[1]
|
王渤文, 倪少滨. RNA结合蛋白在肾癌发生发展中作用机制及生物学功能的研究进展[J]. 现代肿瘤医学, 2023, 31(11): 2155-2160.
|
[2]
|
王金柱, 赵一鸣, 蒋琰, 于新媛, 王伟康, 王鹿宁, 等. RNA结合蛋白在肿瘤中的作用[J]. 生命的化学, 2024, 44(9): 1620-1628.
|
[3]
|
朱哈, 刘娟, 曹雪涛. RNA结合蛋白与肿瘤生物治疗: 新机遇与新策略[J]. 中国肿瘤生物治疗杂志, 2023, 30(1): 1-9.
|
[4]
|
Qin, H., Ni, H., Liu, Y., Yuan, Y., Xi, T., Li, X., et al. (2020) RNA-binding Proteins in Tumor Progression. Journal of Hematology & Oncology, 13, Article No. 90. https://doi.org/10.1186/s13045-020-00927-w
|
[5]
|
Li, W., Gao, L., Song, P. and You, C. (2020) Development and Validation of a RNA Binding Protein-Associated Prognostic Model for Lung Adenocarcinoma. Aging, 12, 3558-3573. https://doi.org/10.18632/aging.102828
|
[6]
|
Zhu, Y., Zheng, B., Luo, G., Ma, X., Lu, X., Lin, X., et al. (2019) Circular RNAs Negatively Regulate Cancer Stem Cells by Physically Binding FMRP against CCAR1 Complex in Hepatocellular Carcinoma. Theranostics, 9, 3526-3540. https://doi.org/10.7150/thno.32796
|
[7]
|
Van Nostrand, E.L., Freese, P., Pratt, G.A., Wang, X., Wei, X., Xiao, R., et al. (2020) A Large-Scale Binding and Functional Map of Human RNA-Binding Proteins. Nature, 583, 711-719. https://doi.org/10.1038/s41586-020-2077-3
|
[8]
|
Chekulaeva, M. (2024) Mechanistic Insights into the Basis of Widespread RNA Localization. Nature Cell Biology, 26, 1037-1046. https://doi.org/10.1038/s41556-024-01444-5
|
[9]
|
Bradley, R.K. and Anczuków, O. (2023) RNA Splicing Dysregulation and the Hallmarks of Cancer. Nature Reviews Cancer, 23, 135-155. https://doi.org/10.1038/s41568-022-00541-7
|
[10]
|
Zhou, Z., Lv, J., Yu, H., Han, J., Yang, X., Feng, D., et al. (2020) Mechanism of RNA Modification N6-Methyladenosine in Human Cancer. Molecular Cancer, 19, Article No. 104. https://doi.org/10.1186/s12943-020-01216-3
|
[11]
|
Wang, S., Sun, Z., Lei, Z. and Zhang, H. (2022) RNA-Binding Proteins and Cancer Metastasis. Seminars in Cancer Biology, 86, 748-768. https://doi.org/10.1016/j.semcancer.2022.03.018
|
[12]
|
Sun Y, Chen D, Sun S, Ren M, Zhou L, Chen C, et al. (2024) RBMS Sun, Y., Chen, D., Sun, S., Ren, M., Zhou, L., Chen, C., et al. (2024) RBMS1 Coordinates with the M6a Reader YTHDF1 to Promote NSCLC Metastasis through Stimulating S100P Translation. Advanced Science, 11, e2307122. https://doi.org/10.1002/advs.202307122
|
[13]
|
Wang, C., Zou, J., Ma, X., Wang, E. and Peng, G. (2017) Mechanisms and Implications of Adar-Mediated RNA Editing in Cancer. Cancer Letters, 411, 27-34. https://doi.org/10.1016/j.canlet.2017.09.036
|
[14]
|
Wang, X., Xu, Z., Ren, X., Chen, X., Wei, J., Lin, W., et al. (2019) Function of Low ADARB1 Expression in Lung Adenocarcinoma. PLOS ONE, 14, e0222298. https://doi.org/10.1371/journal.pone.0222298
|
[15]
|
Dasgupta, T. and Ladd, A.N. (2011) The Importance of CELF Control: Molecular and Biological Roles of the CUG-BP, Elav-Like Family of RNA-Binding Proteins. WIREs RNA, 3, 104-121. https://doi.org/10.1002/wrna.107
|
[16]
|
Wang, Z., Li, B., Luo, Y., Lin, Q., Liu, S., Zhang, X., et al. (2018) Comprehensive Genomic Characterization of Rna-Binding Proteins across Human Cancers. Cell Reports, 22, 286-298. https://doi.org/10.1016/j.celrep.2017.12.035
|
[17]
|
Subramaniam, D., Natarajan, G., Ramalingam, S., Ramachandran, I., May, R., Queimado, L., et al. (2008) Translation Inhibition during Cell Cycle Arrest and Apoptosis: Mcl-1 Is a Novel Target for RNA Binding Protein Cugbp2. American Journal of Physiology-Gastrointestinal and Liver Physiology, 294, G1025-G1032. https://doi.org/10.1152/ajpgi.00602.2007
|
[18]
|
Yeung, Y.T., Fan, S., Lu, B., Yin, S., Yang, S., Nie, W., et al. (2019) CELF2 Suppresses Non-Small Cell Lung Carcinoma Growth by Inhibiting the PREX2-PTEN Interaction. Carcinogenesis, 41, 377-389. https://doi.org/10.1093/carcin/bgz113
|
[19]
|
Yang, Y., Cheng, Y., Mou, Y., Tang, X. and Mu, X. (2023) Natural Antisense Long Noncoding RNA HHIP-AS1 Suppresses Non-Small-Cell Lung Cancer Progression by Increasing HHIP Stability via Interaction with Celf2. Critical Reviews in Eukaryotic Gene Expression, 33, 67-77. https://doi.org/10.1615/critreveukaryotgeneexpr.2022043174
|
[20]
|
Zhang, Q. and Wang, Y. (2022) Mir-210-3p Targets CELF2 to Facilitate Progression of Lung Squamous Carcinoma through PI3K/AKT Pathway. Medical Oncology, 39, Article No. 161. https://doi.org/10.1007/s12032-022-01752-6
|
[21]
|
Kondo, T., Furuta, T., Mitsunaga, K., Ebersole, T.A., Shichiri, M., Wu, J., et al. (1999) Genomic Organization and Expression Analysis of the Mouse qkI Locus. Mamm Genome, 10, 662-669.
|
[22]
|
Zong, F., Fu, X., Wei, W., Luo, Y., Heiner, M., Cao, L., et al. (2014) The RNA-Binding Protein QKI Suppresses Cancer-Associated Aberrant Splicing. PLoS Genetics, 10, e1004289. https://doi.org/10.1371/journal.pgen.1004289
|
[23]
|
Pillman, K.A., Phillips, C.A., Roslan, S., Toubia, J., Dredge, B.K., Bert, A.G., et al. (2018) miR-200/375 Control Epithelial Plasticity-Associated Alternative Splicing by Repressing the RNA-Binding Protein Quaking. The EMBO Journal, 37, e99016. https://doi.org/10.15252/embj.201899016
|
[24]
|
Wang, J., Fu, X., Fang, Z., Liu, H., Zong, F., Zhu, H., et al. (2020) QKI-5 Regulates the Alternative Splicing of Cytoskeletal Gene add3 in Lung Cancer. Journal of Molecular Cell Biology, 13, 347-360. https://doi.org/10.1093/jmcb/mjaa063
|
[25]
|
Zhu, W., Yu, Y., Fang, K., Xiao, S., Ni, L., Yin, C., et al. (2022) miR-31/QKI-5 Axis Facilitates Cell Cycle Progression of Non-Small-Cell Lung Cancer Cells by Interacting and Regulating P21 and CDK4/6 Expressions. Cancer Medicine, 12, 4590-4604. https://doi.org/10.1002/cam4.5309
|
[26]
|
王胜洁. KLF6/QKI-5/TGFβR1轴调控TGF-β/SMAD信号通路抑制肺腺癌EMT、侵袭和转移的机制研究[D]: [博士学位论文]. 苏州: 苏州大学, 2021.
|
[27]
|
Lai, W.S., Carballo, E., Thorn, J.M., Kennington, E.A. and Blackshear, P.J. (2000) Interactions of CCCH Zinc Finger Proteins with mRNA. Journal of Biological Chemistry, 275, 17827-17837. https://doi.org/10.1074/jbc.m001696200
|
[28]
|
Guo, J., Qu, H., Chen, Y. and Xia, J. (2017) The Role of RNA-Binding Protein Tristetraprolin in Cancer and Immunity. Medical Oncology, 34, Article No. 196. https://doi.org/10.1007/s12032-017-1055-6
|
[29]
|
Zhang, T., Qiu, L., Cao, J., Li, Q., Zhang, L., An, G., et al. (2023) ZFP36 Loss-Mediated BARX1 Stabilization Promotes Malignant Phenotypes by Transactivating Master Oncogenes in NSCLC. Cell Death & Disease, 14, Article No. 527. https://doi.org/10.1038/s41419-023-06044-z
|