[1]
|
Ma, W., Lin, Y., Huang, C., Amin, M.A., El-Bahy, S.M., Melhi, S., et al. (2024) Fully Wood-Based High-Performance Triboelectric Nanogenerator for Smart Home. Advanced Composites and Hybrid Materials, 7, Article No. 126. https://doi.org/10.1007/s42114-024-00937-z
|
[2]
|
Wang, S., Li, L., Zha, L., Koskela, S., Berglund, L.A. and Zhou, Q. (2023) Wood Xerogel for Fabrication of High-Performance Transparent Wood. Nature Communications, 14, Article No. 2827. https://doi.org/10.1038/s41467-023-38481-x
|
[3]
|
Frey, M., Biffi, G., Adobes‐Vidal, M., Zirkelbach, M., Wang, Y., Tu, K., et al. (2019) Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients. Advanced Science, 6, Article ID: 1802190. https://doi.org/10.1002/advs.201802190
|
[4]
|
Tan, Y., Wang, K., Dong, Y., Gong, S., Lu, Y., Shi, S.Q., et al. (2024) Programmable and Shape-Color Synchronous Dual-Response Wood with Thermal Stimulus. ACS Nano, 18, 6718-6730. https://doi.org/10.1021/acsnano.3c03607
|
[5]
|
Qin, R., Nong, J., Wang, K., Liu, Y., Zhou, S., Hu, M., et al. (2024) Recent Advances in Flexible Pressure Sensors Based on MXene Materials. Advanced Materials, 36, Article ID: 2312761. https://doi.org/10.1002/adma.202312761
|
[6]
|
Ma, H., Liu, C., Yang, Z., Wu, S., Jiao, Y., Feng, X., et al. (2024) Programmable and Flexible Wood-Based Origami Electronics. Nature Communications, 15, Article No. 9272. https://doi.org/10.1038/s41467-024-53708-1
|
[7]
|
Tang, J., Gou, K., Wang, C., Wei, M., Tan, Q. and Weng, G. (2024) Self‐Powered and 3D Printable Soft Sensor for Human Health Monitoring, Object Recognition, and Contactless Hand Gesture Recognition. Advanced Functional Materials, 34, Article ID: 2411172. https://doi.org/10.1002/adfm.202411172
|
[8]
|
Gao, C., Zhao, J., Liu, T., Luo, B., Chi, M., Zhang, S., et al. (2024) Strong and Stable Woody Triboelectric Materials Enabled by Biphase Blocking. Nano Letters, 24, 14932-14940. https://doi.org/10.1021/acs.nanolett.4c02802
|
[9]
|
Gao, Y., Yu, Z., Qin, B., Chen, C., Ma, Z. and Yu, S. (2023) Superflexible Artificial Soft Wood. Advanced Materials, 35, Article ID: 15214095. https://doi.org/10.1002/adma.202303518
|
[10]
|
Mei, B., Jiao, P., Xie, Y., Zhao, Y., Li, Y. and Liu, H. (2024) Wood Derived Conductive Aerogel with Ultrahigh Specific Surface Area and Exceptional Mechanical Flexibility for Pressure Sensing. Chemical Engineering Journal, 500, Article ID: 157020. https://doi.org/10.1016/j.cej.2024.157020
|
[11]
|
Wang, Z., Han, X., Zhou, Z., Meng, W., Han, X., Wang, S., et al. (2021) Lightweight and Elastic Wood-Derived Composites for Pressure Sensing and Electromagnetic Interference Shielding. Composites Science and Technology, 213, Article 108931. https://doi.org/10.1016/j.compscitech.2021.108931
|
[12]
|
Zhu, Y., Hu, X., Yan, X., Ni, W., Wu, M. and Liu, J. (2024) Nanoengineering Ultrathin Flexible Pressure Sensors with Superior Sensitivity and Wide Range via Nanocomposite Structures. ACS Sensors, 9, 4176-4185. https://doi.org/10.1021/acssensors.4c01171
|
[13]
|
Zhou, J., Chen, H., Wu, Z., Zhou, P., You, M., Zheng, C., et al. (2025) 2D Ti3C2TX MXene-Based Light-Driven Actuator with Integrated Structure for Self-Powered Multi-Modal Intelligent Perception Assisted by Neural Network. Nano Energy, 134, Article ID: 110552. https://doi.org/10.1016/j.nanoen.2024.110552
|
[14]
|
Wang, X., Tian, W., Ye, Y., Chen, Y., Wu, W., Jiang, S., et al. (2024) Surface Modifications towards Superhydrophobic Wood-Based Composites: Construction Strategies, Functionalization, and Perspectives. Advances in Colloid and Interface Science, 326, Article ID: 103142. https://doi.org/10.1016/j.cis.2024.103142
|
[15]
|
余养伦, 王鲁飞, 于文吉. 我国木质重组材料研究现状与发展[J]. 材料工程, 2024, 52(10): 15-23.
|
[16]
|
范路洁. 基于木气凝胶的柔性压力传感器的研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2021.
|
[17]
|
朱盛鼎, 陈冬冬, 雷静桃. 触觉传感器与电子皮肤研究进展[J]. 电子机械工程, 2022, 38(4): 4-9.
|
[18]
|
郭登康, 郭耐, 傅峰, 等. 有机物改性增强木材物理力学性能的研究进展[J]. 材料导报, 2023, 37(22): 262-272.
|
[19]
|
Chen, Y., Liu, C., Liang, Z., Ye, L., Liu, L., Liu, Z., et al. (2023) Hydrochromic Wood Biocomposites for Humidity and Moisture Detection. Chemical Engineering Journal, 465, Article ID: 142890. https://doi.org/10.1016/j.cej.2023.142890
|
[20]
|
柯梦庆, 张肖凯, 周廷, 等. 低共熔溶剂预处理对北美赤杨木材性的影响[J]. 林业工程学报, 2024: 1-9.
|
[21]
|
赵金钰, 夏蕾, 张扬. 环氧树脂掺杂对地质聚合物木材胶黏剂性能的影响[J]. 北京林业大学学报, 2024, 46(8): 15-24.
|
[22]
|
Ma, X., Xiong, Y., Liu, Y., Han, J., Duan, G., Chen, Y., et al. (2022) When MOFs Meet Wood: From Opportunities toward Applications. Chem, 8, 2342-2361. https://doi.org/10.1016/j.chempr.2022.06.016
|
[23]
|
Liu, Y., Lv, Z., Zhou, J., Cui, Z., Li, W., Yu, J., et al. (2024) Muscle‐Inspired Formable Wood‐Based Phase Change Materials. Advanced Materials, 2024, Article ID: 2406915. https://doi.org/10.1002/adma.202406915
|
[24]
|
Tu, K., Puértolas, B., Adobes‐Vidal, M., Wang, Y., Sun, J., Traber, J., et al. (2020) Green Synthesis of Hierarchical Metal-Organic Framework/wood Functional Composites with Superior Mechanical Properties. Advanced Science, 7, Article ID: 1902897. https://doi.org/10.1002/advs.201902897
|
[25]
|
Wang, Z., Qing, Y., Liu, Z., Wang, S., Wu, Y. and Yang, S. (2024) Enhancing Flame Retardancy and Smoke Suppression of Wood via In-Situ Synthesis of Amine-Phosphotungstic Acid Nanoparticles with Tunable Shapes. Construction and Building Materials, 456, Article ID: 139226. https://doi.org/10.1016/j.conbuildmat.2024.139226
|
[26]
|
孟辰笑凝, 赵科岩, 高慧, 等. 有机烷氧基硅烷偶联剂在木材防腐中的应用[J]. 林产工业, 2020, 57(11): 65-68.
|
[27]
|
Weng, M., Zhou, J., Zhou, P., Shang, R., You, M., Shen, G., et al. (2024) Multi‐Functional Actuators Made with Biomass‐Based Graphene‐Polymer Films for Intelligent Gesture Recognition and Multi‐Mode Self‐Powered Sensing. Advanced Science, 11, Article ID: 2309846. https://doi.org/10.1002/advs.202309846
|
[28]
|
Qiu, Y., Wang, F., Zhang, Z., Shi, K., Song, Y., Lu, J., et al. (2024) Quantitative Softness and Texture Bimodal Haptic Sensors for Robotic Clinical Feature Identification and Intelligent Picking. Science Advances, 10, eadp348. https://doi.org/10.1126/sciadv.adp0348
|
[29]
|
Luo, T., Qi, J., Yu, J., Wang, C., Chu, F. and Wang, J. (2024) Lignin‐Based Macromolecular Photoinitiator for Non‐migration, Self‐Adhesive, and Water‐Resistant Eutectogels toward Underwater Reliable Communication. Advanced Functional Materials, 2024, Article ID: 2414481. https://doi.org/10.1002/adfm.202414481
|
[30]
|
Zhang, G., Li, P., Wang, X., Xia, Y. and Yang, J. (2022) Flexible Battery‐Free Wireless Sensor Array Based on Functional Gradient‐Structured Wood for Pressure and Temperature Monitoring. Advanced Functional Materials, 33, Article ID: 2208900. https://doi.org/10.1002/adfm.202208900
|
[31]
|
Nie, K., Wang, Z., Tang, R., Zheng, L., Li, C., Shen, X., et al. (2020) Anisotropic, Flexible Wood Hydrogels and Wrinkled, Electrodeposited Film Electrodes for Highly Sensitive, Wide-Range Pressure Sensing. ACS Applied Materials & Interfaces, 12, 43024-43031. https://doi.org/10.1021/acsami.0c13962
|
[32]
|
Meng, Q., Ye, Z., Wang, Y., Liu, C., Sun, Q., Shamshina, J.L., et al. (2023) Self‐Micropatterned Wood Hydrophone for Underwater Detection. Advanced Functional Materials, 34, Article ID: 2304104. https://doi.org/10.1002/adfm.202304104
|
[33]
|
Lai, Z., Xu, J., Bowen, C.R. and Zhou, S. (2022) Self-Powered and Self-Sensing Devices Based on Human Motion. Joule, 6, 1501-1565. https://doi.org/10.1016/j.joule.2022.06.013
|
[34]
|
Luo, J., Liu, F., Yin, A., Qi, X., Liu, J., Ren, Z., et al. (2023) Highly Sensitive, Wide-Pressure and Low-Frequency Characterized Pressure Sensor Based on Piezoresistive-Piezoelectric Coupling Effects in Porous Wood. Carbohydrate Polymers, 315, Article ID: 120983. https://doi.org/10.1016/j.carbpol.2023.120983
|
[35]
|
Wu, T., Lu, Y., Tao, X., Chen, P., Zhang, Y., Ren, B., et al. (2024) Superelastic Wood‐Based Nanogenerators Magnifying the Piezoelectric Effect for Sustainable Energy Conversion. Carbon Energy, 6, e561. https://doi.org/10.1002/cey2.561
|
[36]
|
Jia, Q., Xu, S., Wang, C., Zhang, D., Zhang, K., Lu, C., et al. (2024) Functionalized Wood with Tunable Mechanically Toughness, Transparent and Conductivity for Multi-Functional Self-Powered Sensor. Nano Energy, 129, Article ID: 109981. https://doi.org/10.1016/j.nanoen.2024.109981
|
[37]
|
Chen, C. and Hu, L. (2020) Nanoscale Ion Regulation in Wood‐Based Structures and Their Device Applications. Advanced Materials, 33, Article ID: 2002890. https://doi.org/10.1002/adma.202002890
|
[38]
|
Pei, W., Yu, Y., Wang, P., Zheng, L., Lan, K., Jin, Y., et al. (2024) Research Trends of Bio-Application of Major Components in Lignocellulosic Biomass (Cellulose, Hemicellulose and Lignin) in Orthopedics Fields Based on the Bibliometric Analysis: A Review. International Journal of Biological Macromolecules, 267, Article ID: 131505. https://doi.org/10.1016/j.ijbiomac.2024.131505
|
[39]
|
Zhou, J., Chen, H., Zhou, P., Peng, Q., Guo, Q., Wang, J., et al. (2023) Ti3C2Tx MXene Nanosheet-Functionalized Leathers for Versatile Wearable Electronics. ACS Applied Nano Materials, 6, 18150-18164. https://doi.org/10.1021/acsanm.3c03414
|
[40]
|
Guo, Q., Guo, J., Chen, H., Zhou, P., Li, C., Yang, K., et al. (2023) Multi-Functional Graphene/Leather for Versatile Wearable Electronics. Journal of Materials Chemistry A, 11, 11773-11785. https://doi.org/10.1039/d3ta01087b
|
[41]
|
Shi, X., Luo, J., Luo, J., Li, X., Han, K., Li, D., et al. (2022) Flexible Wood-Based Triboelectric Self-Powered Smart Home System. ACS Nano, 16, 3341-3350. https://doi.org/10.1021/acsnano.1c11587
|