[1]
|
Zuo, X., Ding, X., Zhang, Y. and Kang, Y.J. (2024) Reversal of Atherosclerosis by Restoration of Vascular Copper Homeostasis. Experimental Biology and Medicine, 249, Article 10185. https://doi.org/10.3389/ebm.2024.10185
|
[2]
|
Tsao, C.W., Aday, A.W., Almarzooq, Z.I., Alonso, A., Beaton, A.Z., Bittencourt, M.S., et al. (2022) Heart Disease and Stroke Statistics—2022 Update: A Report from the American Heart Association. Circulation, 145, e153-e639. https://doi.org/10.1161/cir.0000000000001052
|
[3]
|
Nakano, S., Otake, H., Kawamori, H., Toba, T., Sugizaki, Y., Nagasawa, A., et al. (2021) Association between Visit-To-Visit Variability in Low-Density Lipoprotein Cholesterol and Plaque Rupture That Leads to Acute Coronary Syndrome. Circulation Reports, 3, 540-549. https://doi.org/10.1253/circrep.cr-21-0080
|
[4]
|
Saladini, F., Rattazzi, M., Faggin, E., Palatini, P. and Puato, M. (2021) Carotid Elasticity Is Impaired in Stage 1 Hypertensive Patients with Well-Controlled Blood Pressure Levels. Journal of Human Hypertension, 36, 898-903. https://doi.org/10.1038/s41371-021-00584-7
|
[5]
|
Zhang, Y., Lacolley, P., Protogerou, A.D. and Safar, M.E. (2020) Arterial Stiffness in Hypertension and Function of Large Arteries. American Journal of Hypertension, 33, 291-296. https://doi.org/10.1093/ajh/hpz193
|
[6]
|
Pan, F., Yu, L., Luo, J., Wu, R., Xu, M., Liang, J., et al. (2018) Carotid Artery Stiffness Assessment by Ultrafast Ultrasound Imaging: Feasibility and Potential Influencing Factors. Journal of Ultrasound in Medicine, 37, 2759-2767. https://doi.org/10.1002/jum.14630
|
[7]
|
胡文姝, 徐亮, 周畅. 颈动脉弹性超声检测的临床应用进展[J]. 浙江医学, 2025, 47(2): 208-212.
|
[8]
|
Wang, Y., Zhao, C., Meng, P., Yu, Y., Li, G., Kong, F., et al. (2020) Incremental Value of Carotid Elasticity Modulus Using Shear Wave Elastography for Identifying Coronary Artery Disease in Patients without Carotid Plaque. Journal of Hypertension, 39, 1210-1220. https://doi.org/10.1097/hjh.0000000000002773
|
[9]
|
Alan, B. and Alan, S. (2022) Evaluation of Carotid Artery Stiffness in Patients with Coronary Artery Disease Using Acoustic Radiation Force Impulse Elastography. Vascular, 31, 564-572. https://doi.org/10.1177/17085381221076679
|
[10]
|
Tanter, M. and Fink, M. (2014) Ultrafast Imaging in Biomedical Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61, 102-119. https://doi.org/10.1109/tuffc.2014.6689779
|
[11]
|
Guo, S., Gu, C., Sun, L., Qi, Z. and Wang, B. (2024) Evaluation of Carotid Stiffness in Metabolic Syndrome by Real-Time Shear Wave Elasticity Imaging and Ultrafast Pulse Wave Velocity. Ultrasound in Medicine & Biology, 50, 1280-1286. https://doi.org/10.1016/j.ultrasmedbio.2024.05.007
|
[12]
|
Yu, L., Xu, G., Zhou, Q., Ouyang, M., Gao, L. and Zeng, S. (2023) Biomechanical Properties of the Ascending Aorta in Patients with Arterial Hypertension by Velocity Vector Imaging. The International Journal of Cardiovascular Imaging, 40, 397-405. https://doi.org/10.1007/s10554-023-03003-9
|
[13]
|
王雪婷, 江峰. 二维斑点追踪成像技术评价代谢综合征患者颈动脉弹性的可行性与准确性分析[J]. 九江学院学报(自然科学版), 2024, 39(1): 96-99.
|
[14]
|
刘娅, 邝野, 樊华, 等. 超声心动图、颈动脉内膜中层厚度联合N末端脑钠肽前体等指标对川崎病合并冠状动脉病变患儿诊断价值[J]. 临床军医杂志, 2023, 51(12): 1281-1283, 1287.
|
[15]
|
Raitakari, O.T., Magnussen, C.G., Juonala, M., Kartiosuo, N., Pahkala, K., Rovio, S., et al. (2024) Subclinical Atherosclerosis in Young Adults Predicting Cardiovascular Disease: The Cardiovascular Risk in Young Finns Study. Atherosclerosis, 393, Article ID: 117515. https://doi.org/10.1016/j.atherosclerosis.2024.117515
|
[16]
|
Zhu, Y., You, J., Xu, C. and Gu, X. (2020) Predictive Value of Carotid Artery Ultrasonography for the Risk of Coronary Artery Disease. Journal of Clinical Ultrasound, 49, 218-226. https://doi.org/10.1002/jcu.22932
|
[17]
|
Yu, J.B., et al. (2023) Predicting Coronary Artery Disease by Carotid Color Doppler Ultrasonography. European Review for Medical and Pharmacological Sciences, 27, 11713-11721.
|
[18]
|
Agarwal, R., Gadupati, J., Ramaiah, S.S., Babu, V.G., Jain, A. and Prakash, V.S. (2024) Carotid Artery Doppler: A Possible Non-Invasive Diagnostic Approach to Assessing the Severity of Coronary Artery Disease. Cureus, 16, e62886. https://doi.org/10.7759/cureus.62886
|
[19]
|
Zhou, P., Shen, Y., Wang, L., Cao, Z., Feng, W., Liu, J., et al. (2020) Association between Carotid Intima Media Thickness and Small Dense Low-Density Lipoprotein Cholesterol in Acute Ischaemic Stroke. Lipids in Health and Disease, 19, Article No. 177. https://doi.org/10.1186/s12944-020-01353-0
|
[20]
|
Ravikanth, R. (2020) Relevance of Carotid Intima-Media Thickness and Plaque Morphology in the Risk Assessment of Patients with Acute Ischemic Cerebral Infarcts: A Case-Control Study of Large Series from a Single Center. Journal of Medical Ultrasound, 28, 29-34. https://doi.org/10.4103/jmu.jmu_5_19
|
[21]
|
Porambo, M.E. and DeMarco, J.K. (2020) MR Imaging of Vulnerable Carotid Plaque. Cardiovascular Diagnosis and Therapy, 10, 1019-1031. https://doi.org/10.21037/cdt.2020.03.12
|
[22]
|
Zhang, Y., Cao, J., Zhou, J., Zhang, C., Li, Q., Chen, S., et al. (2021) Plaque Elasticity and Intraplaque Neovascularisation on Carotid Artery Ultrasound: A Comparative Histological Study. European Journal of Vascular and Endovascular Surgery, 62, 358-366. https://doi.org/10.1016/j.ejvs.2021.05.026
|
[23]
|
Zhang, S., Jiang, S., Wang, C. and Han, C. (2023) Comparison of Ultrasonic Shear Wave Elastography, Angioplus Planewave Ultrasensitive Imaging, and Optimized High-Resolution Magnetic Resonance Imaging in Evaluating Carotid Plaque Stability. PeerJ, 11, e16150. https://doi.org/10.7717/peerj.16150
|
[24]
|
Wang, B., Chen, Y., Qiao, Q., Dong, L., Xiao, C. and Qi, Z. (2023) Evaluation of Carotid Plaque Vulnerability with Different Echoes by Shear Wave Elastography and CEUS. Journal of Stroke and Cerebrovascular Diseases, 32, Article ID: 106941. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106941
|
[25]
|
申宜昊, 饶宛婷, 邹葵花, 等. 剪切波弹性成像鉴别不均质颈动脉斑块不同回声区域硬度差异的可行性研究[J]. 中国医学计算机成像杂志, 2022, 28(4): 423-426.
|
[26]
|
朱珊, 孙楠, 陶宏宇, 等. 剪切波弹性成像评估颈动脉斑块与冠状动脉病变程度的相关性[J]. 中国医学影像学杂志, 2023, 31(4): 326-331.
|
[27]
|
Fu, P., Wang, J., Su, Y., Liao, Y., Li, S., Xu, G., et al. (2023) Intravascular Ultrasonography Assisted Carotid Artery Stenting for Treatment of Carotid Stenosis: Two Case Reports. World Journal of Clinical Cases, 11, 7127-7135. https://doi.org/10.12998/wjcc.v11.i29.7127
|
[28]
|
Nasu, K., Tsuchikane, E., Katoh, O., Vince, D.G., Virmani, R., Surmely, J., et al. (2006) Accuracy of in Vivo Coronary Plaque Morphology Assessment: A Validation Study of in Vivo Virtual Histology Compared with in Vitro Histopathology. Journal of the American College of Cardiology, 47, 2405-2412. https://doi.org/10.1016/j.jacc.2006.02.044
|
[29]
|
Sakurai, S., Takashima, H., Waseda, K., Gosho, M., Kurita, A., Ando, H., et al. (2015) Influence of Plaque Characteristics on Fractional Flow Reserve for Coronary Lesions with Intermediate to Obstructive Stenosis: Insights from Integrated-Backscatter Intravascular Ultrasound Analysis. The International Journal of Cardiovascular Imaging, 31, 1295-1301. https://doi.org/10.1007/s10554-015-0699-6
|
[30]
|
Suzuki, W., et al. (2024) Tissue Characteristics of Residual Lesion in Patients with Acute Coronary Syndrome Caused by Plaque Rupture versus Plaque Erosion: A Single-Center, Retrospective, Observational Study. Nagoya Journal of Medical Science, 86, 189-200.
|
[31]
|
Czernuszewicz, T.J. and Gallippi, C.M. (2016) On the Feasibility of Quantifying Fibrous Cap Thickness with Acoustic Radiation Force Impulse (ARFI) Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63, 1262-1275. https://doi.org/10.1109/tuffc.2016.2535440
|
[32]
|
Czernuszewicz, T.J., Homeister, J.W., Caughey, M.C., Wang, Y., Zhu, H., Huang, B.Y., et al. (2017) Performance of Acoustic Radiation Force Impulse Ultrasound Imaging for Carotid Plaque Characterization with Histologic Validation. Journal of Vascular Surgery, 66, 1749-1757.e3. https://doi.org/10.1016/j.jvs.2017.04.043
|
[33]
|
Torres, G., Czernuszewicz, T.J., Homeister, J.W., Farber, M.A., Caughey, M.C. and Gallippi, C.M. (2020) Carotid Plaque Fibrous Cap Thickness Measurement by ARFI Variance of Acceleration: In Vivo Human Results. IEEE Transactions on Medical Imaging, 39, 4383-4390. https://doi.org/10.1109/tmi.2020.3019184
|
[34]
|
崔柳平, 周福波, 潘希娟, 等. 血管超声评估颈动脉斑块易损性的研究进展[J]. 中国超声医学杂志, 2024, 40(3): 352-355.
|
[35]
|
Zhou, F., Hua, Y., Ji, X., Jia, L., Zhang, K., Li, Q., et al. (2021) Ultrasound-Based Carotid Plaque Characteristics Help Predict New Cerebral Ischemic Lesions after Endarterectomy. Ultrasound in Medicine & Biology, 47, 244-251. https://doi.org/10.1016/j.ultrasmedbio.2020.09.025
|
[36]
|
Heliopoulos, J., Vadikolias, K., Piperidou, C. and Mitsias, P. (2011) Detection of Carotid Artery Plaque Ulceration Using 3-Dimensional Ultrasound. Journal of Neuroimaging, 21, 126-131. https://doi.org/10.1111/j.1552-6569.2009.00450.x
|
[37]
|
Saba, L., Yuan, C., Hatsukami, T.S., Balu, N., Qiao, Y., DeMarco, J.K., et al. (2018) Carotid Artery Wall Imaging: Perspective and Guidelines from the ASNR Vessel Wall Imaging Study Group and Expert Consensus Recommendations of the American Society of Neuroradiology. American Journal of Neuroradiology, 39, E9-E31. https://doi.org/10.3174/ajnr.a5488
|
[38]
|
Rafailidis, V., Chryssogonidis, I., Xerras, C., Nikolaou, I., Tegos, T., Kouskouras, K., et al. (2018) A Comparative Study of Color Doppler Imaging and Contrast-Enhanced Ultrasound for the Detection of Ulceration in Patients with Carotid Atherosclerotic Disease. European Radiology, 29, 2137-2145. https://doi.org/10.1007/s00330-018-5773-8
|
[39]
|
Lyu, Q., Tian, X., Ding, Y., Yan, Y., Huang, Y., Zhou, P., et al. (2020) Evaluation of Carotid Plaque Rupture and Neovascularization by Contrast-Enhanced Ultrasound Imaging: An Exploratory Study Based on Histopathology. Translational Stroke Research, 12, 49-56. https://doi.org/10.1007/s12975-020-00825-w
|
[40]
|
Kopyto, E., Czeczelewski, M., Mikos, E., Stępniak, K., Kopyto, M., Matuszek, M., et al. (2023) Contrast-Enhanced Ultrasound Feasibility in Assessing Carotid Plaque Vulnerability—Narrative Review. Journal of Clinical Medicine, 12, Article 6416. https://doi.org/10.3390/jcm12196416
|
[41]
|
Zhang, L., Wu, R., Chen, J., Gu, S. and Jia, C. (2025) The Role of Intraplaque Neovascularization in Recent and Future Ischemic Stroke in Patients with Mild Carotid Stenosis. Ultrasonography, 44, 62-71. https://doi.org/10.14366/usg.24123
|
[42]
|
Yang, F. and Wang, C. (2020) Consistency of Superb Microvascular Imaging and Contrast-Enhanced Ultrasonography in Detection of Intraplaque Neovascularization: A Meta-Analysis. PLOS ONE, 15, e0230937. https://doi.org/10.1371/journal.pone.0230937
|
[43]
|
Noflatscher, M., Schreinlechner, M., Sommer, P., Kerschbaum, J., Berggren, K., Theurl, M., et al. (2018) Influence of Traditional Cardiovascular Risk Factors on Carotid and Femoral Atherosclerotic Plaque Volume as Measured by Three-Dimensional Ultrasound. Journal of Clinical Medicine, 8, Article 32. https://doi.org/10.3390/jcm8010032
|
[44]
|
Jinnouchi, H., Sato, Y., Sakamoto, A., Cornelissen, A., Mori, M., Kawakami, R., et al. (2020) Calcium Deposition within Coronary Atherosclerotic Lesion: Implications for Plaque Stability. Atherosclerosis, 306, 85-95. https://doi.org/10.1016/j.atherosclerosis.2020.05.017
|
[45]
|
Ruan, W., He, Y., Shao, X., Yang, S., Li, X., Ding, J., et al. (2021) The Ability of Micropure® Ultrasound Technique to Identify Microcalcifications in Carotid Plaques. Clinical Neurology and Neurosurgery, 201, Article ID: 106401. https://doi.org/10.1016/j.clineuro.2020.106401
|
[46]
|
Zhang, L., Lyu, Q., Ding, Y., Hu, C. and Hui, P. (2022) Texture Analysis Based on Vascular Ultrasound to Identify the Vulnerable Carotid Plaques. Frontiers in Neuroscience, 16, Article 885209. https://doi.org/10.3389/fnins.2022.885209
|
[47]
|
Zhang, R., Zhang, Q., Ji, A., Lv, P., Zhang, J., Fu, C., et al. (2020) Identification of High-Risk Carotid Plaque with MRI-Based Radiomics and Machine Learning. European Radiology, 31, 3116-3126. https://doi.org/10.1007/s00330-020-07361-z
|
[48]
|
Wang, X., Luo, P., Du, H., Li, S., Wang, Y., Guo, X., et al. (2022) Ultrasound Radiomics Nomogram Integrating Three-Dimensional Features Based on Carotid Plaques to Evaluate Coronary Artery Disease. Diagnostics, 12, Article 256. https://doi.org/10.3390/diagnostics12020256
|