳入工具变量的SNP与暴露因素显著相关,由于符合全基因组显著性水平(P < 1 × 108)的SNP数量较少,因此本研究放宽了阈值要求,根据P < 1.0 × 105选择显著相关的SNPs作为初筛选的IVs;2) 设置连锁不平衡系数r2阈值0.05,区域宽度10,000 kb,以排除连锁不平衡的干扰,以保证SNPs相互独立,避免偏倚,r2是由SNPs解释的危险因素变异性的比例;3) 排除回文SNPs。4) SNPs的F统计量 > 10,F = r2 × (n − 2)/(1 − r2),n是样本量,以获得与暴露因素强相关且相互独立的SNPs作为有效IVs。

2.4. 孟德尔随机化

本研究通过逆方差加权(inverse variance weighted, IVW)、孟德尔随机化(Mendelian randomization, MR)-Egger、简单模式(simple mode, SM)、加权中位数(weighted median, WM)和加权模式(weighted mode, WME)等方法进行孟德尔随机化分析。其中,IVW法具有强大的检测能力和效率[15] [16],因此将IVW法作为主要的MR分析方法和主要的结果判断依据。人类肠道微生物群与哮喘的风险关系以比值比(odds ratio, OR)及其95%置信区间(confidence interval, CI)表示。

2.5. 敏感性分析

为了进一步验证研究结果的可靠性,本研究使用异质性检验、多效性水平检验和留一法(leave-one-out)进行了敏感性分析。Cochran’s Q检验用于评估每个细菌相关的SNPs的异质性,如果Cochran’s Q统计量检验具有统计学意义(P ≤ 0.05),则证明分析结果具有显著的异质性。MR-Egger截距检验用于评估水平多效性,如果P ≤ 0.05时,说明研究结果存在水平多效性,则需要通过MR-PRESSO分析进一步分析鉴定多效性的来源,并将其移除后重新分析;如果P > 0.05,则说明不存在水平多效性。留一法分析用于评估本研究中获得的因果关系是否依赖于或倾向于任何单个SNP [17]

2.6. 统计学方法

本研究使用R软件(版本4.3.0)的“Two Sample-MR”和“MR-PRESSO”等R包进行MR分析。对于因果效应的证据,P值 < 0.05被认为具有统计学意义。

3. 结果

3.1. 孟德尔随机化结果

根据IVs的筛选标准,对196个类群的肠道微生物的GWAS数据进行SNPs筛选,所有SNPs的F统计量均 > 10,不存在弱工具变量偏倚,最终发现6个类群的肠道微生物与哮喘存在因果关系。纳入分析的SNP共65个。MR结果如表1所示。

Table 1. MR analysis results of gut microbiota and asthma risk

1. 肠道微生物群与哮喘发病风险的MR分析结果

暴露

方法

SNPs

β

P

OR

OR_95% CI

Candidatus Soleaferrea属

MR-Egger

12

0.009

0.435

1.010

0.987~1.033

WM

0.007

0.062

1.007

0.999~1.015

IVW

0.009

<0.001

1.009

1.003~1.015

SM

0.010

0.097

1.010

0.999~1.021

WME

0.010

0.095

1.010

0.999~1.021

严格梭菌属1

MR-Egger

9

−0.007

0.487

0.993

0.976~1.011

WM

−0.009

0.099

0.991

0.981~1.002

IVW

−0.008

0.045

0.992

0.984~0.999

SM

−0.006

0.510

0.994

0.977~1.011

WME

−0.007

0.385

0.993

0.979~1.008

双歧杆菌

MR-Egger

14

−0.018

0.078

0.982

0.963~1.000

WM

−0.010

0.041

0.990

0.981~0.999

IVW

−0.012

<0.001

0.989

0.982~0.995

SM

−0.005

0.584

0.995

0.979~1.012

WME

−0.008

0.344

0.992

0.977~1.008

续表

克里斯滕森菌科R-7群

MR-Egger

11

0.034

0.053

1.035

1.004~1.066

WM

0.014

0.031

1.014

1.001~1.027

IVW

0.019

<0.001

1.019

1.009~1.029

SM

0.012

0.341

1.012

0.989~1.035

WME

0.012

0.300

1.012

0.991~1.033

阿克曼氏菌

MR-Egger

12

−0.010

0.489

0.990

0.963~1.017

WM

0.005

0.282

1.005

0.996~1.016

IVW

0.008

0.049

1.008

1.000~1.016

SM

0.003

0.713

1.003

0.986~1.022

WME

0.002

0.793

1.002

0.987~1.017

毛螺菌属

MR-Egger

7

0.071

0.079

1.074

1.008~1.144

WM

0.025

0.001

1.025

1.010~1.041

IVW

0.026

<0.001

1.027

1.015~1.038

SM

0.028

0.062

1.029

1.004~1.054

WME

0.017

0.200

1.017

0.994~1.041

IVW:逆方差加权法;WM:加权中位数法;SM:简单模式法;WME:加权模式法。

IVW结果如图1所示,Candidatus Soleaferrea属(OR = 1.009, 95% CI: 1.003~1.015, P = 0.002)、克里斯滕森菌科R-7群(OR = 1.019, 95% CI: 1.009~1.029, P < 0.001)、阿克曼氏菌(OR = 1.008, 95% CI: 1.000~1.016, P = 0.049)和毛螺菌属(OR = 1.027, 95% CI: 1.015~1.038, P < 0.001)对哮喘有负面影响,而严格梭菌属1 (OR = 0.992, 95% CI: 0.984~1.000, P = 0.045)和双歧杆菌(OR = 0.989, 95% CI: 0.982~0.995, P < 0.001)则有相反的影响。

3.2. 敏感性分析

对6个类群的肠道微生物进行了敏感性分析,Cochran’s Q检验如表2所示,P值均 > 0.05,即不存在异质性。MR-Egger检验,P均>0.05,R-PRESSO检验未发现异常值,P值 > 0.05,表明不存在水平多效性。留一法分析结果如图2所示,当去除任一个SNP并进行重复MR分析,纳入的IVs的效应值和总效应值大小较为接近。尚未发现可以显著影响肠道微生物组与哮喘之间的因果关系的SNP。上述结果表明,6个类群的肠道微生物与哮喘之间的因果关系可靠。

Table 2. Results of Cochran’s Q Test

2. Cochran’s Q检验的结果

暴露

Cochrane’s Q检验

Q

Q_pval

Candidatus Soleaferrea属

13.16

0.283

严格梭菌属1

5.209

0.735

双歧杆菌

13.2

0.432

克里斯滕森菌科R-7群

11.82

0.297

阿克曼氏菌

14.47

0.208

毛螺菌属

4.987

0.546

A:IVW分析;B:阿克曼氏菌;C:双歧杆菌;D:Candidatus Soleaferrea属;E:克里斯滕森菌科R-7群;F:严格梭菌属1;G:毛螺菌属。

Figure 1. Scatter plots of IVW and MR analysis results

1. IVW分析和MR分析散点图的结果

A:阿克曼氏菌;B:双歧杆菌;C:Candidatus Soleaferrea属;D:克里斯滕森菌科R-7群;E:严格梭菌属1;F:毛螺菌属。

Figure 2. Leave-one-out analysis results

2. 留一法分析结果

4. 讨论

本研究旨在通过孟德尔随机化探讨肠道微生物群与哮喘之间的潜在关系,为哮喘的预防和治疗提供新的思路。大量微生物在肠道中定殖,统称为肠道微生物群[18] [19]。肠道微生物群可以参与人体内的各种生物过程,包括产生营养物质和增强免疫功能[20]。尽管肠道微生物群影响呼吸系统疾病的机制尚未完全阐明,但肠道与呼吸系统疾病之间临床表现的相似性使我们相信肠道与肺部之间存在一定关系[21]。研究表明,可能存在从肠道到肺部的炎症转移,相关机制可能与哮喘等呼吸系统疾病的增加有关[22]。目前,越来越多的证据强调肠–肺轴可能存在[7] [23]。肠道微生物群及其代谢物可能是探索哮喘发病机制的重要切入点。

肠道微生物群的代谢物,如短链脂肪酸(SCFA)和胆汁酸,已被证明会影响身体的免疫功能[24]。关于肠–肺轴在哮喘、慢性阻塞性肺病(COPD)和肺纤维化等呼吸系统疾病中的研究表明,肠道微生物群的变化可能在预防或改善这些疾病中发挥作用。相关机制包括慢性炎症的调节、短链脂肪酸的产生以及细胞外T细胞群体的调节。例如,肠道微生物群产生的代谢物,如短链脂肪酸通过增强调节性T细胞(Tregs)的功能来抑制过度的炎症反应。其次,肠道微生物群通过调节肠道屏障功能和肠道通透性,影响全身免疫状态。当肠道屏障受损时,细菌及其代谢产物可能进入血液循环,引发全身性炎症反应,进而影响肺部的免疫微环境[25]。这些机制共同作用,可能促进哮喘等呼吸系统疾病的发生和发展。Candidatus Soleaferrea属已被发现是多种疾病的风险因素,并在类似研究中有所报道[26] [27]。一些肠道代谢物已被发现与儿童哮喘相关。特定的肠道微生物群,包括克里斯滕森菌科,与哮喘及与哮喘相关的肠道代谢物呈正相关[28],而母乳喂养可能通过改变婴儿的肠道微生物群来改善哮喘的发生和发展。目前,已发现多种可能的哮喘机制,其中过敏原诱导的气道炎症是其中之一。一些研究表明,阿克曼氏菌与过敏原诱导的气道炎症密切相关[29] [30]。哮喘通常起源于儿童时期,越来越多的研究表明,儿童肠道微生物群在哮喘的发生和发展中发挥着重要作用。研究发现,毛螺菌属也对儿童哮喘产生影响,相关机制可能与粪便乙酸盐水平的降低和肠肝代谢物的不平衡有关[31]。哮喘是呼吸道最常见的慢性炎症性疾病之一。研究表明,调节性B细胞的减少可能会增加哮喘患者的炎症,并促进慢性气道炎症的形成。据报道,梭状芽孢杆菌可能影响免疫调节细胞的数量,从而影响哮喘的发生和发展[32]。研究发现,肠道微生物群的组成与特应性疾病的发展有关,如食物过敏(FA)和哮喘。有报道称,哮喘的发生和发展可能与双歧杆菌的相对丰度(RA)降低有关[33]。不进行母乳喂养的儿童服用抗生素后,患哮喘的可能性是其他儿童的三倍。母乳喂养的好处可能与婴儿肠道微生物群的组成和平衡有关。相关研究表明,母乳喂养可以通过改变婴儿肠道中双歧杆菌的丰度来降低与抗生素相关的哮喘风险[34]

总之,本研究中发现的6种与哮喘相关的微生物群落与之前的相关研究相呼应。本研究的主要优势在于,与传统的观察性研究相比,MR分析结果不太可能因混杂因素和反向因果关系而偏离;因此,本研究的结果提供了更有说服力的证据来支持肠道微生物群与哮喘之间的因果关系。此外,本研究中肠道微生物群和哮喘的数据来自于大样本人群,这可以大大提高基于整合数据的MR分析的可靠性。

本研究也存在一些局限性。首先,本研究的数据来源于欧洲人群,可能不适用于其他人群。其次,由于最低分类水平为属,因此无法进一步探讨肠道微生物群与哮喘之间在物种水平上的因果关系。此外,虽然MR方法可以减少混杂因素的影响,但不能完全排除所有潜在的混杂因素。例如,饮食、生活方式、药物使用等因素可能对肠道微生物群和哮喘的发病都产生影响。最后,IEUOpenGWAS数据库缺乏哮喘的分型信息(例如儿童哮喘和成人哮喘),未进行亚组分析,因此,可能会掩盖不同类型哮喘与肠道微生物群的关联。未来的研究应考虑纳入更详细的哮喘分型信息,以便更全面地评估不同类型哮喘与肠道微生物群之间的关联。

5. 结论

本研究筛选了6种与哮喘相关的肠道微生物群,这些微生物群可能成为未来新的生物标志物,为哮喘的预防和治疗提供新的方向。

NOTES

*通讯作者。

参考文献

[1] 中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版) [J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048.
[2] Papi, A., Brightling, C., Pedersen, S.E. and Reddel, H.K. (2018) Asthma. The Lancet, 391, 783-800.
https://doi.org/10.1016/s0140-6736(17)33311-1
[3] Huang, K., Yang, T., Xu, J., Yang, L., Zhao, J., Zhang, X., et al. (2019) Prevalence, Risk Factors, and Management of Asthma in China: A National Cross-Sectional Study. The Lancet, 394, 407-418.
https://doi.org/10.1016/s0140-6736(19)31147-x
[4] Duffy, D.L., Martin, N.G., Battistutta, D., Hopper, J.L. and Mathews, J.D. (1990) Genetics of Asthma and Hay Fever in Australian Twins. American Review of Respiratory Disease, 142, 1351-1358.
https://doi.org/10.1164/ajrccm/142.6_pt_1.1351
[5] Hussain, M.S., Sharma, P., Dhanjal, D.S., Khurana, N., Vyas, M., Sharma, N., et al. (2021) Nanotechnology Based Advanced Therapeutic Strategies for Targeting Interleukins in Chronic Respiratory Diseases. Chemico-Biological Interactions, 348, Article 109637.
https://doi.org/10.1016/j.cbi.2021.109637
[6] Labaki, W.W. and Han, M.K. (2020) Chronic Respiratory Diseases: A Global View. The Lancet Respiratory Medicine, 8, 531-533.
https://doi.org/10.1016/s2213-2600(20)30157-0
[7] Frati, F., Salvatori, C., Incorvaia, C., Bellucci, A., Di Cara, G., Marcucci, F., et al. (2018) The Role of the Microbiome in Asthma: The Gut-Lung Axis. International Journal of Molecular Sciences, 20, Article 123.
https://doi.org/10.3390/ijms20010123
[8] Penders, J., Stobberingh, E.E., Brandt, van den Brandt, P.A. and Thijs, C. (2007) The Role of the Intestinal Microbiota in the Development of Atopic Disorders. Allergy, 62, 1223-1236.
https://doi.org/10.1111/j.1398-9995.2007.01462.x
[9] Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V. and Knight, R. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400.
https://doi.org/10.1038/nm.4517
[10] Adak, A. and Khan, M.R. (2018) An Insight into Gut Microbiota and Its Functionalities. Cellular and Molecular Life Sciences, 76, 473-493.
https://doi.org/10.1007/s00018-018-2943-4
[11] Schoeler, M. and Caesar, R. (2019) Dietary Lipids, Gut Microbiota and Lipid Metabolism. Reviews in Endocrine and Metabolic Disorders, 20, 461-472.
https://doi.org/10.1007/s11154-019-09512-0
[12] Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian Randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease?. International Journal of Epidemiology, 32, 1-22.
https://doi.org/10.1093/ije/dyg070
[13] Liu, K., Zou, J., Fan, H., Hu, H. and You, Z. (2022) Causal Effects of Gut Microbiota on Diabetic Retinopathy: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article 930318.
https://doi.org/10.3389/fimmu.2022.930318
[14] Luo, Q., Hu, Y., Chen, X., Luo, Y., Chen, J. and Wang, H. (2022) Effects of Gut Microbiota and Metabolites on Heart Failure and Its Risk Factors: A Two-Sample Mendelian Randomization Study. Frontiers in Nutrition, 9, Article 899746.
https://doi.org/10.3389/fnut.2022.899746
[15] Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525.
https://doi.org/10.1093/ije/dyv080
[16] Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314.
https://doi.org/10.1002/gepi.21965
[17] Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698.
https://doi.org/10.1038/s41588-018-0099-7
[18] Ley, R.E., Peterson, D.A. and Gordon, J.I. (2006) Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124, 837-848.
https://doi.org/10.1016/j.cell.2006.02.017
[19] Barcik, W., Boutin, R.C.T., Sokolowska, M. and Finlay, B.B. (2020) The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity, 52, 241-255.
https://doi.org/10.1016/j.immuni.2020.01.007
[20] Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340.
https://doi.org/10.1016/j.cell.2016.01.013
[21] Tulic, M.K., Piche, T. and Verhasselt, V. (2016) Lung-Gut Cross‐Talk: Evidence, Mechanisms and Implications for the Mucosal Inflammatory Diseases. Clinical & Experimental Allergy, 46, 519-528.
https://doi.org/10.1111/cea.12723
[22] Hufnagl, K., Pali-Schöll, I., Roth-Walter, F. and Jensen-Jarolim, E. (2020) Dysbiosis of the Gut and Lung Microbiome Has a Role in Asthma. Seminars in Immunopathology, 42, 75-93.
https://doi.org/10.1007/s00281-019-00775-y
[23] Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850.
https://doi.org/10.1038/s41385-019-0160-6
[24] Lee-Sarwar, K.A., Lasky-Su, J., Kelly, R.S., Litonjua, A.A. and Weiss, S.T. (2020) Gut Microbial-Derived Metabolomics of Asthma. Metabolites, 10, Article 97.
https://doi.org/10.3390/metabo10030097
[25] Chunxi, L., Haiyue, L., Yanxia, L., Jianbing, P. and Jin, S. (2020) The Gut Microbiota and Respiratory Diseases: New Evidence. Journal of Immunology Research, 2020, Article ID: 2340670.
https://doi.org/10.1155/2020/2340670
[26] Yu, H., Wan, X., Yang, M., Xie, J., Xu, K., Wang, J., et al. (2023) A Large-Scale Causal Analysis of Gut Microbiota and Delirium: A Mendelian Randomization Study. Journal of Affective Disorders, 329, 64-71.
https://doi.org/10.1016/j.jad.2023.02.078
[27] Sun, K., Gao, Y., Wu, H. and Huang, X. (2023) The Causal Relationship between Gut Microbiota and Type 2 Diabetes: A Two-Sample Mendelian Randomized Study. Frontiers in Public Health, 11, Article 1255059.
https://doi.org/10.3389/fpubh.2023.1255059
[28] Lee-Sarwar, K.A., Kelly, R.S., Lasky-Su, J., Zeiger, R.S., O’Connor, G.T., Sandel, M.T., et al. (2019) Integrative Analysis of the Intestinal Metabolome of Childhood Asthma. Journal of Allergy and Clinical Immunology, 144, 442-454.
https://doi.org/10.1016/j.jaci.2019.02.032
[29] Kao, H., Wang, Y., Tseng, H., Wu, L.S., Tsai, H., Hsieh, M., et al. (2020) Goat Milk Consumption Enhances Innate and Adaptive Immunities and Alleviates Allergen-Induced Airway Inflammation in Offspring Mice. Frontiers in Immunology, 11, Article 184.
https://doi.org/10.3389/fimmu.2020.00184
[30] Xie, Y., Zhang, Y., Wang, T., Liu, Y., Ma, J., Wu, S., et al. (2023) Ablation of CD226 on CD4+ T Cells Modulates Asthma Progress Associated with Altered IL-10 Response and Gut Microbiota. International Immunopharmacology, 118, Article 110051.
https://doi.org/10.1016/j.intimp.2023.110051
[31] Arrieta, M., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., et al. (2015) Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Science Translational Medicine, 7, 307ra152.
https://doi.org/10.1126/scitranslmed.aab2271
[32] Huang, F., Zhang, Y., Bai, X., Wang, C. and Li, Y. (2022) Clostridium Leptum Induces the Generation of Interleukin-10+ Regulatory B Cells to Alleviate Airway Inflammation in Asthma. Molecular Immunology, 145, 124-138.
https://doi.org/10.1016/j.molimm.2022.03.010
[33] Mahdavinia, M., Fyolek, J.P., Jiang, J., Thivalapill, N., Bilaver, L.A., Warren, C., et al. (2023) Gut Microbiome Is Associated with Asthma and Race in Children with Food Allergy. Journal of Allergy and Clinical Immunology, 152, 1541-1549.E1.
https://doi.org/10.1016/j.jaci.2023.07.024
[34] Dai, D.L.Y., Petersen, C., Hoskinson, C., Del Bel, K.L., Becker, A.B., Moraes, T.J., et al. (2023) Breastfeeding Enrichment of B. longum subsp. Infantis Mitigates the Effect of Antibiotics on the Microbiota and Childhood Asthma Risk. Med, 4, 92-112.E5.
https://doi.org/10.1016/j.medj.2022.12.002