一种Eu-MOF作为传感Fe3+、丙酮和农药的多响应荧光探针
A Multiresponsive Luminescent Probe for Fe3+, Acetone and Pesticides with a Europium (III) Metal-Organic Framework
摘要: 重金属离子、挥发性有机化合物(VOC)和农药是人们广泛关注的热点问题,它们对人类健康和生态环境造成了严重危害。准确有效地检测这些物质在许多领域都具有重要意义。通过溶剂热法方法合成的三维铕基金属有机框架[Eu(BDC)(NO3)(DMF)2]n (1,BDC = 1,4-苯二甲酸),其具有良好的水稳定性和优异的光致发光性能。荧光研究结果表明:Eu⁃MOF在含有Fe3+离子、丙酮或NIT的溶液中均表现出荧光猝灭现象,具有很好的选择性,其检测限(体积分数和浓度)分别为1.98 μmol·L1、1.09%、2.47 μmol·L1。最后通过实验和模拟相结合的方法,揭示了其荧光淬灭的机理。
Abstract: As hot issues of frequent concern, heavy metal ions, volatile organic compounds (VOCs) and pesticides pose serious hazards to human health and the ecological environment. Accurate and effective detection of these substances is of great importance in many fields. A three-dimensional (3D) europium-based metal-organic framework [Eu(BDC)(NO3)(DMF)2]n (1, BDC = 1,4-benzenedicarboxylic acid) has been constructed by solvothermal method, which demonstrates good water stability and excellent photoluminescence properties. The fluorescence study results indicate that it could selectively detect Fe3+ ions, acetone and NIT by fluorescence quenching with the detection limits (volume fraction and concentration) of 1.98 μmol·L1, 1.09% and 2.47 μmol·L1, respectively. Finally, the mechanism of its fluorescence quenching was elucidated by a combination of experiments and simulations.
文章引用:代明珠, 左从玉, 李琴琴, 樊琛阳. 一种Eu-MOF作为传感Fe3+、丙酮和农药的多响应荧光探针[J]. 化学工程与技术, 2025, 15(2): 59-71. https://doi.org/10.12677/hjcet.2025.152006

1. 引言

近年来,杀虫剂被广泛用于保护农作物免受病虫害的侵害[1] [2],然而,在食品和生态系统中经常检测到杀虫剂残留,杀虫剂的广泛使用威胁着公众健康和食品安全[3]-[5]。烯啶虫胺(NIT)是一种典型的新烟碱类杀虫剂,可替代高毒杀虫剂,有效控制农业生产中的害虫。NIT对环境稳定,降解速度相对较慢(水解半衰期为415天),可能会影响作物生产和生态系统[6] [7]

重金属离子一般在工业生产过程中产生,并很容易转移到废水中[8] [9]。如果废水不经处理直接排放,将造成严重的环境污染。例如,摄入过量的Fe3+离子会导致其特定的生物毒性,其细胞毒性与肝损伤、老年痴呆症和帕金森病等重大疾病密切相关[10] [11]

在化学工业中,有机溶剂被广泛用于各种工业流程,包括但不限于溶解、萃取、清洗、分散和其他操作。虽然有机溶剂在化工生产中发挥着重要作用,但其使用也存在各种潜在危害。丙酮是主要的工业有机溶剂之一。随着各行各业的加速发展,丙酮的排放引发了许多环境问题。丙酮对人体粘膜有刺激作用,会抑制呼吸并导致呼吸困难,其主要作用是抑制和麻醉中枢神经系统[12]

目前已有多种农药、重金属离子和有机溶剂的检测方法,如高效液相色谱法[13]、质谱法[14]、气相色谱法[15]和表面增强拉曼光谱法[16] [17]。然而,这些传统方法成本高昂,需要繁琐的样品制备程序、复杂的仪器和方法,并且需要高技能的劳动力[18]。荧光分析法操作简单、灵敏度高、检测限低,因此被用于检测金属离子和有机小分子[19]

金属有机框架(MOFs)又称多孔配位聚合物,是由功能性有机配体和金属离子或金属团簇通过自组装过程形成的杂化分子网络[20] [21]。由于其具有孔径大[22]、孔隙率高[23]、合成可调、结构规整等优点[24],已被广泛应用于荧光分析领域。Zhang等人[25]开发了一种La(III)/Ta(III)混合金属荧光MOF,用于选择性检测烯啶虫胺,但该探针的检测限较高。Yang等人[26]开发了一种功能性Zr-MOF(FMOF),用于选择性检测烯啶虫胺,其检测限较低(0.11 µM)。Li等人[27]利用配体(H4tcbpe=1,1,2,2-四(4-(4-羧基苯基)苯基)乙烯)合成了三维(3D)锶配位聚合物Sr2(tcbpe),该聚合物基于荧光淬灭机制对Fe3+离子表现出灵敏的选择性荧光传感行为,检测限为0.14 mM。Liu等人[28]以1,1',1''-(2,4,6-三甲基苯基-1,3,5-三)三甲基三(4-羧基吡啶基)三溴化物(H3LBr3)为配体,通过溶剂热法合成了对丙酮具有高选择性的新型三维铽金属有机框架。然而,上述例子也存在一些问题,如功能单一或配体复杂,以及大多数MOFs存在水稳定性差和难以回收等问题[29] [30]。因此,为了检测现实中的有机污染物,需要开发水稳定性多响应荧光MOFs材料。Ln-MOFs由镧系金属离子和有机桥接配体组成,是荧光传感MOFs的重要组成部分。Ln-MOFs结合了MOFs固有的多孔性和镧系元素独特的发光特性。例如,窄荧光发射峰可以减少背景荧光的干扰,从而提高测试灵敏度。此外,Ln-MOFs还具有很高的热稳定性[31]。因此,Ln-MOFs是非常有前景的传感材料。众所周知,稀土离子对含有氧原子或氧氮混合原子的硬供体原子和配体具有很高的亲和力,特别是多羧酸配体,这些配体常用于镧系元素配位聚合物的结构中。

在此,我们采用对苯二甲酸(H2bdc)作为有机配体,通过溶剂热法与高氧化态Eu3+离子反应,合成了三维铕MOF [Eu(BDC)(NO3)(DMF)2]n (1)。1具有良好的水稳定性,而Fe3+离子、丙酮和烯啶虫胺农药则可以在水中被选择性地、灵敏地检测到。

2. 实验部分

2.1. 试剂与仪器

硝酸铕(III)六水合物Eu(NO3)3·6H2O、氯化镉、硝酸钡、硝酸钙、硝酸钴、硝酸铜、硝酸镁、硝酸镍、硝酸锌、硝酸铁、DMF、DMA、丙酮、无水乙醇、乙腈、1,4-二氧六环、环己烷、己烷、四氢呋喃、三氯甲烷、二甲亚砜(DMSO)、甲醇、烯啶虫胺(NIT)、2,6-二氯-4-硝基苯胺(DCN)、噻虫嗪(TMX)、除草醚(NF)、草甘膦、阿特拉津、呋虫胺、五氯硝基苯均为市售分析纯试剂,使用时未进一步纯化。

所用的仪器有日立F⁃4600型荧光分光光度仪、BrukerVector 22型红外光谱仪(KBr压片)、Mettler⁃Toledo差热-热重分析仪、日本理学Smartlab X射线多晶体衍射仪(PPXRD, Cu Kα, λ = 0.154184 nm, U = 40 kV, I = 150 mA, 2θ = 5˚~50˚)。

2.2. 复合物1的合成

本实验采用溶剂热法来合成Eu-MOF材料[32]。将Eu(NO3)3·6H2O (214.03 mg, 0.5 mmol)和H2BDC (83.05 mg, 0.5 mmol)加入10 mL 1:1的DMF/EtOH混合溶液中,超声30 min,放入25 mL聚四氟乙烯内衬的不锈钢反应釜内,在80℃的条件下加热1 d后降温至室温,过滤得到透明块状晶体,产率为67%。

3. 结果与讨论

3.1. 复合物1的晶体结构

Figure 1. (a) Trigonal dodecahedral coordination environment of 1; (b) Eu-BDC chains of 1; (c) 3D framework of complex 1

1. (a) 复合物1的三角十二面体配位环境;(b) 1的Eu-BDC链;(c) 复合物1的3D框架

在晶体结构中,铕阳离子由两个BDC配体、一个硝酸根阴离子和两个DMF分子以三角十二面体几何结构八配位(图1(a))。BDC配体的每个羧酸盐部分以双单齿方式沿c轴桥接两个Eu离子,形成一维链(图1(b))这些链通过BDC进一步交联,形成由一维通道孔组成的三维网络,其中硝酸根阴离子和DMF分子指向孔(图1(c))。

3.2. 复合物1的材料表征分析

图2(a)可知:1的PXRD图与其模拟的衍射图谱基本一致,并通过检测在水中浸泡48 h后样品的XRD图谱,证实了1的高的相纯度和良好的水稳定性。在1的红外光谱中(图2(b)),脱质子化羧酸的特征对称和不对称伸缩振动分别位于1313 cm1和1583 cm1处,821 cm1处的峰值对应于1,4-苯取代模式,芳香苯骨架振动的谱带位于1508 cm1处,1656 cm1处的大峰对应于配位的DMF酰胺羰基,在3058 cm1处,存在芳香族C-H伸缩振动。

Figure 2. PXRD patterns (a) and FTIR spectrum (b) of 1

2. 1的PXRD图(a)和红外光谱图(b)

3.3. 复合物1的荧光性质

Figure 3. Excitation (a) and emission (b) spectra of 1

3. 1的(a)激发和(b)发射光谱

在室温下测试了1的荧光,在300 nm的激发波长下,它在601、618、700 nm处显示出三个特征发射峰(图3)。通过查阅相关文献可知,这三个激发峰源自天线效应。在镧系金属配合物中,有机配体充当吸收光子的天线,并通过与系统内部单重态的交叉,产生三重态。三重态能够有效敏化铕离子,使其比自由离子有更明亮的发射。在Eu-BDC体系中对苯二甲酸作为光子的吸收天线,配体吸收300 nm的紫外激发能,并通过与系统内单重态的交叉生成三重态,最终产生从Eu³⁺的发射能级5D07FJ (J=1, 2, 4)三个主要的发射峰[33]

3.4. 复合物1的荧光传感

3.4.1. 复合物1对Fe3+离子的荧光传感

进行了一系列荧光实验,以研究配合物1在检测金属离子(包括Ni2+、Co2+、Ca2+、Ba2+、Cu2+、Mg2+、Cd2+、Zn2+和Fe3+离子)时的潜在应用。将粉末样品(1 mg)分散在各种离子水溶液中(2 mL, 1 mmol·L1),然后记录发射光谱。对于大多数分析物,添加不同的重金属溶液后,1的荧光强度和发射峰的位置几乎保持不变。然而,如图4所示,添加Fe3+导致荧光强度显著降低,表明复合物1可以被认为是Fe3+离子的一种优秀的潜在发光传感器。制备了不同浓度梯度的Fe3+溶液,用于进一步的滴定实验,以研究1检测Fe3+离子时的灵敏性。随着Fe3+溶液的加入,1的荧光强度逐渐下降,荧光猝灭效率高达95.6% (图5(a))。

Figure 4. (a) Fluorescence spectra of aqueous suspension droplets of 1 after addition of different heavy metal ion solutions (λex = 300 nm); (b) Fluorescence spectra of aqueous suspension droplets of 1 at 601 nm after addition of different heavy metal ion solutions (λex = 300 nm)

4. (a) 1的水悬浮液加入不同重金属离子溶液后的荧光光谱(λex = 300 nm);(b) 1的水悬浮液滴加入各种重金属离子溶液后在601 nm波长处的荧光强度(λex = 300 nm)

根据Stern-Volmer (SV)方程:(I0/I) = Ksvc1 + 1,荧光猝灭效率可以定量表示,其中Ksvc1分别是猝灭常数和Fe3+浓度[34]。此外,在低浓度下,Fe3+的浓度与荧光强度呈良好的线性关系(图5(b))。线性图显示Fe3+的线性相关系数为0.92157,Ksv值计算为19.033 × 103 M1。通过LOD = 3σ/k (σ为空白悬浮液中1的11次重复发光测量的标准偏差,k = ΔIcm)计算,检测限(LOD)约为1.98 μmol·L1

为了研究复合物1在检测Fe3+离子时的抗干扰能力,将Fe3+离子加入到含有相同浓度其他离子的水溶液中进行抗干扰实验。如图5(c)所示,将1 mg复合物1分别浸入Fe3+离子除外的其他金属离子溶液后,其荧光强度如图5(c)中绿色柱状图部分,可以看到并没有发生荧光猝灭。再分别向复合物1和离子的混合溶液中加入等量的Fe3+溶液后,发现荧光强度如图5(c)中红色柱状图部分,可以看到荧光强度发生显著猝灭,并且猝灭后荧光强度几乎一致,说明当其他离子和Fe3+离子共存时不影响Fe3+离子对复合物1的猝灭效果,表现出复合物1在检测Fe3+离子时良好的抗干扰能力。

Figure 5. (a) Fluorescence spectrum of 1 in different concentrations of Fe3+; (b) SV plot for fluorescence intensity of 1 vs concentration of Fe3+ ion (Inset: histogram of fluorescence quenching degree at Fe3+ concentration of 0~0.035 mmol·L−1); (c) Fluorescence intensities of 1 in different interfering agents with/without Fe3+ ion

5. (a) 1加入不同浓度Fe3+的荧光光谱;(b) 1荧光强度与Fe3+离子浓度的SV图(插图:Fe3+离子浓度为0~0.035 mmol·L−1时的荧光猝灭程度柱状图);(c) 有、无Fe3+离子时1在不同干扰剂中的荧光强度

3.4.2. 复合物1对丙酮分子的荧光传感

Figure 6. (a) Fluorescence spectra of aqueous suspension droplets of 1 after addition of different solvent molecules (λex = 300 nm); (b) Fluorescence spectra of aqueous suspension droplets of 1 at 601 nm after addition of various solvent molecules (λex = 300 nm)

6. (a) 1的水悬浮液加入不同溶剂分子后的荧光光谱(λex = 300 nm);(b) 1的水悬浮液滴加入各种溶剂分子后在601 nm波长处的荧光强度(λex = 300 nm)

为了研究1的应用,我们探索了11种溶剂分子对1荧光强度的影响。将粉末样品(1 mg)分别分散在H2O、N,N-二甲基甲酰胺(DMF)、N,-N-二甲基乙酰胺(DMA)、乙腈(CH3CN)、1,4-二氧六环、环己烷、己烷、四氢呋喃(THF)、三氯甲烷(CHCl3)、乙醇(EtOH)、二甲亚砜(DMSO)、甲醇和丙酮的纯溶剂(2 mL)中。图6显示配合物1可以在不同溶剂中发光,但在丙酮溶剂中荧光几乎消失,这说明丙酮对1的发光具有猝灭效应。所以1可作为检测丙酮分子的荧光探针。

Figure 7. (a) Fluorescence spectra of 1 after adding different volumes of acetone; (b) SV plot for fluorescence intensity of 1vs concentration of acetone (Inset: histogram of fluorescence quenching degree at acetone concentration of 0.5~2.5%; (c) Fluorescence intensities of 1 in different interfering agents with/without acetone

7. (a) 1 加入不同体积丙酮后的荧光光谱;(b) 1荧光强度与丙酮体积分数的SV图(插图:丙酮浓度为0.5%~2.5%时的荧光猝灭程度柱状图);(c) 有、无丙酮时1在不同干扰剂中的荧光强度

通过滴定实验研究了荧光强度随浓度的变化。随着丙酮的加入,1在601 nm处的荧光强度逐渐降低(图7(a)),在0%~2.5%的体积分数范围内出现一定的线性关系。在低浓度下,线性服从(I0I)/I = Ksvϕ (I0I1水溶液在加入丙酮前和加入丙酮后的荧光强度,Ksv是淬灭常数,ϕ是丙酮的体积分数) [35],计算出的Ksv为132 (图7(b))。检测限值为1.09%。为了研究配合物1在丙酮分子的选择性检测中是否受到其他有机溶剂的干扰,将1 mg 1分散在不同的有机溶剂(1 ml)中,并加入等量的丙酮进行抗干扰实验。研究结果表明,复合物1可以选择性和灵敏地识别丙酮,并且这种选择性不受其他溶剂分子存在的影响(图7(c))。

3.4.3. 复合物1对NIT农药的荧光传感

农药滥用历来是一个主要的环境问题,因此快速准确地检测农药尤为重要[36] [37]。本节选择烯啶虫胺(NIT)、2,6-二氯-4-硝基苯胺(DCN)、除草醚(NF)、噻虫嗪(TMX)、草甘膦、阿特拉津、呋虫胺和五氯硝基苯来探讨不同农药对配合物1荧光强度的影响。将粉末样品(1 mg)分散在不同的农药水溶液(2 mL, 1 mmol·L1)中,并记录发射光谱。从图8可以看出,与其他农药相比,NIT可以使悬浮液的荧光强度发生显著猝灭。

Figure 8. (a) Fluorescence spectra of aqueous suspension droplets of 1 after addition of various pesticides (λex = 300 nm); (b) Fluorescence spectra of aqueous suspension droplets of 1 at 601 nm after addition of various pesticide (λex = 300 nm)

8. (a) 1的水悬浮液加入不同农药后的荧光光谱(λex = 300 nm);(b) 1的水悬浮液滴加入各种农药后在601 nm波长处的荧光强度(λex = 300 nm)

Figure 9. (a) Fluorescence spectrum of 1 in different concentrations of NIT; (b) SV plot for fluorescence intensity of 1 vs concentration of NIT (Inset: histogram of fluorescence quenching degree at NIT concentration of 0~0.04 mmol·L−1); (c) Fluorescence intensities of 1 in different interfering agents with/without NIT

9. (a) 1 加入不同浓度NIT的荧光光谱;(b) 1荧光强度与NIT浓度的SV图(插图:NIT浓度为0~0.04 mmol·L−1时的荧光猝灭程度柱状图);(c) 有、无NIT时1在不同干扰剂中的荧光强度

为了进一步探究NIT对1荧光强度的影响,通过滴定实验研究了荧光强度随NIT浓度的变化。随着NIT的加入,1在601 nm处的荧光强度逐渐减弱(图9(a),并在0~0.4 mmol·L1浓度范围内呈现出一定的线性关系。根据Steen-Volmer方程(I0I)/I = Ksvc2 (I0I分别为加入NIT前后1水溶液的荧光强度,Ksv为淬灭常数,c2为NIT的浓度),I0/I与NIT浓度拟合。低浓度NIT与I0/I呈线性关系,NIT与I0/I的线性范围为0~40 μM,线性相关系数R2 = 0.98584,淬灭常数Ksv = 26.52 × 103 M1 (图9(b)。检测限值为2.47 μM,低于中国农业部规定的水果中NIT残留的最高限量(0.5 mg·L1) [38]。此外,在含有其他农药(DCN、NF TMX、草甘膦、阿特拉津、呋虫胺和五氯硝基苯)的溶液中加入NIT,研究1在检测NIT时的抗干扰性。结果表明,1在水溶液中可以选择性检测NIT,且选择性不受其他农药的影响(图9(c))。

3.5. 复合物1作为荧光传感器的可重复性和稳定性

具有高稳定性和可重复使用性的荧光材料具有很高的应用价值,所以我们对复合物1的稳定性和可重复利用性作了进一步的探究。通过多次循环传感实验可以看出,样品在经过Fe3+离子、丙酮和NIT荧光猝灭3轮后的荧光强度与猝灭前的相当(图10(a)~(c))。这一方面表明附着的Fe3+离子、丙酮和NIT容易洗脱,另一方面也说明复合物1在荧光实验中可以保持很强的稳定性(图10(d)。因此,1可以重复用于Fe3+离子、丙酮分子和NIT的荧光检测。

Figure 10. The luminescence intensity of 1 for detecting; (a) Fe3+ ion; (b) acetone; (c) NIT after three cycles; (d) PXRD patterns after sensing Fe3+ ion, acetone and NIT of 1

10. 1检测 (a) Fe3+离子;(b) 丙酮;(c) NIT三个循环后的荧光强度;(d) 1检测Fe3+离子、丙酮和NIT后的PXRD图

3.6. 猝灭机理分析

通常报道的MOF荧光猝灭机制主要分为两类:(1) MOF的结构坍塌;(2) MOF和淬灭剂之间产生能量竞争[39]。如图10(d)所示,1的晶体结构在荧光猝灭实验前后都保持良好,所以其对Fe3+离子、丙酮和NIT的猝灭不是由结构坍塌引起的。为进一步研究其猝灭机理,我们测量了Fe3+离子、丙酮和NIT在水溶液中的紫外可见吸收光谱,可以清楚地看到1的激发光谱与UV-Vis吸收光谱重叠(图11(a)图11(b)),而在相同波长范围内,其他农药分子没有明显的吸收峰(图11(c))。由于复合物1的荧光是配体充当“天线”吸收能量敏化Eu离子发光,而Fe3+离子、丙酮和NIT农药的紫外吸收光谱都与复合物1的激发光谱重合,导致分析物与MOF之间发生激发光的竞争吸收,导致骨架的“天线效应”减弱而发生荧光猝灭,因此荧光淬灭的机制应归因于竞争吸收[40]-[42]

Figure 11. UV‐Vis absorption spectra of (a) Fe3+ ion; (b) acetone; (c) NIT and solid‐state excitation spectra of 1

11. (a) Fe3+离子;(b) 丙酮;(c) NIT的紫外可见吸收光谱和1的固态激发光谱

Figure 12. HOMOs and LUMOs of the listed pesticides and ligands

12. 所列农药和配体的HOMOs和LUMOs

一般来说,固体材料的价带(VB)和导带(CB)分别对应于有机分子的HOMOs (最高占有分子轨道)和LUMOs (最低未占有分子轨道)。吸电子基团的程度在淬灭效应中起着主导作用,并有助于光诱导电子具有激发态的MOFs向缺电子农药转移的机制[43]。因此,利用DFT (密度泛函理论)方法在B3LYP/6-311G水平上计算了每种分析物的HOMOs和LUMOs能量(图12)。然而,与图8(a)中的淬灭结果相比,荧光淬灭效果与每种分析物的LUMO能量并不匹配。结果表明,在检测农药的过程中,并不存在PET (光致电子转移)机制。综上所述,复合物1在检测Fe3+离子、丙酮和NIT时是由竞争吸收作用导致荧光强度发生猝灭。

4. 结论

选择对苯二甲酸(H2bdc)作为配体,与Eu(NO3)3·6H2O通过溶剂热反应,成功合成了三维MOF[Eu(BDC)(NO3)(DMF)2]n1具有明亮的荧光和良好的水稳定性,能灵敏地、选择性地检测水溶液中的Fe3+、丙酮和NIT,且检测限较低。对水溶液中Fe3+离子、丙酮和NIT的检出限分别为1.98 μM、1.09%和2.47 μM。结果证实,1可以作为“关闭”荧光探针,以高选择性和灵敏度检测Fe3+离子、丙酮和农药NIT。

NOTES

*通讯作者。

参考文献

[1] Li, Y., Chai, B., Xu, H., Zheng, T., Chen, J., Liu, S., et al. (2022) Temperature-and Solvent-Induced Reversible Single-Crystal-to-Single-Crystal Transformations of TbIII-Based MOFs with Excellent Stabilities and Fluorescence Sensing Properties toward Drug Molecules. Inorganic Chemistry Frontiers, 9, 1504-1513.
https://doi.org/10.1039/d2qi00023g
[2] Ye, F., Zhai, Y., Guo, K., Liu, Y., Li, N., Gao, S., et al. (2019) Safeners Improve Maize Tolerance under Herbicide Toxicity Stress by Increasing the Activity of Enzymes in vivo. Journal of Agricultural and Food Chemistry, 67, 11568-11576.
https://doi.org/10.1021/acs.jafc.9b03587
[3] Crépet, A., Luong, T.M., Baines, J., Boon, P.E., Ennis, J., Kennedy, M., et al. (2021) An International Probabilistic Risk Assessment of Acute Dietary Exposure to Pesticide Residues in Relation to Codex Maximum Residue Limits for Pesticides in Food. Food Control, 121, Article 107563.
https://doi.org/10.1016/j.foodcont.2020.107563
[4] Diana, M., Felipe-Sotelo, M. and Bond, T. (2019) Disinfection Byproducts Potentially Responsible for the Association between Chlorinated Drinking Water and Bladder Cancer: A Review. Water Research, 162, 492-504.
https://doi.org/10.1016/j.watres.2019.07.014
[5] Richardson, J.R., Fitsanakis, V., Westerink, R.H.S. and Kanthasamy, A.G. (2019) Neurotoxicity of Pesticides. Acta Neuropathologica, 138, 343-362.
https://doi.org/10.1007/s00401-019-02033-9
[6] Li, S., Wang, W., Zeng, X. and Ma, X. (2015) Electro-Catalytic Degradation Mechanism of Nitenpyram in Synthetic Wastewater Using Ti-Based SnO2-Sb with Rare Earth-Doped Anode. Desalination and Water Treatment, 54, 1925-1938.
https://doi.org/10.1080/19443994.2014.899514
[7] Todey, S.A., Fallon, A.M. and Arnold, W.A. (2018) Neonicotinoid Insecticide Hydrolysis and Photolysis: Rates and Residual Toxicity. Environmental Toxicology and Chemistry, 37, 2797-2809.
https://doi.org/10.1002/etc.4256
[8] Chandra, A., Bhuvanesh, E., Mandal, P. and Chattopadhyay, S. (2018) Surface Modification of Anion Exchange Membrane Using Layer-by-Layer Polyelectrolytes Deposition Facilitating Monovalent Organic Acid Transport. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 558, 579-590.
https://doi.org/10.1016/j.colsurfa.2018.09.013
[9] Zhang, Y., Liu, R., Lang, Q., Tan, M. and Zhang, Y. (2018) Composite Anion Exchange Membrane Made by Layer-by-Layer Method for Selective Ion Separation and Water Migration Control. Separation and Purification Technology, 192, 278-286.
https://doi.org/10.1016/j.seppur.2017.10.022
[10] Bricks, J.L., Kovalchuk, A., Trieflinger, C., Nofz, M., Büschel, M., Tolmachev, A.I., et al. (2005) On the Development of Sensor Molecules That Display FeIII-Amplified Fluorescence. Journal of the American Chemical Society, 127, 13522-13529.
https://doi.org/10.1021/ja050652t
[11] Xu, X. and Yan, B. (2014) Eu(III)-Functionalized MIL-124 as Fluorescent Probe for Highly Selectively Sensing Ions and Organic Small Molecules Especially for Fe(III) and Fe(II). ACS Applied Materials & Interfaces, 7, 721-729.
https://doi.org/10.1021/am5070409
[12] Shen, Y., Tissot, A. and Serre, C. (2022) Recent Progress on MOF-Based Optical Sensors for VOC Sensing. Chemical Science, 13, 13978-14007.
https://doi.org/10.1039/d2sc04314a
[13] Kumar, P., Kim, K. and Deep, A. (2015) Recent Advancements in Sensing Techniques Based on Functional Materials for Organophosphate Pesticides. Biosensors and Bioelectronics, 70, 469-481.
https://doi.org/10.1016/j.bios.2015.03.066
[14] Mol, H.G.J., van Dam, R.C.J. and Steijger, O.M. (2003) Determination of Polar Organophosphorus Pesticides in Vegetables and Fruits Using Liquid Chromatography with Tandem Mass Spectrometry: Selection of Extraction Solvent. Journal of Chromatography A, 1015, 119-127.
https://doi.org/10.1016/s0021-9673(03)01209-3
[15] Gui, W., Liu, Y., Wang, C., Liang, X. and Zhu, G. (2009) Development of a Direct Competitive Enzyme-Linked Immunosorbent Assay for Parathion Residue in Food Samples. Analytical Biochemistry, 393, 88-94.
https://doi.org/10.1016/j.ab.2009.06.014
[16] Creedon, N., Lovera, P., Moreno, J.G., Nolan, M. and O’Riordan, A. (2020) Highly Sensitive SERS Detection of Neonicotinoid Pesticides. Complete Raman Spectral Assignment of Clothianidin and Imidacloprid. The Journal of Physical Chemistry A, 124, 7238-7247.
https://doi.org/10.1021/acs.jpca.0c02832
[17] Zhang, M., Chen, H., Zhu, L., Wang, C., Ma, G. and Liu, X. (2016) Solid‐Phase Purification and Extraction for the Determination of Trace Neonicotinoid Pesticides in Tea Infusion. Journal of Separation Science, 39, 910-917.
https://doi.org/10.1002/jssc.201501129
[18] Vikrant, K., Tsang, D.C.W., Raza, N., Giri, B.S., Kukkar, D. and Kim, K. (2018) Potential Utility of Metal-Organic Framework-Based Platform for Sensing Pesticides. ACS Applied Materials & Interfaces, 10, 8797-8817.
https://doi.org/10.1021/acsami.8b00664
[19] Liu, Z., Zhao, Y., Deng, Y., Zhang, X., Kang, Y., Lu, Q., et al. (2017) Selectively Sensing and Adsorption Properties of Nickel(II) and Cadmium(II) Architectures with Rigid 1H-Imidazol-4-Yl Containing Ligands and 1,3,5-Tri(4-Carboxyphenyl)Benzene. Sensors and Actuators B: Chemical, 250, 179-188.
https://doi.org/10.1016/j.snb.2017.04.151
[20] Furukawa, H., Cordova, K.E., O’Keeffe, M. and Yaghi, O.M. (2013) The Chemistry and Applications of Metal-Organic Frameworks. Science, 341, Article 1230444.
https://doi.org/10.1126/science.1230444
[21] Hu, Z., Deibert, B.J. and Li, J. (2014) Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chemical Society Reviews, 43, 5815-5840.
https://doi.org/10.1039/c4cs00010b
[22] Zuo, C., Li, Z., Bai, N., Xie, F., Liu, Y., Zheng, L., et al. (2018) Two Novel Magnesium-Based Metal-Organic Frameworks: Structure Tuning from 2D to 3D by Introducing the Auxiliary Ligand of Acetate. Inorganica Chimica Acta, 477, 59-65.
https://doi.org/10.1016/j.ica.2018.02.002
[23] Zhang, Y., Yuan, S., Day, G., Wang, X., Yang, X. and Zhou, H. (2018) Luminescent Sensors Based on Metal-Organic Frameworks. Coordination Chemistry Reviews, 354, 28-45.
https://doi.org/10.1016/j.ccr.2017.06.007
[24] Jia, W., Fan, R., Zhang, J., Zhu, K., Gai, S., Nai, H., et al. (2022) Home-Made Multifunctional Auxiliary Device for In-Situ Imaging Detection and Removal of Quinclorac Residues through MOF Decorated Gel Refills. Chemical Engineering Journal, 450, Article 138303.
https://doi.org/10.1016/j.cej.2022.138303
[25] Li, A., Chu, Q., Zhou, H., Yang, Z., Liu, B. and Zhang, J. (2021) Effective Nitenpyram Detection in a Dual-Walled Nitrogen-Rich In(III)/Tb(III)-Organic Framework. Inorganic Chemistry Frontiers, 8, 2341-2348.
https://doi.org/10.1039/d1qi00224d
[26] Dai, J., Zhao, Y., Hou, Y., Zhong, G., Gao, R., Wu, J., et al. (2021) Detection of Carboxylesterase 1 and Carbamates with a Novel Fluorescent Protein Chromophore Based Probe. Dyes and Pigments, 192, Article 109444.
https://doi.org/10.1016/j.dyepig.2021.109444
[27] Li, Z., Tan, B., Wu, Z. and Huang, X. (2023) A Robust Strontium Coordination Polymer with Selective and Sensitive Fluorescence Sensing Ability for Fe3+ Ions. Materials, 16, Article 577.
https://doi.org/10.3390/ma16020577
[28] Yanlian, L., Li, Z., Zexing, S., Chengzhi, L. and Rongmei, W. (2024) Synthesis and Fluorescence Property of a New Tb-Based Metal-Organic Framework. International Journal of Modern Physics B.
https://doi.org/10.1142/s0217979225400405
[29] Feyisa Bogale, R., Ye, J., Sun, Y., Sun, T., Zhang, S., Rauf, A., et al. (2016) Highly Selective and Sensitive Detection of Metal Ions and Nitroaromatic Compounds by an Anionic Europium(III) Coordination Polymer. Dalton Transactions, 45, 11137-11144.
https://doi.org/10.1039/c6dt01636g
[30] Wang, G., Li, Y., Shi, W., Zhang, B., Hou, L. and Wang, Y. (2021) A Robust Cluster-Based Eu-MOF as Multi-Functional Fluorescence Sensor for Detection of Antibiotics and Pesticides in Water. Sensors and Actuators B: Chemical, 331, Article 129377.
https://doi.org/10.1016/j.snb.2020.129377
[31] Garg, A., Almáši, M., Rattan Paul, D., Poonia, E., Luthra, J.R. and Sharma, A. (2021) Metal-Organic Framework MOF-76(Nd): Synthesis, Characterization, and Study of Hydrogen Storage and Humidity Sensing. Frontiers in Energy Research, 8, Article 604735.
https://doi.org/10.3389/fenrg.2020.604735
[32] Aulakh, D., Varghese, J.R. and Wriedt, M. (2015) The Importance of Polymorphism in Metal-Organic Framework Studies. Inorganic Chemistry, 54, 8679-8684.
https://doi.org/10.1021/acs.inorgchem.5b01311
[33] He, Y., Chen, D., Xu, H. and Cheng, P. (2015) Structural Diversity of Luminescent Lanthanide Metal-Organic Frameworks Based on a V-Shaped Ligand. CrystEngComm, 17, 2471-2478.
https://doi.org/10.1039/c4ce02380c
[34] Zheng, M., Xie, Z., Qu, D., Li, D., Du, P., Jing, X., et al. (2013) On-off-on Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Applied Materials & Interfaces, 5, 13242-13247.
https://doi.org/10.1021/am4042355
[35] Zuo, C.Y., Li, Q.Q., Dai, M.Z., et al. (2023) A Cadmium-Based Metal. Organic Framework for Fluorescence Detection of Acetone and Fe3+. Chinese Journal of Inorganic Chemistry, 39, 2301-2310.
[36] Fan, L., Wang, F., Zhao, D., Sun, X., Chen, H., Wang, H., et al. (2020) Two Cadmium(II) Coordination Polymers as Multi-Functional Luminescent Sensors for the Detection of Cr(VI) Anions, Dichloronitroaniline Pesticide, and Nitrofuran Antibiotic in Aqueous Media. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 239, Article 118467.
https://doi.org/10.1016/j.saa.2020.118467
[37] Lerro, C.C., Beane Freeman, L.E., DellaValle, C.T., Kibriya, M.G., Aschebrook-Kilfoy, B., Jasmine, F., et al. (2017) Occupational Pesticide Exposure and Subclinical Hypothyroidism among Male Pesticide Applicators. Occupational and Environmental Medicine, 75, 79-89.
https://doi.org/10.1136/oemed-2017-104431
[38] GB 2763 (2021) National Food Safety Standard-Maximum Residue Limits for Pesticide in Food.
[39] Wu, H., Gao, L., Zhang, J., Zhai, L., Gao, T., Niu, X., et al. (2020) Syntheses, Characterization, and Slow Magnetic Relaxation or Luminescence Properties of Three New 2D Coordination Polymers. Journal of Molecular Structure, 1219, Article 128613.
https://doi.org/10.1016/j.molstruc.2020.128613
[40] Dong, M., Zhao, M., Ou, S., Zou, C. and Wu, C. (2014) A Luminescent Dye@MOF Platform: Emission Fingerprint Relationships of Volatile Organic Molecules. Angewandte Chemie International Edition, 53, 1575-1579.
https://doi.org/10.1002/anie.201307331
[41] Sun, Z., Li, H., Sun, G., Guo, J., Ma, Y. and Li, L. (2018) Design and Construction of Lanthanide Metal-Organic Frameworks through Mixed-Ligand Strategy: Sensing Property of Acetone and Cu2+. Inorganica Chimica Acta, 469, 51-56.
https://doi.org/10.1016/j.ica.2017.08.053
[42] Wang, X.Q., Ma, X.H., Feng, D.D., et al. (2022) Synthesis of a Water-Stable Zn(II)-Based Metal-Organic Framework for Lu-Minescence Detecting Fe3+ and 2,6-Dichloro-4-Nitroaniline. Chinese Journal of Inorganic Chemistry, 38, 137-144.
[43] Pramanik, S., Zheng, C., Zhang, X., Emge, T.J. and Li, J. (2011) New Microporous Metal-Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. Journal of the American Chemical Society, 133, 4153-4155.
https://doi.org/10.1021/ja106851d