|
[1]
|
Roth, G.A., Mensah, G.A., Johnson, C.O., et al. (2020) Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. Journal of the American College of Cardiology, 76, 2982-3021.
|
|
[2]
|
Wang, L., Zhou, B., Zhao, Z., Yang, L., Zhang, M., Jiang, Y., et al. (2021) Body-Mass Index and Obesity in Urban and Rural China: Findings from Consecutive Nationally Representative Surveys during 2004-18. The Lancet, 398, 53-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Xia, C., Li, R., Zhang, S., Gong, L., Ren, W., Wang, Z., et al. (2012) Lipid Accumulation Product Is a Powerful Index for Recognizing Insulin Resistance in Non-Diabetic Individuals. European Journal of Clinical Nutrition, 66, 1035-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Gast, K.B., Tjeerdema, N., Stijnen, T., Smit, J.W.A. and Dekkers, O.M. (2012) Insulin Resistance and Risk of Incident Cardiovascular Events in Adults without Diabetes: Meta-Analysis. PLOS ONE, 7, e52036. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Guo, S. (2013) Insulin Signaling, Resistance, and Metabolic Syndrome: Insights from Mouse Models into Disease Mechanisms. Journal of Endocrinology, 220, T1-T23. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cheng, Y., Tsao, Y., Tzeng, I., Chuang, H., Li, W., Tung, T., et al. (2017) Medicine, 96, e8126. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Balsan, G.A., Vieira, J.L.d.C., Oliveira, A.M.d. and Portal, V.L. (2015) Relationship between Adiponectin, Obesity and Insulin Resistance. Revista da Associação Médica Brasileira, 61, 72-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Sasaki, R., Yano, Y., Yasuma, T., Onishi, Y., Suzuki, T., Maruyama-Furuta, N., et al. (2016) Association of Waist Circumference and Body Fat Weight with Insulin Resistance in Male Subjects with Normal Body Mass Index and Normal Glucose Tolerance. Internal Medicine, 55, 1425-1432. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Premanath, M., Basavanagowdappa, H., Mahesh, M. and Suresh, M. (2014) Correlation of Abdominal Adiposity with Components of Metabolic Syndrome, Anthropometric Parameters and Insulin Resistance, in Obese and Non Obese, Diabetics and Non Diabetics: A Cross Sectional Observational Study. (Mysore Visceral Adiposity in Diabetes Study). Indian Journal of Endocrinology and Metabolism, 18, 676-682. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Patel, P. and Abate, N. (2013) Body Fat Distribution and Insulin Resistance. Nutrients, 5, 2019-2027. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Feng, J., He, S. and Chen, X. (2019) Body Adiposity Index and Body Roundness Index in Identifying Insulin Resistance among Adults without Diabetes. The American Journal of the Medical Sciences, 357, 116-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xia, C., Li, R., Zhang, S., Gong, L., Ren, W., Wang, Z., et al. (2012) Lipid Accumulation Product Is a Powerful Index for Recognizing Insulin Resistance in Non-Diabetic Individuals. European Journal of Clinical Nutrition, 66, 1035-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Er, L., Wu, S., Chou, H., Hsu, L., Teng, M., Sun, Y., et al. (2016) Triglyceride Glucose-Body Mass Index Is a Simple and Clinically Useful Surrogate Marker for Insulin Resistance in Nondiabetic Individuals. PLOS ONE, 11, e0149731. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Azcutia, V., Abu-Taha, M., Romacho, T., Vázquez-Bella, M., Matesanz, N., Luscinskas, F.W., et al. (2010) Inflammation Determines the Pro-Adhesive Properties of High Extracellular D-Glucose in Human Endothelial Cells in Vitro and Rat Microvessels in Vivo. PLOS ONE, 5, e10091. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Moore, K.J. and Tabas, I. (2011) Macrophages in the Pathogenesis of Atherosclerosis. Cell, 145, 341-355. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bornfeldt, K.E. and Tabas, I. (2011) Insulin Resistance, Hyperglycemia, and Atherosclerosis. Cell Metabolism, 14, 575-585. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Greenland, P. (2003) Major Risk Factors as Antecedents of Fatal and Nonfatal Coronary Heart Disease Events. Journal of the American Medical Association, 290, 891-897. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Canto, J.G., Kiefe, C.I., Rogers, W.J., Peterson, E.D., Frederick, P.D., French, W.J., et al. (2011) Number of Coronary Heart Disease Risk Factors and Mortality in Patients with First Myocardial Infarction. Journal of the American Medical Association, 306, 2120-2127. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tao, L., Xu, J., Wang, T., Hua, F. and Li, J. (2022) Triglyceride-Glucose Index as a Marker in Cardiovascular Diseases: Landscape and Limitations. Cardiovascular Diabetology, 21, Article 68.
|
|
[20]
|
Hill, M.A., Yang, Y., Zhang, L., Sun, Z., Jia, G., Parrish, A.R., et al. (2021) Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease. Metabolism, 119, Article 154766. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
DeFronzo, R.A. (2010) Insulin Resistance, Lipotoxicity, Type 2 Diabetes and Atherosclerosis: The Missing Links. The Claude Bernard Lecture 2009. Diabetologia, 53, 1270-1287. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Huang, Y., Huang, J., Lin, C., Chien, H., Lin, Y., Wang, C., et al. (2021) Comparison of Innovative and Traditional Cardiometabolic Indices in Estimating Atherosclerotic Cardiovascular Disease Risk in Adults. Diagnostics, 11, Article 603. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Reho, J.J. and Rahmouni, K. (2017) Oxidative and Inflammatory Signals in Obesity-Associated Vascular Abnormalities. Clinical Science, 131, 1689-1700. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Van Gaal, L.F., Mertens, I.L. and De Block, C.E. (2006) Mechanisms Linking Obesity with Cardiovascular Disease. Nature, 444, 875-880. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Van de Voorde, J., Pauwels, B., Boydens, C. and Decaluwé, K. (2013) Adipocytokines in Relation to Cardiovascular Disease. Metabolism, 62, 1513-1521. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Vecsernyes, M., Szokol, M., Bombicz, M., Priksz, D., Gesztelyi, R., Fulop, G.A., et al. (2017) Alpha-Melanocyte-Stimulating Hormone Induces Vasodilation and Exerts Cardioprotection through the Heme-Oxygenase Pathway in Rat Hearts. Journal of Cardiovascular Pharmacology, 69, 286-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Feigin, V.L., Krishnamurthi, R.V., Parmar, P., Norrving, B., Mensah, G.A., Bennett, D.A., et al. (2015) Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD 2013 Study. Neuroepidemiology, 45, 161-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, W., Jiang, B., Sun, H., Ru, X., Sun, D., Wang, L., et al. (2017) Prevalence, Incidence, and Mortality of Stroke in China. Circulation, 135, 759-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Guan, T., Ma, J., Li, M., Xue, T., Lan, Z., Guo, J., et al. (2017) Rapid Transitions in the Epidemiology of Stroke and Its Risk Factors in China from 2002 to 2013. Neurology, 89, 53-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
O’Donnell, M.J., Chin, S.L., Rangarajan, S., Xavier, D., Liu, L., Zhang, H., et al. (2016) Global and Regional Effects of Potentially Modifiable Risk Factors Associated with Acute Stroke in 32 Countries (INTERSTROKE): A Case-Control Study. The Lancet, 388, 761-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Pluta, R.M. (2010) Insulin Resistance and Risk of Ischemic Stroke Among Nondiabetic Individuals from the Northern Manhattan Study. The journal of the American Medical Association, 304, Article2575.
|
|
[32]
|
Du, Z., Xing, L., Lin, M. and Sun, Y. (2020) Estimate of Prevalent Ischemic Stroke from Triglyceride Glucose-Body Mass Index in the General Population. BMC Cardiovascular Disorders, 20, Article No. 483. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kotchen, T.A., Grim, C.E., Kotchen, J.M., Krishnaswami, S., Yang, H., Hoffmann, R.G., et al. (2008) Altered Relationship of Blood Pressure to Adiposity in Hypertension. American Journal of Hypertension, 21, 284-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Fukuda, N., Satoh, C., Hu, W., Nakayama, M., Kishioka, H. and Kanmatsuse, K. (2001) Endogenous Angiotensin II Suppresses Insulin Signaling in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. Journal of Hypertension, 19, 1651-1658. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Shimamoto, K., Ura, N., Nakagawa, M., Higashiura, K., Takizawa, H., Miyazaki, Y., et al. (1996) The Mechanisms of the Improvement of Insulin Sensitivity by Angiotensin Converting Enzyme Inhibitor. Clinical and Experimental Hypertension, 18, 257-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Higashiura, K., Ura, N., Miyazaki, Y. and Shimamoto, K. (1999) Effect of an Angiotensin II Receptor Antagonist, Candesartan, on Insulin Resistance and Pressor Mechanisms in Essential Hypertension. Journal of Human Hypertension, 13, S71-S74. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zeng, Z.Y., Liu, S.X., Xu, H., Xu, X., Liu, X.Z. and Zhao, X.X. (2020) Association of Triglyceride Glucose Index and Its Combination of Obesity Indices with Prehypertension in Lean Individuals: A Cross-Sectional Study of Chinese Adults. The Journal of Clinical Hypertension, 22, 1025-1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chalasani, N., Younossi, Z., Lavine, J.E., Charlton, M., Cusi, K., Rinella, M., et al. (2017) The Diagnosis and Management of Nonalcoholic Fatty Liver Disease: Practice Guidance from the American Association for the Study of Liver Diseases. Hepatology, 67, 328-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fujii, H. and Kawada, N. (2020) The Role of Insulin Resistance and Diabetes in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 21, Article 3863. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zhang, S., Du, T., Li, M., Jia, J., Lu, H., Lin, X., et al. (2017) Triglyceride Glucose-Body Mass Index Is Effective in Identifying Nonalcoholic Fatty Liver Disease in Nonobese Subjects. Medicine, 96, e7041. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Dincer, H.E., Dincer, A.P. and Levinson, D.J. (2002) Asymptomatic Hyperuricemia: To Treat or Not to Treat. Cleveland Clinic Journal of Medicine, 69, 594-594. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Maloberti, A., Vanoli, J., Finotto, A., Bombelli, M., Facchetti, R., Redon, P., et al. (2022) Uric Acid Relationships with Lipid Profile and Adiposity Indices: Impact of Different Hyperuricemic Thresholds. The Journal of Clinical Hypertension, 25, 78-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article 9221. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Seifi, N., Nosrati, M., Koochackpoor, G., Aghasizadeh, M., Bahari, H., Namdar, H.B., et al. (2024) The Association between Hyperuricemia and Insulin Resistance Surrogates, Dietary-and Lifestyle Insulin Resistance Indices in an Iranian Population: Mashad Cohort Study. Nutrition Journal, 23, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, Y.Y., Li, L., Cui, J., et al. (2020) Associations between Anthropometric Parameters (Body Mass Index, Waist Circumference and Waist to Hip Ratio) and Newly Diagnosed Hyperuricemia in Adults in Qingdao, China: A Cross-Sectional Study. Asia Pacific Journal of Clinical Nutrition, 29, 763-770.
|
|
[46]
|
Choi, H.K., Atkinson, K., Karlson, E.W. and Curhan, G. (2005) Obesity, Weight Change, Hypertension, Diuretic Use, and Risk of Gout in Men. Archives of Internal Medicine, 165, Article 742. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Alfa-Wali, M., Sharma, A., Boniface, S., Tekkis, P., Hackshaw, A. and Antoniou, A. (2012) PD-0011 Metabolic Syndrome (METS) and Risk of Colorectal Cancer (CRC), a Systematic Review and Meta-Analysis. Annals of Oncology, 23, iv22-iv23. [Google Scholar] [CrossRef]
|
|
[48]
|
Li, Y., You, A., Tomlinson, B., Yue, L., Zhao, K., Fan, H., et al. (2021) Insulin Resistance Surrogates Predict Hypertension Plus Hyperuricemia. Journal of Diabetes Investigation, 12, 2046-2053. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Bhole, V., Choi, J.W.J., Woo Kim, S., de Vera, M. and Choi, H. (2010) Serum Uric Acid Levels and the Risk of Type 2 Diabetes: A Prospective Study. The American Journal of Medicine, 123, 957-961. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Bandaru, P. and Shankar, A. (2011) Association between Serum Uric Acid Levels and Diabetes Mellitus. International Journal of Endocrinology, 2011, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Vadakedath, S. and Kandi, V. (2018) Probable Potential Role of Urate Transporter Genes in the Development of Metabolic Disorders. Cureus, 10, e2382. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Fotouhi, A., Ebrahimi, H., Emamian, M., Khosravi, A. and Hashemi, H. (2019) Comparison of the Accuracy of Three Diagnostic Criteria and Estimating the Prevalence of Metabolic Syndrome: A Latent Class Analysis. Journal of Research in Medical Sciences, 24, 108. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Gallagher, E.J., LeRoith, D. and Karnieli, E. (2010) Insulin Resistance in Obesity as the Underlying Cause for the Metabolic Syndrome. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 77, 511-523. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Raimi, T.H., Dele-Ojo, B.F., Dada, S.A., Fadare, J.O., Ajayi, D.D., Ajayi, E.A., et al. (2021) Triglyceride-Glucose Index and Related Parameters Predicted Metabolic Syndrome in Nigerians. Metabolic Syndrome and Related Disorders, 19, 76-82. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Alberti, K.G.M.M. and Zimmet, P.Z. (1998) Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a WHO Consultation. Diabetic Medicine, 15, 539-553. [Google Scholar] [CrossRef]
|