[1]
|
郑洁, 孟佑婷, 等. 动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进展[J]. 微生物学报, 2017, 57(7): 969-977.
|
[2]
|
金圣圣, 张丽梅, 等. 锰氧化物与环境中有机物的作用及其在环境修复中的应用[J]. 环境科学学报, 2008, 28(12): 2394-2403.
|
[3]
|
李斐, 吴超, 等. 锰氧化微生物及其在土壤环境中的作用[J]. 环境污染与防治, 2020, 42(10): 1298-1304.
|
[4]
|
易春龙, 叶欣, 等. 生物锰氧化物对4种重金属的吸附特性研究[J]. 工业安全与环保, 2021, 47(3): 94-98.
|
[5]
|
Nealson, K.H., Tebo, B.M. and Rosson, R.A. (1988) Occurrence and Mechanisms of Microbial Oxidation of Manganese. Advances in Applied Microbiology, 33, 279-318. https://doi.org/10.1016/s0065-2164(08)70209-0
|
[6]
|
Tebo, B.M., Johnson, H.A., McCarthy, J.K. and Templeton, A.S. (2005) Geomicrobiology of Manganese(II) Oxidation. Trends in Microbiology, 13, 421-428. https://doi.org/10.1016/j.tim.2005.07.009
|
[7]
|
Caspi, R., Tebo, B.M. and Haygood, M.G. (1998) c-Type Cytochromes and Manganese Oxidation in pseudomonas Putida MnB1. Applied and Environmental Microbiology, 64, 3549-3555. https://doi.org/10.1128/aem.64.10.3549-3555.1998
|
[8]
|
McKee, K.P., Vance, C.C. and Karthikeyan, R. (2016) Biological Manganese Oxidation by Pseudomonas putida in Trickling Filters. Journal of Environmental Science and Health, Part A, 51, 523-535. https://doi.org/10.1080/10934529.2016.1141618
|
[9]
|
Cahyani, V.R., Murase, J., Ishibashi, E., Asakawa, S. and Kimura, M. (2008) Phylogenetic Positions of Mn2+-Oxidizing Bacteria and Fungi Isolated from Mn Nodules in Rice Field Subsoils. Biology and Fertility of Soils, 45, 337-346. https://doi.org/10.1007/s00374-008-0337-8
|
[10]
|
Parikh, S.J. and Chorover, J. (2005) FTIR Spectroscopic Study of Biogenic Mn-Oxide Formation by Pseudomonas putida GB-1. Geomicrobiology Journal, 22, 207-218. https://doi.org/10.1080/01490450590947724
|
[11]
|
Bargar, J.R., Tebo, B.M., Bergmann, U., Webb, S.M., Glatzel, P., Chiu, V.Q., et al. (2005) Biotic and Abiotic Products of Mn(II) Oxidation by Spores of the Marine Bacillus sp. Strain SG-1. American Mineralogist, 90, 143-154. https://doi.org/10.2138/am.2005.1557
|
[12]
|
Tang, W., Gong, J., Wu, L., Li, Y., Zhang, M. and Zeng, X. (2016) DGGE Diversity of Manganese Mine Samples and Isolation of a Lysinibacillus sp. Efficient in Removal of High Mn(II) Concentrations. Chemosphere, 165, 277-283. https://doi.org/10.1016/j.chemosphere.2016.08.134
|
[13]
|
Ghiorse, W.C. and Chapnick, S.D. (1983) Metal-Depositing Bacteria and the Distribution of Manganese and Iron in Swamp Waters. Ecological Bulletins, 9, 367-376.
|
[14]
|
万文结, 薛芷筠, 等. 锰氧化菌Arthrobacter sp.HW-16的锰氧化特性和氧化机制[J]. 环境科学, 2017, 38(5): 2036-2043.
|
[15]
|
Akob, D.M., Bohu, T., Beyer, A., Schäffner, F., Händel, M., Johnson, C.A., et al. (2014) Identification of Mn(II)-Oxidizing Bacteria from a Low-Ph Contaminated Former Uranium Mine. Applied and Environmental Microbiology, 80, 5086-5097. https://doi.org/10.1128/aem.01296-14
|
[16]
|
Khalilnezhad, R., Olya, M.E., Khosravi, M. and Marandi, R. (2014) Manganese Biosorption from Aqueous Solution by Penicillium Camemberti Biomass in the Batch and Fix Bed Reactors: A Kinetic Study. Applied Biochemistry and Biotechnology, 174, 1919-1934. https://doi.org/10.1007/s12010-014-1076-y
|
[17]
|
Parvathi, K., Naresh Kumar, R. and Nagendran, R. (2006) Biosorption of Manganese by Aspergillus Niger and Saccharomyces Cerevisiae. World Journal of Microbiology and Biotechnology, 23, 671-676. https://doi.org/10.1007/s11274-006-9281-7
|
[18]
|
Fadel, M., Hassanein, N.M., Elshafei, M.M., Mostafa, A.H., Ahmed, M.A. and Khater, H.M. (2017) Biosorption of Manganese from Groundwater by Biomass Ofsaccharomyces Cerevisiae. HBRC Journal, 13, 106-113. https://doi.org/10.1016/j.hbrcj.2014.12.006
|
[19]
|
Miyata, N., Tani, Y., Sakata, M. and Iwahori, K. (2007) Microbial Manganese Oxide Formation and Interaction with Toxic Metal Ions. Journal of Bioscience and Bioengineering, 104, 1-8. https://doi.org/10.1263/jbb.104.1
|
[20]
|
Miyata, N., Tani, Y., Maruo, K., Tsuno, H., Sakata, M. and Iwahori, K. (2006) Manganese(IV) Oxide Production by Acremonium sp. Strain KR21-2 and Extracellular Mn(II) Oxidase Activity. Applied and Environmental Microbiology, 72, 6467-6473. https://doi.org/10.1128/aem.00417-06
|
[21]
|
Tang, Y., Zeiner, C.A., Santelli, C.M. and Hansel, C.M. (2012) Fungal Oxidative Dissolution of the Mn(II)‐Bearing Mineral Rhodochrosite and the Role of Metabolites in Manganese Oxide Formation. Environmental Microbiology, 15, 1063-1077. https://doi.org/10.1111/1462-2920.12029
|
[22]
|
Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., et al. (2004) Biogenic Manganese Oxides: Properties and Mechanisms of Formation. Annual Review of Earth and Planetary Sciences, 32, 287-328. https://doi.org/10.1146/annurev.earth.32.101802.120213
|
[23]
|
陈虎, 王世杰, 等. 生物氧化锰矿物的研究进展[J]. 矿物学报, 2022, 42(1): 21-28.
|
[24]
|
Villalobos, M., Toner, B., Bargar, J. and Sposito, G. (2003) Characterization of the Manganese Oxide Produced by Pseudomonas Putida Strain MnB1. Geochimica et Cosmochimica Acta, 67, 2649-2662. https://doi.org/10.1016/s0016-7037(03)00217-5
|
[25]
|
Nelson, Y.M., Lion, L.W., Ghiorse, W.C. and Shuler, M.L. (1999) Production of Biogenic Mn Oxides by Leptothrix discophora SS-1 in a Chemically Defined Growth Medium and Evaluation of Their Pb Adsorption Characteristics. Applied and Environmental Microbiology, 65, 175-180. https://doi.org/10.1128/aem.65.1.175-180.1999
|
[26]
|
孟佑婷, 郑袁明, 等. 环境中生物氧化锰的形成机制及其与重金属离子的相互作用[J]. 环境科学, 2009, 30(2): 574-582.
|
[27]
|
Francis, C.A., Co, E. and Tebo, B.M. (2001) Enzymatic Manganese(II) Oxidation by a Marine α-Proteobacterium. Applied and Environmental Microbiology, 67, 4024-4029. https://doi.org/10.1128/aem.67.9.4024-4029.2001
|
[28]
|
Tang, W., Liu, Y., Gong, J., Chen, S. and Zeng, X. (2019) Analysis of Manganese Oxidase and Its Encoding Gene in Lysinibacillus Strain Mk-1. Process Safety and Environmental Protection, 127, 299-305. https://doi.org/10.1016/j.psep.2019.04.002
|
[29]
|
Renganathan, V., Miki, K. and Gold, M.H. (1985) Multiple Molecular Forms of Diarylpropane Oxygenase, an H2O2-Requiring, Lignin-Degrading Enzyme from Phanerochaete Chrysosporium. Archives of Biochemistry and Biophysics, 241, 304-314. https://doi.org/10.1016/0003-9861(85)90387-x
|
[30]
|
Shaner, D.L. and Singh, B.K. (1991) Imidazolinone-Induced Loss of Acetohydroxyacid Synthase Activity in Maize Is Not Due to the Enzyme Degradation. Plant Physiology, 97, 1339-1341. https://doi.org/10.1104/pp.97.4.1339
|
[31]
|
Hirano, T., Honda, Y., Watanabe, T. and Kuwahara, M. (2000) Degradation of Bisphenol a by the Lignin-Degrading Enzyme, Manganese Peroxidase, Produced by the White-Rot Basidiomycete, Pleurotus ostreatus. Bioscience, Biotechnology, and Biochemistry, 64, 1958-1962. https://doi.org/10.1271/bbb.64.1958
|
[32]
|
晏平, 姜理英, 等. 锰氧化菌Aminobacter sp.H1的分离鉴定及其锰氧化机制研究[J]. 环境科学, 2014, 35(4): 1428-1436.
|
[33]
|
Hullo, M., Moszer, I., Danchin, A. and Martin-Verstraete, I. (2001) Cota of Bacillus subtilis Is a Copper-Dependent Laccase. Journal of Bacteriology, 183, 5426-5430. https://doi.org/10.1128/jb.183.18.5426-5430.2001
|
[34]
|
Anderson, C.R., Johnson, H.A., Caputo, N., Davis, R.E., Torpey, J.W. and Tebo, B.M. (2009) Mn(II) Oxidation Is Catalyzed by Heme Peroxidases in “ Aurantimonas manganoxydans ” Strain SI85-9A1 and Erythrobacter sp. Strain SD-21. Applied and Environmental Microbiology, 75, 4130-4138. https://doi.org/10.1128/aem.02890-08
|
[35]
|
Learman, D.R., Voelker, B.M., Vazquez-Rodriguez, A.I. and Hansel, C.M. (2011) Formation of Manganese Oxides by Bacterially Generated Superoxide. Nature Geoscience, 4, 95-98. https://doi.org/10.1038/ngeo1055
|
[36]
|
Brouwers, G.J., Vijgenboom, E., et al. (2000) Bacterial Mn2+oxidizing Systems and Multicopper Oxidases: An Overview of Mechanisms and Functions. Geomicrobiology Journal, 17, 1-24. https://doi.org/10.1080/014904500270459
|
[37]
|
Webb, S.M., Dick, G.J., Bargar, J.R. and Tebo, B.M. (2005) Evidence for the Presence of Mn(III) Intermediates in the Bacterial Oxidation of Mn(II). Proceedings of the National Academy of Sciences of the United States of America, 102, 5558-5563. https://doi.org/10.1073/pnas.0409119102
|
[38]
|
Su, J., Bao, P., Bai, T., Deng, L., Wu, H., Liu, F., et al. (2013) Cota, a Multicopper Oxidase from Bacillus pumilus WH4, Exhibits Manganese-Oxidase Activity. PLOS ONE, 8, e60573. https://doi.org/10.1371/journal.pone.0060573
|
[39]
|
Butterfield, C.N. and Tebo, B.M. (2017) Substrate Specificity and Copper Loading of the Manganese-Oxidizing Multicopper Oxidase Mnx from Bacillus sp. PL-12. Metallomics, 9, 183-191. https://doi.org/10.1039/c6mt00239k
|
[40]
|
Corstjens, P.L.A.M., de Vrind, J.P.M., Goosen, T. and Jong, E.W.D.V. (1997) Identification and Molecular Analysis of the Leptothrix discophorass‐1 mofA Gene, a Gene Putatively Encoding a Manganese‐Oxidizing Protein with Copper Domains. Geomicrobiology Journal, 14, 91-108. https://doi.org/10.1080/01490459709378037
|
[41]
|
Brouwers, G., de Vrind, J.P.M., Corstjens, P.L.A.M., Cornelis, P., Baysse, C. and de Vrind-de Jong, E.W. (1999) cumA, a Gene Encoding a Multicopper Oxidase, Is Involved in Mn2+ Oxidation in Pseudomonas putida GB-1. Applied and Environmental Microbiology, 65, 1762-1768. https://doi.org/10.1128/aem.65.4.1762-1768.1999
|
[42]
|
周娜娜, 柏耀辉, 等. Pseudomonas sp.QJX-1的锰氧化特性研究[J]. 环境科学, 2014, 35(2): 740-745.
|
[43]
|
Andeer, P.F., Learman, D.R., McIlvin, M., Dunn, J.A. and Hansel, C.M. (2015) Extracellular Haem Peroxidases Mediate Mn(II) Oxidation in a Marine Roseobacter Bacterium via Superoxide Production. Environmental Microbiology, 17, 3925-3936. https://doi.org/10.1111/1462-2920.12893
|
[44]
|
Torres, E. and Ayala, M. (2010) Biocatalysis Based on Heme Peroxidases: Peroxidases as Potential Industrial Biocatalysts. Springer, 1-358.
|
[45]
|
Learman, D.R. and Hansel, C.M. (2014) Comparative Proteomics of Mn(II)‐Oxidizing and Non‐Oxidizing Roseobacter Clade Bacteria Reveal an Operative Manganese Transport System but Minimal Mn(II)‐Induced Expression of Manganese Oxidation and Antioxidant Enzymes. Environmental Microbiology Reports, 6, 501-509. https://doi.org/10.1111/1758-2229.12164
|
[46]
|
Geszvain, K., Smesrud, L. and Tebo, B.M. (2016) Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas Putida GB-1. Applied and Environmental Microbiology, 82, 3774-3782. https://doi.org/10.1128/aem.00046-16
|
[47]
|
Medina, M., Rizo, A., Dinh, D., Chau, B., Omidvar, M., Juarez, A., et al. (2018) Mopa, the Mn Oxidizing Protein from Erythrobacter sp. SD-21, Requires Heme and NAD+ for Mn(II) Oxidation. Frontiers in Microbiology, 9, Article 2671. https://doi.org/10.3389/fmicb.2018.02671
|
[48]
|
Nakama, K., Medina, M., Lien, A., Ruggieri, J., Collins, K. and Johnson, H.A. (2014) Heterologous Expression and Characterization of the Manganese-Oxidizing Protein from Erythrobacter sp. Strain Sd21. Applied and Environmental Microbiology, 80, 6837-6842. https://doi.org/10.1128/aem.01873-14
|
[49]
|
张米. 植物内生菌Salinicola tamaricis F01锰生物氧化机制研究[D]: [硕士学位论文]. 济南: 山东师范大学, 2019.
|
[50]
|
刘振洋, 金琳, 等. 锰氧化细菌分类及作用机制研究进展[J]. 当代化工研究, 2021(22): 163-164.
|
[51]
|
Knop, D., Levinson, D., Makovitzki, A., Agami, A., Lerer, E., Mimran, A., et al. (2016) Limits of Versatility of Versatile Peroxidase. Applied and Environmental Microbiology, 82, 4070-4080. https://doi.org/10.1128/aem.00743-16
|
[52]
|
Romano, C.A., Zhou, M., Song, Y., Wysocki, V.H., Dohnalkova, A.C., Kovarik, L., et al. (2017) Biogenic Manganese Oxide Nanoparticle Formation by a Multimeric Multicopper Oxidase Mnx. Nature Communications, 8, Article No. 746. https://doi.org/10.1038/s41467-017-00896-8
|
[53]
|
Vijayaraghavan, K. and Yun, Y. (2007) Utilization of Fermentation Waste (Corynebacterium glutamicum) for Biosorption of Reactive Black 5 from Aqueous Solution. Journal of Hazardous Materials, 141, 45-52. https://doi.org/10.1016/j.jhazmat.2006.06.081
|
[54]
|
段国文, 耿新燕, 等. 锰氧化细菌的生理生态功能与作用机制研究进展[J]. 微生物学通报, 2020, 47(9): 3039-3053.
|
[55]
|
Tebo, B.M. (1991) Manganese(II) Oxidation in the Suboxic Zone of the Black Sea. Deep Sea Research Part A. Oceanographic Research Papers, 38, S883-S905. https://doi.org/10.1016/s0198-0149(10)80015-9
|
[56]
|
陈明珠, 张林义, 等. 酸性矿山废水中锰氧化菌的分离鉴定及其对Mn2+的去除作用[J]. 环境科学学报, 2022, 42(9): 30-39.
|
[57]
|
冯福鑫, 王芳, 等. 理化因素对锰细菌Arthrobacter chlorophenolicus MN1409氧化Mn2+的影响[J]. 安全与环境学报, 2012, 12(2): 37-40.
|
[58]
|
许旭萍, 王芳, 等. Arthrobacter echigonensis介导生物氧化锰形成的机制及生物氧化锰的成分[J]. 环境科学, 2011, 32(6): 1772-1777.
|
[59]
|
苏键镁. 细菌氧化锰的作用机理及生物锰氧化物的特性研究[D]: [博士学位论文]. 武汉: 华中农业大学, 2015.
|
[60]
|
Okazaki, M., Sugita, T., Shimizu, M., Ohode, Y., Iwamoto, K., de Vrind-de Jong, E.W., et al. (1997) Partial Purification and Characterization of Manganese-Oxidizing Factors of Pseudomonas Fluorescens GB-1. Applied and Environmental Microbiology, 63, 4793-4799. https://doi.org/10.1128/aem.63.12.4793-4799.1997
|
[61]
|
Cai, Y., He, J., Zhang, J. and Li, J. (2020) Antibiotic Contamination Control Mediated by Manganese Oxidizing Bacteria in a Lab-Scale Biofilter. Journal of Environmental Sciences, 98, 47-54. https://doi.org/10.1016/j.jes.2020.05.024
|
[62]
|
Bai, Y., Su, J., Wen, Q., Li, G., Xue, L. and Huang, T. (2020) Removal of Tetracycline by Denitrifying Mn(II)-Oxidizing Bacterium Pseudomonas sp. H117 and Biomaterials (BMO and MBMO): Efficiency and Mechanisms. Bioresource Technology, 312, Article ID: 123565. https://doi.org/10.1016/j.biortech.2020.123565
|
[63]
|
Zhou, N., Liu, D., Min, D., Cheng, L., Huang, X., Tian, L., et al. (2018) Continuous Degradation of Ciprofloxacin in a Manganese Redox Cycling System Driven by Pseudomonas putida MnB-1. Chemosphere, 211, 345-351. https://doi.org/10.1016/j.chemosphere.2018.07.117
|
[64]
|
Li, K., Xu, A., Wu, D., Zhao, S., Meng, T. and Zhang, Y. (2021) Degradation of Ofloxacin by a Manganese-Oxidizing Bacterium Pseudomonas sp. F2 and Its Biogenic Manganese Oxides. Bioresource Technology, 328, Article ID: 124826. https://doi.org/10.1016/j.biortech.2021.124826
|
[65]
|
张星星, 李司令, 等. 锰氧化菌Pseudomonas sp. QJX-1对氧四环素的去除作用与机制[J]. 环境科学学报, 2021, 41(11): 4494-4500.
|
[66]
|
Gao, N., Hong, J., Yu, Z., Peng, P. and Huang, W. (2011) Transformation of Bisphenol a in the Presence of Manganese Dioxide. Soil Science, 176, 265-272. https://doi.org/10.1097/ss.0b013e31821d0b97
|
[67]
|
Shobnam, N., Sun, Y., Mahmood, M., Löffler, F.E. and Im, J. (2021) Biologically Mediated Abiotic Degradation (BMAD) of Bisphenol a by Manganese-Oxidizing Bacteria. Journal of Hazardous Materials, 417, Article ID: 125987. https://doi.org/10.1016/j.jhazmat.2021.125987
|
[68]
|
Tran, T.N., Kim, D. and Ko, S. (2018) Synergistic Effects of Biogenic Manganese Oxide and Mn(II)-Oxidizing Bacterium Pseudomonas putida Strain Mnb1 on the Degradation of 17 α-Ethinylestradiol. Journal of Hazardous Materials, 344, 350-359. https://doi.org/10.1016/j.jhazmat.2017.10.045
|