[1]
|
中华医学会呼吸病学分会哮喘学组. 支气管哮喘防治指南(2020年版) [J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048.
|
[2]
|
Papi, A., Brightling, C., Pedersen, S.E. and Reddel, H.K. (2018) Asthma. The Lancet, 391, 783-800. https://doi.org/10.1016/s0140-6736(17)33311-1
|
[3]
|
Huang, K., Yang, T., Xu, J., Yang, L., Zhao, J., Zhang, X., et al. (2019) Prevalence, Risk Factors, and Management of Asthma in China: A National Cross-Sectional Study. The Lancet, 394, 407-418. https://doi.org/10.1016/s0140-6736(19)31147-x
|
[4]
|
Duffy, D.L., Martin, N.G., Battistutta, D., Hopper, J.L. and Mathews, J.D. (1990) Genetics of Asthma and Hay Fever in Australian Twins. American Review of Respiratory Disease, 142, 1351-1358. https://doi.org/10.1164/ajrccm/142.6_pt_1.1351
|
[5]
|
Hussain, M.S., Sharma, P., Dhanjal, D.S., Khurana, N., Vyas, M., Sharma, N., et al. (2021) Nanotechnology Based Advanced Therapeutic Strategies for Targeting Interleukins in Chronic Respiratory Diseases. Chemico-Biological Interactions, 348, Article 109637. https://doi.org/10.1016/j.cbi.2021.109637
|
[6]
|
Labaki, W.W. and Han, M.K. (2020) Chronic Respiratory Diseases: A Global View. The Lancet Respiratory Medicine, 8, 531-533. https://doi.org/10.1016/s2213-2600(20)30157-0
|
[7]
|
Frati, F., Salvatori, C., Incorvaia, C., Bellucci, A., Di Cara, G., Marcucci, F., et al. (2018) The Role of the Microbiome in Asthma: The Gut-Lung Axis. International Journal of Molecular Sciences, 20, Article 123. https://doi.org/10.3390/ijms20010123
|
[8]
|
Penders, J., Stobberingh, E.E., Brandt, van den Brandt, P.A. and Thijs, C. (2007) The Role of the Intestinal Microbiota in the Development of Atopic Disorders. Allergy, 62, 1223-1236. https://doi.org/10.1111/j.1398-9995.2007.01462.x
|
[9]
|
Gilbert, J.A., Blaser, M.J., Caporaso, J.G., Jansson, J.K., Lynch, S.V. and Knight, R. (2018) Current Understanding of the Human Microbiome. Nature Medicine, 24, 392-400. https://doi.org/10.1038/nm.4517
|
[10]
|
Adak, A. and Khan, M.R. (2018) An Insight into Gut Microbiota and Its Functionalities. Cellular and Molecular Life Sciences, 76, 473-493. https://doi.org/10.1007/s00018-018-2943-4
|
[11]
|
Schoeler, M. and Caesar, R. (2019) Dietary Lipids, Gut Microbiota and Lipid Metabolism. Reviews in Endocrine and Metabolic Disorders, 20, 461-472. https://doi.org/10.1007/s11154-019-09512-0
|
[12]
|
Davey Smith, G. and Ebrahim, S. (2003) ‘Mendelian Randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease?. International Journal of Epidemiology, 32, 1-22. https://doi.org/10.1093/ije/dyg070
|
[13]
|
Liu, K., Zou, J., Fan, H., Hu, H. and You, Z. (2022) Causal Effects of Gut Microbiota on Diabetic Retinopathy: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article 930318. https://doi.org/10.3389/fimmu.2022.930318
|
[14]
|
Luo, Q., Hu, Y., Chen, X., Luo, Y., Chen, J. and Wang, H. (2022) Effects of Gut Microbiota and Metabolites on Heart Failure and Its Risk Factors: A Two-Sample Mendelian Randomization Study. Frontiers in Nutrition, 9, Article 899746. https://doi.org/10.3389/fnut.2022.899746
|
[15]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. https://doi.org/10.1093/ije/dyv080
|
[16]
|
Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314. https://doi.org/10.1002/gepi.21965
|
[17]
|
Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. https://doi.org/10.1038/s41588-018-0099-7
|
[18]
|
Ley, R.E., Peterson, D.A. and Gordon, J.I. (2006) Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine. Cell, 124, 837-848. https://doi.org/10.1016/j.cell.2006.02.017
|
[19]
|
Barcik, W., Boutin, R.C.T., Sokolowska, M. and Finlay, B.B. (2020) The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity, 52, 241-255. https://doi.org/10.1016/j.immuni.2020.01.007
|
[20]
|
Sender, R., Fuchs, S. and Milo, R. (2016) Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164, 337-340. https://doi.org/10.1016/j.cell.2016.01.013
|
[21]
|
Tulic, M.K., Piche, T. and Verhasselt, V. (2016) Lung-Gut Cross‐Talk: Evidence, Mechanisms and Implications for the Mucosal Inflammatory Diseases. Clinical & Experimental Allergy, 46, 519-528. https://doi.org/10.1111/cea.12723
|
[22]
|
Hufnagl, K., Pali-Schöll, I., Roth-Walter, F. and Jensen-Jarolim, E. (2020) Dysbiosis of the Gut and Lung Microbiome Has a Role in Asthma. Seminars in Immunopathology, 42, 75-93. https://doi.org/10.1007/s00281-019-00775-y
|
[23]
|
Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850. https://doi.org/10.1038/s41385-019-0160-6
|
[24]
|
Lee-Sarwar, K.A., Lasky-Su, J., Kelly, R.S., Litonjua, A.A. and Weiss, S.T. (2020) Gut Microbial-Derived Metabolomics of Asthma. Metabolites, 10, Article 97. https://doi.org/10.3390/metabo10030097
|
[25]
|
Chunxi, L., Haiyue, L., Yanxia, L., Jianbing, P. and Jin, S. (2020) The Gut Microbiota and Respiratory Diseases: New Evidence. Journal of Immunology Research, 2020, Article ID: 2340670. https://doi.org/10.1155/2020/2340670
|
[26]
|
Yu, H., Wan, X., Yang, M., Xie, J., Xu, K., Wang, J., et al. (2023) A Large-Scale Causal Analysis of Gut Microbiota and Delirium: A Mendelian Randomization Study. Journal of Affective Disorders, 329, 64-71. https://doi.org/10.1016/j.jad.2023.02.078
|
[27]
|
Sun, K., Gao, Y., Wu, H. and Huang, X. (2023) The Causal Relationship between Gut Microbiota and Type 2 Diabetes: A Two-Sample Mendelian Randomized Study. Frontiers in Public Health, 11, Article 1255059. https://doi.org/10.3389/fpubh.2023.1255059
|
[28]
|
Lee-Sarwar, K.A., Kelly, R.S., Lasky-Su, J., Zeiger, R.S., O’Connor, G.T., Sandel, M.T., et al. (2019) Integrative Analysis of the Intestinal Metabolome of Childhood Asthma. Journal of Allergy and Clinical Immunology, 144, 442-454. https://doi.org/10.1016/j.jaci.2019.02.032
|
[29]
|
Kao, H., Wang, Y., Tseng, H., Wu, L.S., Tsai, H., Hsieh, M., et al. (2020) Goat Milk Consumption Enhances Innate and Adaptive Immunities and Alleviates Allergen-Induced Airway Inflammation in Offspring Mice. Frontiers in Immunology, 11, Article 184. https://doi.org/10.3389/fimmu.2020.00184
|
[30]
|
Xie, Y., Zhang, Y., Wang, T., Liu, Y., Ma, J., Wu, S., et al. (2023) Ablation of CD226 on CD4+ T Cells Modulates Asthma Progress Associated with Altered IL-10 Response and Gut Microbiota. International Immunopharmacology, 118, Article 110051. https://doi.org/10.1016/j.intimp.2023.110051
|
[31]
|
Arrieta, M., Stiemsma, L.T., Dimitriu, P.A., Thorson, L., Russell, S., Yurist-Doutsch, S., et al. (2015) Early Infancy Microbial and Metabolic Alterations Affect Risk of Childhood Asthma. Science Translational Medicine, 7, 307ra152. https://doi.org/10.1126/scitranslmed.aab2271
|
[32]
|
Huang, F., Zhang, Y., Bai, X., Wang, C. and Li, Y. (2022) Clostridium Leptum Induces the Generation of Interleukin-10+ Regulatory B Cells to Alleviate Airway Inflammation in Asthma. Molecular Immunology, 145, 124-138. https://doi.org/10.1016/j.molimm.2022.03.010
|
[33]
|
Mahdavinia, M., Fyolek, J.P., Jiang, J., Thivalapill, N., Bilaver, L.A., Warren, C., et al. (2023) Gut Microbiome Is Associated with Asthma and Race in Children with Food Allergy. Journal of Allergy and Clinical Immunology, 152, 1541-1549.E1. https://doi.org/10.1016/j.jaci.2023.07.024
|
[34]
|
Dai, D.L.Y., Petersen, C., Hoskinson, C., Del Bel, K.L., Becker, A.B., Moraes, T.J., et al. (2023) Breastfeeding Enrichment of B. longum subsp. Infantis Mitigates the Effect of Antibiotics on the Microbiota and Childhood Asthma Risk. Med, 4, 92-112.E5. https://doi.org/10.1016/j.medj.2022.12.002
|