[1]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660
|
[2]
|
Olusola, P., Banerjee, H.N., Philley, J.V. and Dasgupta, S. (2019) Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells, 8, Article No. 622. https://doi.org/10.3390/cells8060622
|
[3]
|
Joubert, N., Beck, A., Dumontet, C. and Denevault-Sabourin, C. (2020) Antibody-drug Conjugates: The Last Decade. Pharmaceuticals, 13, Article No. 245. https://doi.org/10.3390/ph13090245
|
[4]
|
Gennigens, C., Jerusalem, G., Lapaille, L., De Cuypere, M., Streel, S., Kridelka, F., et al. (2022) Recurrent or Primary Metastatic Cervical Cancer: Current and Future Treatments. ESMO Open, 7, Article ID: 100579. https://doi.org/10.1016/j.esmoop.2022.100579
|
[5]
|
张巧云. Oba01对吉非替尼耐药NSCLC细胞的杀伤作用[D]: [硕士学位论文]. 咸宁: 湖北科技学院, 2023.
|
[6]
|
Strebhardt, K. and Ullrich, A. (2008) Paul Ehrlich’s Magic Bullet Concept: 100 Years of Progress. Nature Reviews Cancer, 8, 473-480. https://doi.org/10.1038/nrc2394
|
[7]
|
Hasan, M., Alam, S. and Poddar, S.K. (2019) Antibody-Drug Conjugates: A Review on the Epitome of Targeted Anti-Cancer Therapy. Current Clinical Pharmacology, 13, 236-251. https://doi.org/10.2174/1574884712666180802095521
|
[8]
|
Xu, S. (2015) Internalization, Trafficking, Intracellular Processing and Actions of Antibody-Drug Conjugates. Pharmaceutical Research, 32, 3577-3583. https://doi.org/10.1007/s11095-015-1729-8
|
[9]
|
Staudacher, A.H. and Brown, M.P. (2017) Antibody Drug Conjugates and Bystander Killing: Is Antigen-Dependent Internalisation Required? British Journal of Cancer, 117, 1736-1742. https://doi.org/10.1038/bjc.2017.367
|
[10]
|
Junutula, J.R., Bhakta, S., Raab, H., Ervin, K.E., Eigenbrot, C., Vandlen, R., et al. (2008) Rapid Identification of Reactive Cysteine Residues for Site-Specific Labeling of Antibody-Fabs. Journal of Immunological Methods, 332, 41-52. https://doi.org/10.1016/j.jim.2007.12.011
|
[11]
|
Junutula, J.R., Raab, H., Clark, S., Bhakta, S., Leipold, D.D., Weir, S., et al. (2008) Site-Specific Conjugation of a Cytotoxic Drug to an Antibody Improves the Therapeutic Index. Nature Biotechnology, 26, 925-932. https://doi.org/10.1038/nbt.1480
|
[12]
|
Rabuka, D., Rush, J.S., deHart, G.W., Wu, P. and Bertozzi, C.R. (2012) Site-Specific Chemical Protein Conjugation Using Genetically Encoded Aldehyde Tags. Nature Protocols, 7, 1052-1067. https://doi.org/10.1038/nprot.2012.045
|
[13]
|
Sunbul, M. and Yin, J. (2009) Site Specific Protein Labeling by Enzymatic Posttranslational Modification. Organic & Biomolecular Chemistry, 7, Article No. 3361. https://doi.org/10.1039/b908687k
|
[14]
|
Gauzy-Lazo, L., Sassoon, I. and Brun, M. (2020) Advances in Antibody-Drug Conjugate Design: Current Clinical Landscape and Future Innovations. SLAS Discovery, 25, 843-868. https://doi.org/10.1177/2472555220912955
|
[15]
|
Kondrashov, A., Sapkota, S., Sharma, A., Riano, I., Kurzrock, R. and Adashek, J.J. (2023) Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload. Pharmaceutics, 15, Article No. 2160. https://doi.org/10.3390/pharmaceutics15082160
|
[16]
|
Tiller, K.E. and Tessier, P.M. (2015) Advances in Antibody Design. Annual Review of Biomedical Engineering, 17, 191-216. https://doi.org/10.1146/annurev-bioeng-071114-040733
|
[17]
|
Beck, A., Goetsch, L., Dumontet, C. and Corvaïa, N. (2017) Strategies and Challenges for the Next Generation of Antibody-drug Conjugates. Nature Reviews Drug Discovery, 16, 315-337. https://doi.org/10.1038/nrd.2016.268
|
[18]
|
Chen, H., Lin, Z., Arnst, K., Miller, D. and Li, W. (2017) Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy. Molecules, 22, Article No. 1281. https://doi.org/10.3390/molecules22081281
|
[19]
|
Pahl, A., Lutz, C. and Hechler, T. (2018) Amanitins and Their Development as a Payload for Antibody-Drug Conjugates. Drug Discovery Today: Technologies, 30, 85-89. https://doi.org/10.1016/j.ddtec.2018.08.005
|
[20]
|
Drago, J.Z., Modi, S. and Chandarlapaty, S. (2021) Unlocking the Potential of Antibody-Drug Conjugates for Cancer Therapy. Nature Reviews Clinical Oncology, 18, 327-344. https://doi.org/10.1038/s41571-021-00470-8
|
[21]
|
Fu, Z., Li, S., Han, S., Shi, C. and Zhang, Y. (2022) Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduction and Targeted Therapy, 7, Article No. 93. https://doi.org/10.1038/s41392-022-00947-7
|
[22]
|
Hamblett, K.J., Senter, P.D., Chace, D.F., Sun, M.M.C., Lenox, J., Cerveny, C.G., et al. (2004) Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate. Clinical Cancer Research, 10, 7063-7070. https://doi.org/10.1158/1078-0432.ccr-04-0789
|
[23]
|
Jain, N., Smith, S.W., Ghone, S. and Tomczuk, B. (2015) Current ADC Linker Chemistry. Pharmaceutical Research, 32, 3526-3540. https://doi.org/10.1007/s11095-015-1657-7
|
[24]
|
Sheyi, R., de la Torre, B.G. and Albericio, F. (2022) Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics, 14, Article No. 396. https://doi.org/10.3390/pharmaceutics14020396
|
[25]
|
Kovtun, Y.V., Audette, C.A., Ye, Y., Xie, H., Ruberti, M.F., Phinney, S.J., et al. (2006) Antibody-Drug Conjugates Designed to Eradicate Tumors with Homogeneous and Heterogeneous Expression of the Target Antigen. Cancer Research, 66, 3214-3221. https://doi.org/10.1158/0008-5472.can-05-3973
|
[26]
|
Polson, A.G., Calemine-Fenaux, J., Chan, P., Chang, W., Christensen, E., Clark, S., et al. (2009) Antibody-Drug Conjugates for the Treatment of Non-Hodgkin’s Lymphoma: Target and Linker-Drug Selection. Cancer Research, 69, 2358-2364. https://doi.org/10.1158/0008-5472.can-08-2250
|
[27]
|
McCombs, J.R. and Owen, S.C. (2015) Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry. The AAPS Journal, 17, 339-351. https://doi.org/10.1208/s12248-014-9710-8
|
[28]
|
Jenkins, D. (2007) Histopathology and Cytopathology of Cervical Cancer. Disease Markers, 23, 199-212. https://doi.org/10.1155/2007/874795
|
[29]
|
Zhang, Y. (2024) The Effects of PIK3CA Mutations on Cervical Cancer. E3S Web of Conferences, 553, Article No. 05025. https://doi.org/10.1051/e3sconf/202455305025
|
[30]
|
Pal, A. and Kundu, R. (2020) Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Frontiers in Microbiology, 10, Article No. 3116. https://doi.org/10.3389/fmicb.2019.03116
|
[31]
|
Knoff, J., Yang, B., Hung, C. and Wu, T. (2013) Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis. Current Obstetrics and Gynecology Reports, 3, 18-32. https://doi.org/10.1007/s13669-013-0068-1
|
[32]
|
Magnus, N., Garnier, D., Meehan, B., McGraw, S., Lee, T.H., Caron, M., et al. (2014) Tissue Factor Expression Provokes Escape from Tumor Dormancy and Leads to Genomic Alterations. Proceedings of the National Academy of Sciences, 111, 3544-3549. https://doi.org/10.1073/pnas.1314118111
|
[33]
|
Alley, S.C., Harris, J.R., Cao, A., Heuvel, E.G.d., Velayudhan, J., Satijn, D., et al. (2019) Abstract 221: Tisotumab Vedotin Induces Anti-Tumor Activity through MMAE-Mediated, Fc-Mediated, and Fab-Mediated Effector Functions in Vitro. Cancer Research, 79, 221-221. https://doi.org/10.1158/1538-7445.am2019-221
|
[34]
|
Zhao, X., Cheng, C., Gou, J., Yi, T., Qian, Y., Du, X., et al. (2018) Expression of Tissue Factor in Human Cervical Carcinoma Tissue. Experimental and Therapeutic Medicine, 16, 4075-4081. https://doi.org/10.3892/etm.2018.6723
|
[35]
|
Cocco, E., Varughese, J., Buza, N., Bellone, S., Glasgow, M., Bellone, M., et al. (2011) Expression of Tissue Factor in Adenocarcinoma and Squamous Cell Carcinoma of the Uterine Cervix: Implications for Immunotherapy with Hi-Con1, a Factor VII-Iggfcchimeric Protein Targeting Tissue Factor. BMC Cancer, 11, Article No. 263. https://doi.org/10.1186/1471-2407-11-263
|
[36]
|
Bogani, G., Coleman, R.L., Vergote, I., Raspagliesi, F., Lorusso, D. and Monk, B.J. (2023) Tisotumab Vedotin in Recurrent or Metastatic Cervical Cancer. Current Problems in Cancer, 47, Article ID: 100952. https://doi.org/10.1016/j.currproblcancer.2023.100952
|
[37]
|
Breij, E.C.W., de Goeij, B.E.C.G., Verploegen, S., Schuurhuis, D.H., Amirkhosravi, A., Francis, J., et al. (2014) An Antibody-Drug Conjugate That Targets Tissue Factor Exhibits Potent Therapeutic Activity against a Broad Range of Solid Tumors. Cancer Research, 74, 1214-1226. https://doi.org/10.1158/0008-5472.can-13-2440
|
[38]
|
Tong, J.T.W., Harris, P.W.R., Brimble, M.A. and Kavianinia, I. (2021) An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules, 26, Article No. 5847. https://doi.org/10.3390/molecules26195847
|
[39]
|
Coleman, R.L., Lorusso, D., Gennigens, C., González-Martín, A., Randall, L., Cibula, D., et al. (2021) Efficacy and Safety of Tisotumab Vedotin in Previously Treated Recurrent or Metastatic Cervical Cancer (Innovatv 204/gog-3023/engot-Cx6): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 22, 609-619. https://doi.org/10.1016/s1470-2045(21)00056-5
|
[40]
|
Vergote, I.B., Monk, B.J., O’Cearbhaill, R.E., Westermann, A.M., Banerjee, S., Collins, D.C., et al. (2021) 723MO Tisotumab Vedotin (TV) + Carboplatin (Carbo) in First-Line (1L) or + Pembrolizumab (Pembro) in Previously Treated (2L/3L) Recurrent or Metastatic Cervical Cancer (r/mcc): Interim Results of Engot-Cx8/gog-3024/innovatv 205 Study. Annals of Oncology, 32, S726-S727. https://doi.org/10.1016/j.annonc.2021.08.1166
|
[41]
|
Vergote, I., González-Martín, A., Fujiwara, K., Kalbacher, E., Bagaméri, A., Ghamande, S., et al. (2024) Tisotumab Vedotin as Second-or Third-Line Therapy for Recurrent Cervical Cancer. New England Journal of Medicine, 391, 44-55. https://doi.org/10.1056/nejmoa2313811
|
[42]
|
Heitz, N., Greer, S.C. and Halford, Z. (2022) A Review of Tisotumab Vedotin-TFTV in Recurrent or Metastatic Cervical Cancer. Annals of Pharmacotherapy, 57, 585-596. https://doi.org/10.1177/10600280221118370
|
[43]
|
Citri, A. and Yarden, Y. (2006) EGF-ERBB Signalling: Towards the Systems Level. Nature Reviews Molecular Cell Biology, 7, 505-516. https://doi.org/10.1038/nrm1962
|
[44]
|
Morrison, C., Zanagnolo, V., Ramirez, N., Cohn, D.E., Kelbick, N., Copeland, L., et al. (2006) HER-2 Is an Independent Prognostic Factor in Endometrial Cancer: Association with Outcome in a Large Cohort of Surgically Staged Patients. Journal of Clinical Oncology, 24, 2376-2385. https://doi.org/10.1200/jco.2005.03.4827
|
[45]
|
Luo, H., Xu, X., Ye, M., Sheng, B. and Zhu, X. (2018) The Prognostic Value of HER2 in Ovarian Cancer: A Meta-Analysis of Observational Studies. PLOS ONE, 13, e0191972. https://doi.org/10.1371/journal.pone.0191972
|
[46]
|
Diver, E.J., Foster, R., Rueda, B.R. and Growdon, W.B. (2015) The Therapeutic Challenge of Targeting HER2 in Endometrial Cancer. The Oncologist, 20, 1058-1068. https://doi.org/10.1634/theoncologist.2015-0149
|
[47]
|
Tuefferd, M., Couturier, J., Penault-Llorca, F., Vincent-Salomon, A., Broët, P., Guastalla, J., et al. (2007) HER2 Status in Ovarian Carcinomas: A Multicenter GINECO Study of 320 Patients. PLOS ONE, 2, e1138. https://doi.org/10.1371/journal.pone.0001138
|
[48]
|
齐丽敏, 孙波, 张学玲, 等. hTERC、HER-2和c-myc基因在宫颈异常细胞中的表达及意义[J]. 实用医学杂志, 2015(18): 3021-3023.
|
[49]
|
Chavez-Blanco, A., Perez-Sanchez, V., Gonzalez-Fierro, A., Vela-Chavez, T., Candelaria, M., Cetina, L., et al. (2004) HER2 Expression in Cervical Cancer as a Potential Therapeutic Target. BMC Cancer, 4, Article No. 59. https://doi.org/10.1186/1471-2407-4-59
|
[50]
|
Fortman, D., Issa, R., Stanbery, L., Albrethsen, M., Nemunaitis, J. and Kasunic, T. (2020) Her2-Positive Metastatic Cervical Cancer Responsive to First and Second-Line Treatment: A Case Report. Gynecologic Oncology Reports, 31, Article ID: 100520. https://doi.org/10.1016/j.gore.2019.100520
|
[51]
|
Nakada, T., Sugihara, K., Jikoh, T., Abe, Y. and Agatsuma, T. (2019) The Latest Research and Development into the Antibody-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (ds-8201a), for HER2 Cancer Therapy. Chemical and Pharmaceutical Bulletin, 67, 173-185. https://doi.org/10.1248/cpb.c18-00744
|
[52]
|
Modi, S., Jacot, W., Yamashita, T., Sohn, J., Vidal, M., Tokunaga, E., et al. (2022) Trastuzumab Deruxtecan in Previously Treated Her2-Low Advanced Breast Cancer. New England Journal of Medicine, 387, 9-20. https://doi.org/10.1056/nejmoa2203690
|
[53]
|
Andrikopoulou, A., Zografos, E., Liontos, M., Koutsoukos, K., Dimopoulos, M. and Zagouri, F. (2021) Trastuzumab Deruxtecan (ds-8201a): The Latest Research and Advances in Breast Cancer. Clinical Breast Cancer, 21, e212-e219. https://doi.org/10.1016/j.clbc.2020.08.006
|
[54]
|
Ogitani, Y., Aida, T., Hagihara, K., Yamaguchi, J., Ishii, C., Harada, N., et al. (2016) Ds-8201a, a Novel Her2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-dm1. Clinical Cancer Research, 22, 5097-5108. https://doi.org/10.1158/1078-0432.ccr-15-2822
|
[55]
|
Ogitani, Y., Hagihara, K., Oitate, M., Naito, H. and Agatsuma, T. (2016) Bystander Killing Effect of ds‐8201a, a Novel Anti‐human Epidermal Growth Factor Receptor 2 Antibody-Drug Conjugate, in Tumors with Human Epidermal Growth Factor Receptor 2 Heterogeneity. Cancer Science, 107, 1039-1046. https://doi.org/10.1111/cas.12966
|
[56]
|
Takegawa, N., Tsurutani, J., Kawakami, H., Yonesaka, K., Kato, R., Haratani, K., et al. (2019) [fam‐] Trastuzumab Deruxtecan, Antitumor Activity Is Dependent on HER2 Expression Level Rather than on her2 Amplification. International Journal of Cancer, 145, 3414-3424. https://doi.org/10.1002/ijc.32408
|
[57]
|
Tsurutani, J., Iwata, H., Krop, I., Jänne, P.A., Doi, T., Takahashi, S., et al. (2020) Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discovery, 10, 688-701. https://doi.org/10.1158/2159-8290.cd-19-1014
|
[58]
|
Meric-Bernstam, F., Makker, V., Oaknin, A., Oh, D., Banerjee, S., González-Martín, A., et al. (2024) Efficacy and Safety of Trastuzumab Deruxtecan in Patients with Her2-Expressing Solid Tumors: Primary Results from the Destiny-Pantumor02 Phase II Trial. Journal of Clinical Oncology, 42, 47-58. https://doi.org/10.1200/jco.23.02005
|
[59]
|
Mosele, M.F., Lusque, A., Dieras, V., Deluche, E., Ducoulombier, A., Pistilli, B., et al. (2022) LBA1 Unraveling the Mechanism of Action and Resistance to Trastuzumab Deruxtecan (t-Dxd): Biomarker Analyses from Patients from DAISY Trial. Annals of Oncology, 33, S123. https://doi.org/10.1016/j.annonc.2022.03.277
|
[60]
|
Yu, J., Fang, T., Yun, C., Liu, X. and Cai, X. (2022) Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Frontiers in Molecular Biosciences, 9, Article ID: 847835. https://doi.org/10.3389/fmolb.2022.847835
|
[61]
|
Hu, X., Zhang, J., Liu, R., Gao, S., Wu, J., Wang, Y., et al. (2022) Updated Results and Biomarker Analyses from the Phase I Trial of A166 in Patients with Her2-Expressing Locally Advanced or Metastatic Solid Tumors. Journal of Clinical Oncology, 40, 1037-1037. https://doi.org/10.1200/jco.2022.40.16_suppl.1037
|
[62]
|
Li, H., Yu, C., Jiang, J., Huang, C., Yao, X., Xu, Q., et al. (2016) An Anti-Her2 Antibody Conjugated with Monomethyl Auristatin E Is Highly Effective in Her2-Positive Human Gastric Cancer. Cancer Biology & Therapy, 17, 346-354. https://doi.org/10.1080/15384047.2016.1139248
|
[63]
|
Xu, Y., Wang, Y., Gong, J., Zhang, X., Peng, Z., Sheng, X., et al. (2021) Phase I Study of the Recombinant Humanized Anti-Her2 Monoclonal Antibody-mmae Conjugate RC48-ADC in Patients with Her2-Positive Advanced Solid Tumors. Gastric Cancer, 24, 913-925. https://doi.org/10.1007/s10120-021-01168-7
|
[64]
|
Zaman, S., Jadid, H., Denson, A.C. and Gray, J.E. (2019) Targeting Trop-2 in Solid Tumors: Future Prospects. OncoTargets and Therapy, 12, 1781-1790. https://doi.org/10.2147/ott.s162447
|
[65]
|
Starodub, A.N., Ocean, A.J., Shah, M.A., Guarino, M.J., Picozzi, V.J., Vahdat, L.T., et al. (2015) First-in-Human Trial of a Novel Anti-Trop-2 Antibody-Sn-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clinical Cancer Research, 21, 3870-3878. https://doi.org/10.1158/1078-0432.ccr-14-3321
|
[66]
|
Syed, Y.Y. (2020) Sacituzumab Govitecan: First Approval. Drugs, 80, 1019-1025. https://doi.org/10.1007/s40265-020-01337-5
|
[67]
|
Zhai, C., Cui, Y., Guo, L., Chen, C., Song, Y., Zhong, J., et al. (2024) Progress in the Study of Antibody-Drug Conjugates for the Treatment of Cervical Cancer. Frontiers in Oncology, 14, Article ID: 1395784. https://doi.org/10.3389/fonc.2024.1395784
|
[68]
|
Samanta, D. and Almo, S.C. (2014) Nectin Family of Cell-Adhesion Molecules: Structural and Molecular Aspects of Function and Specificity. Cellular and Molecular Life Sciences, 72, 645-658. https://doi.org/10.1007/s00018-014-1763-4
|
[69]
|
Bouleftour, W., Guillot, A. and Magne, N. (2022) The Anti-Nectin 4: A Promising Tumor Cells Target. a Systematic Review. Molecular Cancer Therapeutics, 21, 493-501. https://doi.org/10.1158/1535-7163.mct-21-0846
|
[70]
|
Zhang, J., Liu, R., Gao, S., Li, X., Chen, J., Yao, X., et al. (2023) 659MO Preliminary Results from a Phase I/II Study of 9MW2821, an Antibody-Drug Conjugate Targeting Nectin-4, in Patients with Advanced Solid Tumors. Annals of Oncology, 34, S464. https://doi.org/10.1016/j.annonc.2023.09.1845
|
[71]
|
Yan, P., Dong, Y., Zhang, F., Zhen, T., Liang, J., Shi, H., et al. (2024) Claudin18.2 Expression and Its Clinicopathological Feature in Adenocarcinoma from Various Parts. Journal of Clinical Pathology. https://doi.org/10.1136/jcp-2023-209268
|
[72]
|
Lund, M.E., Campbell, D.H. and Walsh, B.J. (2020) The Role of Glypican-1 in the Tumour Microenvironment. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 163-176. https://doi.org/10.1007/978-3-030-40146-7_8
|
[73]
|
Harada, E., Serada, S., Fujimoto, M., Takahashi, Y., Takahashi, T., Hara, H., et al. (2017) Glypican-1 Targeted Antibody-Based Therapy Induces Preclinical Antitumor Activity against Esophageal Squamous Cell Carcinoma. Oncotarget, 8, 24741-24752. https://doi.org/10.18632/oncotarget.15799
|
[74]
|
Matsuda, K., Maruyama, H., Guo, F., et al. (2001) Glypican-1 Is Overexpressed in Human Breast Cancer and Modulates the Mitogenic Effects of Multiple Heparin-Binding Growth Factors in Breast Cancer Cells. Cancer Research, 61, 5562-5569.
|
[75]
|
Qiao, D., Meyer, K., Mundhenke, C., Drew, S.A. and Friedl, A. (2003) Heparan Sulfate Proteoglycans as Regulators of Fibroblast Growth Factor-2 Signaling in Brain Endothelial Cells. Journal of Biological Chemistry, 278, 16045-16053. https://doi.org/10.1074/jbc.m211259200
|
[76]
|
Kleeff, J., Ishiwata, T., Kumbasar, A., Friess, H., Büchler, M.W., Lander, A.D., et al. (1998) The Cell-Surface Heparan Sulfate Proteoglycan Glypican-1 Regulates Growth Factor Action in Pancreatic Carcinoma Cells and Is Overexpressed in Human Pancreatic Cancer. Journal of Clinical Investigation, 102, 1662-1673. https://doi.org/10.1172/jci4105
|
[77]
|
Meng, Y., Chu, T., Lin, S., Wu, P., Zhi, W., Peng, T., et al. (2021) Clinicopathological Characteristics and Prognosis of Cervical Cancer with Different Histological Types: A Population-Based Cohort Study. Gynecologic Oncology, 163, 545-551. https://doi.org/10.1016/j.ygyno.2021.10.007
|
[78]
|
Matsuzaki, S., Serada, S., Hiramatsu, K., Nojima, S., Matsuzaki, S., Ueda, Y., et al. (2017) Anti‐Glypican‐1 Antibody‐drug Conjugate Exhibits Potent Preclinical Antitumor Activity against Glypican‐1 Positive Uterine Cervical Cancer. International Journal of Cancer, 142, 1056-1066. https://doi.org/10.1002/ijc.31124
|
[79]
|
García-Alonso, S., Ocaña, A. and Pandiella, A. (2018) Resistance to Antibody-Drug Conjugates. Cancer Research, 78, 2159-2165. https://doi.org/10.1158/0008-5472.can-17-3671
|
[80]
|
Loganzo, F., Sung, M. and Gerber, H. (2016) Mechanisms of Resistance to Antibody-Drug Conjugates. Molecular Cancer Therapeutics, 15, 2825-2834. https://doi.org/10.1158/1535-7163.mct-16-0408
|
[81]
|
Collins, D., Bossenmaier, B., Kollmorgen, G. and Niederfellner, G. (2019) Acquired Resistance to Antibody-Drug Conjugates. Cancers, 11, Article No. 394. https://doi.org/10.3390/cancers11030394
|
[82]
|
Khoury, R., Saleh, K., Khalife, N., Saleh, M., Chahine, C., Ibrahim, R., et al. (2023) Mechanisms of Resistance to Antibody-Drug Conjugates. International Journal of Molecular Sciences, 24, Article No. 9674. https://doi.org/10.3390/ijms24119674
|
[83]
|
Chen, Y., Xu, Y., Shao, Z. and Yu, K. (2022) Resistance to Antibody‐Drug Conjugates in Breast Cancer: Mechanisms and Solutions. Cancer Communications, 43, 297-337. https://doi.org/10.1002/cac2.12387
|
[84]
|
Kim, E.G. and Kim, K.M. (2015) Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics. Biomolecules & Therapeutics, 23, 493-509. https://doi.org/10.4062/biomolther.2015.116
|
[85]
|
Dal Corso, A., Gébleux, R., Murer, P., Soltermann, A. and Neri, D. (2017) A Non-Internalizing Antibody-Drug Conjugate Based on an Anthracycline Payload Displays Potent Therapeutic Activity in Vivo. Journal of Controlled Release, 264, 211-218. https://doi.org/10.1016/j.jconrel.2017.08.040
|
[86]
|
Liu, R., Wang, R.E. and Wang, F. (2016) Antibody-Drug Conjugates for Non-Oncological Indications. Expert Opinion on Biological Therapy, 16, 591-593. https://doi.org/10.1517/14712598.2016.1161753
|
[87]
|
Chu, Y. and Polson, A. (2013) Antibody-Drug Conjugates for the Treatment of B-Cell Non-Hodgkin’s Lymphoma and Leukemia. Future Oncology, 9, 355-368. https://doi.org/10.2217/fon.12.189
|