抗体–药物偶联物在宫颈癌治疗中的进展
Progress of Antibody-Drug Conjugates in the Treatment of Cervical Cancer
DOI: 10.12677/jcpm.2024.34334, PDF, HTML, XML,   
作者: 李凯芳, 黄彬婷, 张富亿, 巫祥生, 李也鹏*:右江民族医学院研究生学院,广西 百色
关键词: 抗体–药物偶联物宫颈癌靶点Antibody-Drug Conjugate Cervical Cancer Target
摘要: 宫颈癌是全球女性健康领域面临的一项重大挑战,当下迫切需要全新的治疗策略。抗体药物偶联物(ADC)作为一种新型治疗手段,通过将细胞毒性药物精确递送至肿瘤细胞,为宫颈癌治疗提供了新的治疗方向。本综述旨在探讨ADC在宫颈癌治疗中的应用,包括其作用机制、结构设计、临床研究进展及当前面临的挑战。我们详细分析了针对特定靶点如组织因子(TF)、人表皮生长因子受体2 (HER2)、Trop-2等的ADC,并评估了它们在宫颈癌治疗中的潜在价值与局限性。尽管抗体–药物偶联物在提升宫颈癌治疗效果以及减少副作用方面呈现出优势,但仍需攻克其耐药性、毒性管理等难题。未来的研究应当致力于开发新的靶点、优化ADC设计,同时开展更多的临床试验,以促使ADC在宫颈癌治疗中得到广泛应用。
Abstract: Cervical cancer is a major challenge in the field of global women’s health, and a new treatment strategy is urgently needed. Antibody drug conjugate (ADC), as a new treatment method, provides a new therapeutic direction for the treatment of cervical cancer by accurately delivering cytotoxic drugs to tumor cells. This review aims to explore the application of ADC in the treatment of cervical cancer, including its mechanism of action, structural design, clinical research progress and current challenges. We analyzed ADCs targeting specific targets such as tissue factor (TF), human epidermal growth factor receptor 2 (HER2), and Trop-2 in detail, and evaluated their potential value and limitations in the treatment of cervical cancer. Although antibody-drug conjugates have shown advantages in improving the therapeutic effect of cervical cancer and reducing side effects, they still need to overcome problems such as drug resistance and toxicity management. Future research should focus on developing new targets, optimizing ADC design, and conducting more clinical trials to promote the wide application of ADC in the treatment of cervical cancer.
文章引用:李凯芳, 黄彬婷, 张富亿, 巫祥生, 李也鹏. 抗体–药物偶联物在宫颈癌治疗中的进展[J]. 临床个性化医学, 2024, 3(4): 2337-2347. https://doi.org/10.12677/jcpm.2024.34334

1. 引言

宫颈癌是全球女性中第四常见的恶性肿瘤,尤其在发展中国家,其发病率和死亡率占据重要比例。根据GLOBOCAN2020的数据,全球每年约有604,000例新发宫颈癌病例和342,000例死亡[1]。宫颈癌的治疗对女性健康构成了重大的疾病负担,尤其是在资源有限的地区,其影响更为显著。尽管通过筛查和HPV疫苗接种计划,发达国家的宫颈癌发病率已显著下降,如美国自1990年代以来发病率下降了约70%。但晚期或复发性宫颈癌的治疗仍然充满挑战。传统的宫颈癌治疗方法包括手术、放疗和化疗,这些方法虽然在一定程度上改善了患者的生存率,但对于晚期或复发性病例,治疗效果往往不尽人意,且伴随着较大的副作用[2]。抗体–药物偶联物(ADC)的出现为宫颈癌治疗提供了新的策略。ADC药物利用单克隆抗体的定位能力,将细胞毒性药物直接输送至肿瘤细胞,有效降低了对健康细胞的影响,增强了治疗的针对性和安全性。这种靶向治疗的概念最初由PaulEhrlich提出,并在近年来随着生物技术的发展而成为现实[3]。ADC的显著优势在于其能够借助单克隆抗体的精准靶向能力,与肿瘤细胞表面的特定抗原紧密结合。随后,这些复合物通过细胞的内吞机制被带入细胞内部,释放出细胞毒性药物,直接对肿瘤细胞造成破坏。与传统化疗相比,ADC能够显著提高治疗效果,同时降低系统性毒性,改善患者的生活质量[4]。本综述将探讨ADC在宫颈癌治疗中的研究进展,包括其作用机制、临床试验结果以及面临的挑战和未来的发展方向。通过分析现有文献,我们将评估抗体–药物偶联物在宫颈癌治疗中的潜力,并讨论如何进一步优化这些治疗方法,以期为宫颈癌患者提供更有效的治疗选择。

2. 抗体–药物偶联物的作用机制和结构

抗体–药物偶联物(ADC)的发展是肿瘤学领域的一个重大进展。ADC由单克隆抗体(mAb)和通过化学连接物共价结合的细胞毒性药物组成[5],后者被称为“有效载荷”。ADC也被称为“魔弹”,最早由保罗·埃利希在1907年提出,但直到20世纪80年代才首次应用于临床试验[6]。ADC药物融合了抗体的精准靶向特性、药代动力学优势以及细胞毒分子的高效杀伤能力,实现了对肿瘤细胞的精确打击,同时显著降低了化疗药物对正常细胞的不良影响,减少了治疗相关的全身性副作用[7]。其作用原理是:ADC在体内循环时,能够特异性地与肿瘤细胞表面的抗原结合,形成稳定的复合体,这些复合体随后通过细胞的受体介导内吞途径被细胞内化。随后,溶酶体与内吞体融合,释放出细胞毒素,该毒素破坏细胞的关键生存机制,引发细胞程序性死亡[8]。一些ADC还通过旁观者效应杀伤。当邻近细胞本身可能不表达靶标抗原时,会被细胞毒性有效载荷杀死,这称为旁观者效应杀伤。这些细胞毒性有效载荷要么从表达ADC靶标抗原的细胞中被排出,随后ADC被内化和降解,要么是在肿瘤微环境中释放,而不需要ADC内化。旁观者效应杀伤取决于多种因素,包括ADCs内化的程度、可裂解或不可裂解连接子的存在以及细胞毒性有效载荷的性质[9]。部分ADCs还可以激活补体系统,触发抗体依赖性细胞毒性(ADCsC)、补体依赖性细胞毒性(CDC)或抗体依赖性细胞吞噬作用(ADCsP)。引发免疫细胞渗入肿瘤。为提高ADC的均质性和疗效,目前聚焦于实现位点特异性的共轭技术,具体策略包括通过抗体分子中特定位置的半胱氨酸残基进行工程化改造、引入非天然氨基酸,以及运用糖基转移酶和转谷氨酰胺酶进行精准的酶促共轭[10]-[13]。一些正在进行I期临床试验的位点特异性共轭ADC包括MEDI2228、PF-06804103和TR1801-ADC [14]。在过去十年,ADC研究的关注度持续增长。值得注意的是,大多数获批的ADC用于治疗血液系统恶性肿瘤,而实体瘤的ADC治疗进展有所不同。ADC领域面临诸多挑战,包括药物开发的复杂性、成本、肿瘤生物学的复杂性以及耐药机制的多样性[15]

2.1. 单克隆抗体

单克隆抗体与肿瘤细胞表面的特定抗原结合,为抗体药物偶联物(ADC)提供了治疗优势。理想的抗体需具备高特异性、强亲和力、较长的半衰期以及低免疫原性。人源化或嵌合型免疫球蛋白G (IgG)因其低免疫原性和长效作用,常被优先选用作为ADC的载体[16]。IgG抗体除了直接作用于靶细胞外,还能通过抗体依赖性细胞毒性增强免疫系统的响应。在IgG的多个亚型中,IgG1因其较长的半衰期和较强的ADCC活性,成为构建ADC的首选[17]。此外,理想的ADCs靶点应在正常细胞内表达水平较低或不表达的肿瘤细胞上有较高的表达或特异性表达,以保证在降低对正常细胞毒性影响的同时,高效地杀伤肿瘤细胞。

2.2. 细胞毒性载荷

抗体–药物偶联物的第二个关键组成部分是细胞毒性载荷,它是一种能够引发细胞死亡的高效细胞毒素[18] [19]。最常用的有效载荷包括能够引发DNA损伤或干扰微管功能的药物。例如,奥司他汀类药物(如MMAE和MMAF)和美他素类药物(如DM1和DM4)作为微管抑制剂,能够靶向快速增殖的细胞并诱导细胞周期停滞。DNA损伤类药物包括钙素,它通过结合DNA小沟造成双链断裂,以及喜树碱衍生物如SN-38和DXd,它们通过抑制拓扑异构酶来造成DNA损伤。与微管抑制剂相比,DNA损伤类药物具有细胞周期非特异性和对低有丝分裂率肿瘤的潜在高效率[20] [21]。药物–抗体比(DAR)是指抗体上结合的有效载荷分子的平均数量,DAR的增加通常与药物效力的提高相关[22]

2.3. 连接子

ADC的连接子是将细胞毒性有效载荷与单克隆抗体连接的分子,其作用是确保有效载荷能够被传递到目标细胞[23]。连接子必须在血浆中保持稳定,以防止在到达肿瘤细胞之前过早释放,这可能导致不必要的全身性脱靶毒性[20]。连接子分为两大类:可裂解和不可裂解。可裂解连接子,如二硫键和二肽键,根据细胞内环境(如pH值、谷胱甘肽水平或胞内酶的存在)的敏感性,能够在肿瘤细胞内优先释放有效载荷[24]。然而,它们的血浆稳定性差异可能导致细胞外有效载荷的释放,从而通过细胞外传递机制引发旁观者效应[25]。旁观者效应指的是有效载荷对不表达靶抗原的邻近肿瘤细胞的细胞毒性作用,这在肿瘤抗原表达异质性的情况下可能有益,但也可能导致有效载荷分布到正常组织,增加ADC的毒性[26]。某些不可切割的连接子,如琥珀酰亚胺4-n-马来酰亚胺甲基环己烷-1-羧酸盐,通过在溶酶体中抗体的降解来释放药物载荷,而非依赖连接子的断裂。这种方法通常保留了有效载荷的带电氨基酸,限制了其膜通透性,防止了细胞外扩散。不可裂解连接子提供了增强的血浆稳定性,从而扩大了治疗窗口,但它们不促进旁观者效应,这可能限制了在某些情况下的疗效[27]

3. 宫颈癌的分子类型

宫颈癌是具有多种组织学亚型的恶性肿瘤,其治疗策略的优化是医学研究重点。其中,鳞状细胞癌(SCC)和腺癌(AC)最为常见,而腺鳞癌、神经内分泌癌等罕见亚型因其独特生物学特性需特别关注[28]。深入理解宫颈癌分子特征,尤其是基因组分析揭示的分子改变,可为疾病分子分型和个体化治疗提供重要信息,例如SCC中PIK3CA的高频突变以及HPV16和18型在宫颈癌(尤其AC)中的关键作用,均为治疗干预的靶点[29]。在此背景下,抗体–药物偶联物(ADC)为宫颈癌治疗带来新机遇。结合宫颈癌病理类型和分子特征,ADC有望成为针对特定分子靶点的精准治疗手段,如针对HPV阳性宫颈癌设计结合HPV病毒蛋白的ADC,或针对SCC中常见的PIK3CA突变设计相应ADC [30] [31]。这种基于病理和分子特性的定制化治疗策略有望提高治疗效果、减少不良反应,为宫颈癌患者提供更精准有效的治疗方案。随着ADC技术进步和临床试验深入,未来有望开发出更多针对宫颈癌不同亚型的创新治疗药物。

4. 宫颈癌ADC靶点的临床研究

4.1. 靶向组织因子的ADC

组织因子(Tissue Factor, TF)在医学领域扮演着至关重要的角色,作为外源性凝血途径的主导启动因子,其在癌症生物学中的作用远不止于此。TF在促进细胞增殖、存活、血管生成以及上皮间质转化(Epithelial-Mesenchymal Transition, EMT)等方面发挥着关键作用,这些过程均与肿瘤的发展和进展密切相关[32] [33]。在宫颈癌中,TF的表达率高达90%~95%,而在其他实体瘤中的高表达也已得到广泛认可[34]-[36]。Tisotumab vedotin,作为一种创新的抗体–药物偶联物(Antibody-Drug Conjugate, ADCs),由针对组织因子(TF)的人源化单克隆抗体与微管抑制剂单甲基澳瑞他汀E (MMAE)通过蛋白酶可切割的连接子相连[37]。目前,Tisotumab vedotin,已被FDA批准用于宫颈癌的治疗[38]

2021年9月,基于innovaTV204 II期临床试验的积极数据,FDA授予Tisotumab vedotin加速审批资格,用于治疗化疗后疾病进展的晚期复发或转移性宫颈癌患者。该试验显示,Tisotumab vedotin治疗组的ORR为24%,中位DOR为8.3个月,中位响应时间为1.4个月,表明早期治疗周期内即可观察到疗效。安全性方面,Tisotumab vedotin具有可控的安全性特征,3级或更高级别的TRAEs发生率为28% [39] [40]

最近完成的InnovaTV205/ENGOT-cx8/GOG-3024 Ib/II期国际多中心临床试验评估了tisotumab vedotin (TV)联合其他药物在复发性或晚期宫颈癌患者中的疗效和安全性,结果显示TV具有良好的抗肿瘤活性和安全性,其中联合卡铂组的客观缓解率(ORR)为54.5%,中位持续时间为8.6个月[41]。另一项III期临床试验InnovaTV301/ENGOT-cx12/GOG-3057进一步证实了TV在复发或转移性宫颈癌患者中的二线或三线治疗中相较于传统化疗的优越性,TV组的中位总生存期(OS)为11.5个月,优于化疗组的9.5个月,死亡风险降低30%。这些试验为TV在宫颈癌治疗中的应用提供了有力的临床数据支持[42]

4.2. 靶向HER2的ADC

HER2是一种跨膜酪氨酸激酶受体,其亲本基因ERBB2的扩增在多种实体瘤中均有报道。HER2与HER2家族中其他酪氨酸激酶的二聚化是丝裂原活化蛋白激酶和PI3K信号通路的第一步[43]。该途径最终导致基因的转录和翻译,其产物通过改变细胞周期调控、蛋白质转录和翻译、葡萄糖代谢、细胞迁移和细胞分化来增强恶性细胞潜能。在妇科恶性肿瘤和其他实体肿瘤中,HER2的过表达已被证实与化疗药物的耐药性增加和患者预后不良有关。因此,HER2成为了开发抗体–药物偶联物的有吸引力的靶点[44] [45]。HER2在子宫内膜癌和卵巢癌中的过表达率较高,分别为17%~30%和5%~60% [45]-[47]。HER2在正常宫颈组织中通常不表达,但在宫颈鳞癌中其表达率显著升高,达到66.67% [48]。目前,针对HER2的抗体药物偶联物(ADC)在宫颈癌领域的应用仍处在临床研究的阶段。已有研究表明,HER2 受体的过度表达与宫颈癌和浸润性子宫内膜癌有着紧密联系,同时也与不良的疾病预后结果相关,这更进一步证实了HER2作为ADC药物研发潜在靶点的重大意义[46] [49] [50]。随着对HER2在妇科肿瘤中作用机制的深入理解,针对HER2的ADC有望为宫颈癌患者提供新的治疗选择。

4.2.1. Trastuzumab Deruxtecan

Trastuzumab Deruxtecan (T-Dxd,或DS-8201a)是一种新型的HER2靶向抗体–药物偶联物,已在其他实体肿瘤中确立了应用,目前正在研究用于妇科恶性肿瘤[51]

T-Dxd由人源化单克隆抗体曲妥珠单抗(trastuzumab)与拓扑异构酶I抑制剂(DXd)通过特定的连接蛋白(马来酰亚胺甘氨酸–苯丙氨酸–甘氨酸,GGFG肽)连接而成[52]。该抗体特异性结合人表皮生长因子受体2 (HER2)的细胞外域,而GGFG肽连接蛋白的设计是为了能够被肿瘤细胞过表达的溶酶体酶如组织蛋白酶B和L识别并切割,当T-Dxd被肿瘤细胞内化后,DXd得以从ADC复合物中释放[53]。随后,DXd通过细胞膜的渗透作用进入周围的肿瘤细胞,引发DNA损伤并诱导细胞死亡,这一过程不依赖于肿瘤细胞的HER2表达状态。因此,T-Dxd在异质性HER2肿瘤中表现出显著的临床疗效[54]。而DXd的高度膜通透性为其提供了显著的旁观者效应,即能够杀伤邻近的HER2低表达或不表达的肿瘤细胞,这一特性是T-Dxd相较于传统单克隆抗体的优势所在[55]

多项研究显示,抗体–药物偶联物T-Dxd (tisotumab vedotin)在HER2阳性肿瘤中具有疗效,其积累与HER2水平相关,且不依赖于HER2扩增。T-Dxd在HER2低表达或异质性表达的胃癌和乳腺癌患者中显示出治疗效果,且具有高药物–抗体比率(DAR)、血浆中的高稳定性以及体内反应性[56]。临床试验中,T-Dxd在妇科恶性肿瘤患者中显示出广泛疗效,包括宫颈癌。I期临床试验(NCT02564900)显示,T-Dxd治疗的中位持续缓解时间为11.5个月,中位无进展生存期为7.2个月[57]。II期开放标签试验(DESTINY-PanTumor02, NCT04482309)在多种实体瘤中也显示出T-Dxd的疗效,尤其在子宫癌患者中,HER2肿瘤免疫组化(IHC)3+的患者反应率高达84.6% [58]。尽管T-Dxd展现了显著疗效,但也存在耐药性问题,可能与SLX4基因突变和HER2表达下降相关[59]。该ADC在其他实体瘤中的治疗成功以及在宫颈癌中使用的现有临床前证据,使其成为有前途的治疗选择。预计,当前临床试验的结果将进一步推动T-Dxd的临床应用。

4.2.2. A166

A166代表了第三代HER2靶向治疗领域的进展,它利用一种特异性连接技术将微管抑制剂Duo-5与HER2抗体结合[60]。目前,该药物正参与一项针对HER2阳性实体瘤患者的I/II期临床试验,试验编号NCT03602079,该研究纳入了包括宫颈癌在内的多种肿瘤类型的患者。在剂量探索阶段,在剂量范围0.3至4.8 mg∙kg1时,A166显示出良好的整体耐受性。不过,当剂量超过3.6 mg∙kg1时,观察到较高的眼部毒性,如干眼症和视力下降,影响超过80%的患者。在治疗效果上,大约60%的患者在接受治疗后实现了疾病缓解或病情稳定,但这些数据综合了多种肿瘤类型的疗效,尚未具体分析每种肿瘤类型的反应率[61]。随着临床研究的深入,期待A166能为宫颈癌患者提供新的治疗选择。

4.2.3. RC48

RC48是一种新型抗HER2抗体–药物偶联物(ADC),由人源化抗HER2抗体Hertuzumab通过可裂解连接子与单甲基化基底异黄素E (MMAE)相连。Hertuzumab对HER2的亲和力高于曲妥珠单抗,展现出更强的抗体依赖性细胞介导的细胞毒性活性[62]。近期,一项II期临床研究评估了RC48-ADC联合放疗、PD-1/L1抑制剂、GM-CSF和IL-2治疗HER2过表达晚期实体瘤的疗效。截至2023年1月,该研究共纳入32例患者,其中6例为妇科肿瘤。主要研究终点为客观缓解率(ORR)。结果显示,妇科肿瘤患者的ORR达到66.7%,HER2IHC1+患者的ORR与IHC2+~3+患者相当,分别为43.8%和30%。该研究结果提示,RC48-ADCs联合方案在HER2过表达的晚期实体瘤患者中具有潜在的抗肿瘤活性,值得进一步研究和探索[63]

4.3. 靶向抗人滋养细胞表面抗原2 (Trop-2)的ADC

Trop-2是一种细胞表面抗原,最初在人胎盘滋养层细胞中被发现,并在多种正常组织中有所表达。近年来,研究发现Trop-2在多种肿瘤细胞中呈现高表达,从而在肿瘤治疗领域受到广泛关注[64]。Sacituzumab govitecan (SG)是一种人源化抗Trop-2抗体–药物偶联物(ADC),通过pH敏感的水解连接物与伊立替康的活性代谢物(SN-38)偶联,能够在肿瘤微环境中发挥旁观者效应[65]

2023年2月3日,美国FDA批准了戈沙妥珠单抗(SG)用于治疗无法手术切除、局部晚期或远处转移的乳腺癌患者,这些患者已接受过至少两线系统治疗且之前接受过内分泌治疗。SG是全球首个也是唯一获批靶向Trop-2的ADC类药物[66]。EVER-132-003 II期临床研究显示,SG单药治疗复发或转移性宫颈癌患者表现出显著的抗肿瘤活性,客观缓解率(ORR)达到50%,中位缓解持续时间(DoR)为9.2个月,中位无进展生存期(PFS)为8.1个月,且在先前接受过免疫治疗的患者中也观察到一致的治疗效果。期待后续的临床研究能进一步评估SG在治疗复发或转移性宫颈癌患者中的治疗价值和长期疗效[67]

4.4. 靶向Nectin细胞黏附蛋白4的ADC

Nectin-4是一种1型跨膜蛋白,是相关免疫球蛋白样黏附分子家族的成员,该家族参与细胞–细胞黏附[68]。Nectin促进的黏附支持多种生物学过程,如免疫调节、宿主–病原体相互作用和免疫逃避。与在成人组织中广泛表达的Nectin-1、2和3不同,Nectin-4仅在胚胎和胎盘中表达,其过表达与多种肿瘤的生长、侵袭性以及不良预后相关[69]。MW2821作为一种靶向Nectin-4的抗体–药物偶联物(ADC),在临床I/II期试验中首次应用于宫颈癌治疗领域,纳入了既往接受过1至2线治疗(包括或不包括贝伐珠单抗)的患者[70]。这些数据表明,Nectin-4在宫颈癌患者中的高表达率为9MW2821的应用提供了广泛的潜在受益人群。近期,在多中心、开放标签的I/IIa期临床试验中,MW2821在表达Nectin-4的实体瘤患者中进行了评估,包括尿路上皮癌、宫颈癌、食管癌和三阴性乳腺癌。研究确定了1.25 mg/kg剂量为推荐二期剂量(RP2D),并显示出良好的耐受性。在进行肿瘤评估的190例患者中,客观缓解率达到35.3%,疾病控制率为78.4%,证实了9MW2821在治疗晚期UC、CC、EC和TNBC中的潜在疗效。这些积极结果支持9MW2821作为针对Nectin-4阳性肿瘤的ADC疗法的进一步研究与应用[71]。鉴于Nectin-4在宫颈癌患者中的高表达率,同时结合9MW2821在临床试验中展现的疗效与安全性,该药物有望成为宫颈癌患者,尤其是对标准治疗无效或不耐受患者的一种新的治疗选择。

4.5. 靶向GPC1的ADC

GPC1 (glypican-1)是一种硫酸乙酰肝素蛋白聚糖,通过糖基磷脂酰肌醇(GPI)锚定于细胞质膜。该分子作为一种共受体,能够通过激活包括Wnt、Hedgehog、转化生长因子-β (TGF-β)和成纤维细胞生长因子-2 (FGF-2)在内的多种信号通路,促进肿瘤细胞的生长、转移和侵袭[72] [73]。在乳腺癌、胶质母细胞瘤、子宫颈癌以及胰腺导管腺癌等多种恶性肿瘤中,GPC1 (glypican-1)的表达水平显著升高,且其过表达与肿瘤的增殖、侵袭和转移等生物学行为密切相关[74]-[76]。GPC1在子宫颈癌中的高表达,为其作为宫颈癌治疗的潜在靶点提供了科学依据。近期,Satoko Matsuzaki等人成功开发了一种新型抗GPC1单克隆抗体,该抗体具有显著的细胞内化活性。研究者进一步将该抗体与单甲基金霉素F (MMAF)结合,制备了一种抗体–药物偶联物(ADC)。在体外和体内实验中,GPC1-ADC均显示出对GPC1阳性宫颈癌细胞生长的有效抑制作用[77] [78]。因此,GPC1-ADC有望成为针对GPC1过表达肿瘤的一种潜在的治疗策略,为GPC1阳性宫颈癌患者提供了新的治疗选择。

5. 抗体–药物偶联物的挑战和未来发展

抗体–药物偶联物(ADC)作为一种新兴的癌症疗法,与其他抗癌药物类似,先天性或获得性耐药仍然是其成功实施治疗的主要障碍[79]。在临床前和临床研究中已经确定了ADC耐药的几种机制。这些包括靶抗原表达或突变降低,抗体结合减少[80]。ADC的内化、运输和加工改变会损害药物向癌细胞的递送[81]。MDR1和MRP1等药物外排转运蛋白的上调会降低细胞毒性有效载荷的有效性[82]。溶酶体功能中断和有效载荷释放到胞质溶胶中的受损也是潜在的耐药机制为了克服耐药性[83],研究人员正在开发新的有效载荷,如免疫刺激剂、RNA聚合酶II抑制剂以及促凋亡的BCL-xL抑制剂等,以期提高ADC的疗效和安全性[84]。对耐药机制和创新ADC设计的持续研究对于改善宫颈癌和其他恶性肿瘤的患者预后至关重要。

值得注意的是,传统上用于癌症治疗的抗体–药物偶联物(ADC)现正被探索应用于非肿瘤学领域。尽管大多数ADC依赖于细胞内化来发挥其治疗效果,但近期研究表明,即使不依赖内化,ADC在癌症治疗中也具有潜在的应用价值[85]。研究正在扩展到免疫调节和抗感染等领域。最近,已经开发了一种靶向T细胞上CXCR4的免疫抑制ADC,有望用于治疗自身免疫和炎症性疾病。与靶向癌症的ADC不同,这些用于非肿瘤治疗的ADC通常携带非细胞毒性药物[86]。此外,ADC也被研究用于治疗如关节炎、重症肌无力和肾功能衰竭等非肿瘤性疾病。尽管在非肿瘤学应用的ADC研究中取得了一些积极的成果,但在开发过程中仍然面临一些挑战。然而,与现有的治疗方案相比,ADC在治疗多种疾病(包括B细胞淋巴瘤和白血病)方面的潜在疗效和安全性,无疑展现了它们在治疗领域的广泛前景[87]

6. 结论

抗体–药物偶联物(ADC)于宫颈癌治疗领域彰显出极大的潜力。抗体–药物偶联物能够精准锁定肿瘤细胞,同时减少对健康细胞的不良影响,如此一来,既增强了治疗成效,又降低了治疗相关的副作用。本综述对ADC的作用机制、结构、临床研究进展以及所面临的挑战进行了深入探讨。尽管在宫颈癌治疗方面,抗体–药物偶联物已取得显著成果,但依旧存在一些难题,像耐药性问题、毒性管理以及靶点选择的优化等。未来的研究应当聚焦于开发新的靶点、优化抗体与有效载荷的选取、改良连接子技术,并且开展更多的临床试验,以验证抗体–药物偶联物的疗效与安全性。经由这些努力,抗体–药物偶联物有希望成为宫颈癌治疗的重要方式,为患者带来更有效的治疗选择。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Olusola, P., Banerjee, H.N., Philley, J.V. and Dasgupta, S. (2019) Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells, 8, Article No. 622.
https://doi.org/10.3390/cells8060622
[3] Joubert, N., Beck, A., Dumontet, C. and Denevault-Sabourin, C. (2020) Antibody-drug Conjugates: The Last Decade. Pharmaceuticals, 13, Article No. 245.
https://doi.org/10.3390/ph13090245
[4] Gennigens, C., Jerusalem, G., Lapaille, L., De Cuypere, M., Streel, S., Kridelka, F., et al. (2022) Recurrent or Primary Metastatic Cervical Cancer: Current and Future Treatments. ESMO Open, 7, Article ID: 100579.
https://doi.org/10.1016/j.esmoop.2022.100579
[5] 张巧云. Oba01对吉非替尼耐药NSCLC细胞的杀伤作用[D]: [硕士学位论文]. 咸宁: 湖北科技学院, 2023.
[6] Strebhardt, K. and Ullrich, A. (2008) Paul Ehrlich’s Magic Bullet Concept: 100 Years of Progress. Nature Reviews Cancer, 8, 473-480.
https://doi.org/10.1038/nrc2394
[7] Hasan, M., Alam, S. and Poddar, S.K. (2019) Antibody-Drug Conjugates: A Review on the Epitome of Targeted Anti-Cancer Therapy. Current Clinical Pharmacology, 13, 236-251.
https://doi.org/10.2174/1574884712666180802095521
[8] Xu, S. (2015) Internalization, Trafficking, Intracellular Processing and Actions of Antibody-Drug Conjugates. Pharmaceutical Research, 32, 3577-3583.
https://doi.org/10.1007/s11095-015-1729-8
[9] Staudacher, A.H. and Brown, M.P. (2017) Antibody Drug Conjugates and Bystander Killing: Is Antigen-Dependent Internalisation Required? British Journal of Cancer, 117, 1736-1742.
https://doi.org/10.1038/bjc.2017.367
[10] Junutula, J.R., Bhakta, S., Raab, H., Ervin, K.E., Eigenbrot, C., Vandlen, R., et al. (2008) Rapid Identification of Reactive Cysteine Residues for Site-Specific Labeling of Antibody-Fabs. Journal of Immunological Methods, 332, 41-52.
https://doi.org/10.1016/j.jim.2007.12.011
[11] Junutula, J.R., Raab, H., Clark, S., Bhakta, S., Leipold, D.D., Weir, S., et al. (2008) Site-Specific Conjugation of a Cytotoxic Drug to an Antibody Improves the Therapeutic Index. Nature Biotechnology, 26, 925-932.
https://doi.org/10.1038/nbt.1480
[12] Rabuka, D., Rush, J.S., deHart, G.W., Wu, P. and Bertozzi, C.R. (2012) Site-Specific Chemical Protein Conjugation Using Genetically Encoded Aldehyde Tags. Nature Protocols, 7, 1052-1067.
https://doi.org/10.1038/nprot.2012.045
[13] Sunbul, M. and Yin, J. (2009) Site Specific Protein Labeling by Enzymatic Posttranslational Modification. Organic & Biomolecular Chemistry, 7, Article No. 3361.
https://doi.org/10.1039/b908687k
[14] Gauzy-Lazo, L., Sassoon, I. and Brun, M. (2020) Advances in Antibody-Drug Conjugate Design: Current Clinical Landscape and Future Innovations. SLAS Discovery, 25, 843-868.
https://doi.org/10.1177/2472555220912955
[15] Kondrashov, A., Sapkota, S., Sharma, A., Riano, I., Kurzrock, R. and Adashek, J.J. (2023) Antibody-Drug Conjugates in Solid Tumor Oncology: An Effectiveness Payday with a Targeted Payload. Pharmaceutics, 15, Article No. 2160.
https://doi.org/10.3390/pharmaceutics15082160
[16] Tiller, K.E. and Tessier, P.M. (2015) Advances in Antibody Design. Annual Review of Biomedical Engineering, 17, 191-216.
https://doi.org/10.1146/annurev-bioeng-071114-040733
[17] Beck, A., Goetsch, L., Dumontet, C. and Corvaïa, N. (2017) Strategies and Challenges for the Next Generation of Antibody-drug Conjugates. Nature Reviews Drug Discovery, 16, 315-337.
https://doi.org/10.1038/nrd.2016.268
[18] Chen, H., Lin, Z., Arnst, K., Miller, D. and Li, W. (2017) Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy. Molecules, 22, Article No. 1281.
https://doi.org/10.3390/molecules22081281
[19] Pahl, A., Lutz, C. and Hechler, T. (2018) Amanitins and Their Development as a Payload for Antibody-Drug Conjugates. Drug Discovery Today: Technologies, 30, 85-89.
https://doi.org/10.1016/j.ddtec.2018.08.005
[20] Drago, J.Z., Modi, S. and Chandarlapaty, S. (2021) Unlocking the Potential of Antibody-Drug Conjugates for Cancer Therapy. Nature Reviews Clinical Oncology, 18, 327-344.
https://doi.org/10.1038/s41571-021-00470-8
[21] Fu, Z., Li, S., Han, S., Shi, C. and Zhang, Y. (2022) Antibody Drug Conjugate: The “Biological Missile” for Targeted Cancer Therapy. Signal Transduction and Targeted Therapy, 7, Article No. 93.
https://doi.org/10.1038/s41392-022-00947-7
[22] Hamblett, K.J., Senter, P.D., Chace, D.F., Sun, M.M.C., Lenox, J., Cerveny, C.G., et al. (2004) Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate. Clinical Cancer Research, 10, 7063-7070.
https://doi.org/10.1158/1078-0432.ccr-04-0789
[23] Jain, N., Smith, S.W., Ghone, S. and Tomczuk, B. (2015) Current ADC Linker Chemistry. Pharmaceutical Research, 32, 3526-3540.
https://doi.org/10.1007/s11095-015-1657-7
[24] Sheyi, R., de la Torre, B.G. and Albericio, F. (2022) Linkers: An Assurance for Controlled Delivery of Antibody-Drug Conjugate. Pharmaceutics, 14, Article No. 396.
https://doi.org/10.3390/pharmaceutics14020396
[25] Kovtun, Y.V., Audette, C.A., Ye, Y., Xie, H., Ruberti, M.F., Phinney, S.J., et al. (2006) Antibody-Drug Conjugates Designed to Eradicate Tumors with Homogeneous and Heterogeneous Expression of the Target Antigen. Cancer Research, 66, 3214-3221.
https://doi.org/10.1158/0008-5472.can-05-3973
[26] Polson, A.G., Calemine-Fenaux, J., Chan, P., Chang, W., Christensen, E., Clark, S., et al. (2009) Antibody-Drug Conjugates for the Treatment of Non-Hodgkin’s Lymphoma: Target and Linker-Drug Selection. Cancer Research, 69, 2358-2364.
https://doi.org/10.1158/0008-5472.can-08-2250
[27] McCombs, J.R. and Owen, S.C. (2015) Antibody Drug Conjugates: Design and Selection of Linker, Payload and Conjugation Chemistry. The AAPS Journal, 17, 339-351.
https://doi.org/10.1208/s12248-014-9710-8
[28] Jenkins, D. (2007) Histopathology and Cytopathology of Cervical Cancer. Disease Markers, 23, 199-212.
https://doi.org/10.1155/2007/874795
[29] Zhang, Y. (2024) The Effects of PIK3CA Mutations on Cervical Cancer. E3S Web of Conferences, 553, Article No. 05025.
https://doi.org/10.1051/e3sconf/202455305025
[30] Pal, A. and Kundu, R. (2020) Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy. Frontiers in Microbiology, 10, Article No. 3116.
https://doi.org/10.3389/fmicb.2019.03116
[31] Knoff, J., Yang, B., Hung, C. and Wu, T. (2013) Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis. Current Obstetrics and Gynecology Reports, 3, 18-32.
https://doi.org/10.1007/s13669-013-0068-1
[32] Magnus, N., Garnier, D., Meehan, B., McGraw, S., Lee, T.H., Caron, M., et al. (2014) Tissue Factor Expression Provokes Escape from Tumor Dormancy and Leads to Genomic Alterations. Proceedings of the National Academy of Sciences, 111, 3544-3549.
https://doi.org/10.1073/pnas.1314118111
[33] Alley, S.C., Harris, J.R., Cao, A., Heuvel, E.G.d., Velayudhan, J., Satijn, D., et al. (2019) Abstract 221: Tisotumab Vedotin Induces Anti-Tumor Activity through MMAE-Mediated, Fc-Mediated, and Fab-Mediated Effector Functions in Vitro. Cancer Research, 79, 221-221.
https://doi.org/10.1158/1538-7445.am2019-221
[34] Zhao, X., Cheng, C., Gou, J., Yi, T., Qian, Y., Du, X., et al. (2018) Expression of Tissue Factor in Human Cervical Carcinoma Tissue. Experimental and Therapeutic Medicine, 16, 4075-4081.
https://doi.org/10.3892/etm.2018.6723
[35] Cocco, E., Varughese, J., Buza, N., Bellone, S., Glasgow, M., Bellone, M., et al. (2011) Expression of Tissue Factor in Adenocarcinoma and Squamous Cell Carcinoma of the Uterine Cervix: Implications for Immunotherapy with Hi-Con1, a Factor VII-Iggfcchimeric Protein Targeting Tissue Factor. BMC Cancer, 11, Article No. 263.
https://doi.org/10.1186/1471-2407-11-263
[36] Bogani, G., Coleman, R.L., Vergote, I., Raspagliesi, F., Lorusso, D. and Monk, B.J. (2023) Tisotumab Vedotin in Recurrent or Metastatic Cervical Cancer. Current Problems in Cancer, 47, Article ID: 100952.
https://doi.org/10.1016/j.currproblcancer.2023.100952
[37] Breij, E.C.W., de Goeij, B.E.C.G., Verploegen, S., Schuurhuis, D.H., Amirkhosravi, A., Francis, J., et al. (2014) An Antibody-Drug Conjugate That Targets Tissue Factor Exhibits Potent Therapeutic Activity against a Broad Range of Solid Tumors. Cancer Research, 74, 1214-1226.
https://doi.org/10.1158/0008-5472.can-13-2440
[38] Tong, J.T.W., Harris, P.W.R., Brimble, M.A. and Kavianinia, I. (2021) An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules, 26, Article No. 5847.
https://doi.org/10.3390/molecules26195847
[39] Coleman, R.L., Lorusso, D., Gennigens, C., González-Martín, A., Randall, L., Cibula, D., et al. (2021) Efficacy and Safety of Tisotumab Vedotin in Previously Treated Recurrent or Metastatic Cervical Cancer (Innovatv 204/gog-3023/engot-Cx6): A Multicentre, Open-Label, Single-Arm, Phase 2 Study. The Lancet Oncology, 22, 609-619.
https://doi.org/10.1016/s1470-2045(21)00056-5
[40] Vergote, I.B., Monk, B.J., O’Cearbhaill, R.E., Westermann, A.M., Banerjee, S., Collins, D.C., et al. (2021) 723MO Tisotumab Vedotin (TV) + Carboplatin (Carbo) in First-Line (1L) or + Pembrolizumab (Pembro) in Previously Treated (2L/3L) Recurrent or Metastatic Cervical Cancer (r/mcc): Interim Results of Engot-Cx8/gog-3024/innovatv 205 Study. Annals of Oncology, 32, S726-S727.
https://doi.org/10.1016/j.annonc.2021.08.1166
[41] Vergote, I., González-Martín, A., Fujiwara, K., Kalbacher, E., Bagaméri, A., Ghamande, S., et al. (2024) Tisotumab Vedotin as Second-or Third-Line Therapy for Recurrent Cervical Cancer. New England Journal of Medicine, 391, 44-55.
https://doi.org/10.1056/nejmoa2313811
[42] Heitz, N., Greer, S.C. and Halford, Z. (2022) A Review of Tisotumab Vedotin-TFTV in Recurrent or Metastatic Cervical Cancer. Annals of Pharmacotherapy, 57, 585-596.
https://doi.org/10.1177/10600280221118370
[43] Citri, A. and Yarden, Y. (2006) EGF-ERBB Signalling: Towards the Systems Level. Nature Reviews Molecular Cell Biology, 7, 505-516.
https://doi.org/10.1038/nrm1962
[44] Morrison, C., Zanagnolo, V., Ramirez, N., Cohn, D.E., Kelbick, N., Copeland, L., et al. (2006) HER-2 Is an Independent Prognostic Factor in Endometrial Cancer: Association with Outcome in a Large Cohort of Surgically Staged Patients. Journal of Clinical Oncology, 24, 2376-2385.
https://doi.org/10.1200/jco.2005.03.4827
[45] Luo, H., Xu, X., Ye, M., Sheng, B. and Zhu, X. (2018) The Prognostic Value of HER2 in Ovarian Cancer: A Meta-Analysis of Observational Studies. PLOS ONE, 13, e0191972.
https://doi.org/10.1371/journal.pone.0191972
[46] Diver, E.J., Foster, R., Rueda, B.R. and Growdon, W.B. (2015) The Therapeutic Challenge of Targeting HER2 in Endometrial Cancer. The Oncologist, 20, 1058-1068.
https://doi.org/10.1634/theoncologist.2015-0149
[47] Tuefferd, M., Couturier, J., Penault-Llorca, F., Vincent-Salomon, A., Broët, P., Guastalla, J., et al. (2007) HER2 Status in Ovarian Carcinomas: A Multicenter GINECO Study of 320 Patients. PLOS ONE, 2, e1138.
https://doi.org/10.1371/journal.pone.0001138
[48] 齐丽敏, 孙波, 张学玲, 等. hTERC、HER-2和c-myc基因在宫颈异常细胞中的表达及意义[J]. 实用医学杂志, 2015(18): 3021-3023.
[49] Chavez-Blanco, A., Perez-Sanchez, V., Gonzalez-Fierro, A., Vela-Chavez, T., Candelaria, M., Cetina, L., et al. (2004) HER2 Expression in Cervical Cancer as a Potential Therapeutic Target. BMC Cancer, 4, Article No. 59.
https://doi.org/10.1186/1471-2407-4-59
[50] Fortman, D., Issa, R., Stanbery, L., Albrethsen, M., Nemunaitis, J. and Kasunic, T. (2020) Her2-Positive Metastatic Cervical Cancer Responsive to First and Second-Line Treatment: A Case Report. Gynecologic Oncology Reports, 31, Article ID: 100520.
https://doi.org/10.1016/j.gore.2019.100520
[51] Nakada, T., Sugihara, K., Jikoh, T., Abe, Y. and Agatsuma, T. (2019) The Latest Research and Development into the Antibody-Drug Conjugate, [fam-] Trastuzumab Deruxtecan (ds-8201a), for HER2 Cancer Therapy. Chemical and Pharmaceutical Bulletin, 67, 173-185.
https://doi.org/10.1248/cpb.c18-00744
[52] Modi, S., Jacot, W., Yamashita, T., Sohn, J., Vidal, M., Tokunaga, E., et al. (2022) Trastuzumab Deruxtecan in Previously Treated Her2-Low Advanced Breast Cancer. New England Journal of Medicine, 387, 9-20.
https://doi.org/10.1056/nejmoa2203690
[53] Andrikopoulou, A., Zografos, E., Liontos, M., Koutsoukos, K., Dimopoulos, M. and Zagouri, F. (2021) Trastuzumab Deruxtecan (ds-8201a): The Latest Research and Advances in Breast Cancer. Clinical Breast Cancer, 21, e212-e219.
https://doi.org/10.1016/j.clbc.2020.08.006
[54] Ogitani, Y., Aida, T., Hagihara, K., Yamaguchi, J., Ishii, C., Harada, N., et al. (2016) Ds-8201a, a Novel Her2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-dm1. Clinical Cancer Research, 22, 5097-5108.
https://doi.org/10.1158/1078-0432.ccr-15-2822
[55] Ogitani, Y., Hagihara, K., Oitate, M., Naito, H. and Agatsuma, T. (2016) Bystander Killing Effect of ds‐8201a, a Novel Anti‐human Epidermal Growth Factor Receptor 2 Antibody-Drug Conjugate, in Tumors with Human Epidermal Growth Factor Receptor 2 Heterogeneity. Cancer Science, 107, 1039-1046.
https://doi.org/10.1111/cas.12966
[56] Takegawa, N., Tsurutani, J., Kawakami, H., Yonesaka, K., Kato, R., Haratani, K., et al. (2019) [fam‐] Trastuzumab Deruxtecan, Antitumor Activity Is Dependent on HER2 Expression Level Rather than on her2 Amplification. International Journal of Cancer, 145, 3414-3424.
https://doi.org/10.1002/ijc.32408
[57] Tsurutani, J., Iwata, H., Krop, I., Jänne, P.A., Doi, T., Takahashi, S., et al. (2020) Targeting HER2 with Trastuzumab Deruxtecan: A Dose-Expansion, Phase I Study in Multiple Advanced Solid Tumors. Cancer Discovery, 10, 688-701.
https://doi.org/10.1158/2159-8290.cd-19-1014
[58] Meric-Bernstam, F., Makker, V., Oaknin, A., Oh, D., Banerjee, S., González-Martín, A., et al. (2024) Efficacy and Safety of Trastuzumab Deruxtecan in Patients with Her2-Expressing Solid Tumors: Primary Results from the Destiny-Pantumor02 Phase II Trial. Journal of Clinical Oncology, 42, 47-58.
https://doi.org/10.1200/jco.23.02005
[59] Mosele, M.F., Lusque, A., Dieras, V., Deluche, E., Ducoulombier, A., Pistilli, B., et al. (2022) LBA1 Unraveling the Mechanism of Action and Resistance to Trastuzumab Deruxtecan (t-Dxd): Biomarker Analyses from Patients from DAISY Trial. Annals of Oncology, 33, S123.
https://doi.org/10.1016/j.annonc.2022.03.277
[60] Yu, J., Fang, T., Yun, C., Liu, X. and Cai, X. (2022) Antibody-Drug Conjugates Targeting the Human Epidermal Growth Factor Receptor Family in Cancers. Frontiers in Molecular Biosciences, 9, Article ID: 847835.
https://doi.org/10.3389/fmolb.2022.847835
[61] Hu, X., Zhang, J., Liu, R., Gao, S., Wu, J., Wang, Y., et al. (2022) Updated Results and Biomarker Analyses from the Phase I Trial of A166 in Patients with Her2-Expressing Locally Advanced or Metastatic Solid Tumors. Journal of Clinical Oncology, 40, 1037-1037.
https://doi.org/10.1200/jco.2022.40.16_suppl.1037
[62] Li, H., Yu, C., Jiang, J., Huang, C., Yao, X., Xu, Q., et al. (2016) An Anti-Her2 Antibody Conjugated with Monomethyl Auristatin E Is Highly Effective in Her2-Positive Human Gastric Cancer. Cancer Biology & Therapy, 17, 346-354.
https://doi.org/10.1080/15384047.2016.1139248
[63] Xu, Y., Wang, Y., Gong, J., Zhang, X., Peng, Z., Sheng, X., et al. (2021) Phase I Study of the Recombinant Humanized Anti-Her2 Monoclonal Antibody-mmae Conjugate RC48-ADC in Patients with Her2-Positive Advanced Solid Tumors. Gastric Cancer, 24, 913-925.
https://doi.org/10.1007/s10120-021-01168-7
[64] Zaman, S., Jadid, H., Denson, A.C. and Gray, J.E. (2019) Targeting Trop-2 in Solid Tumors: Future Prospects. OncoTargets and Therapy, 12, 1781-1790.
https://doi.org/10.2147/ott.s162447
[65] Starodub, A.N., Ocean, A.J., Shah, M.A., Guarino, M.J., Picozzi, V.J., Vahdat, L.T., et al. (2015) First-in-Human Trial of a Novel Anti-Trop-2 Antibody-Sn-38 Conjugate, Sacituzumab Govitecan, for the Treatment of Diverse Metastatic Solid Tumors. Clinical Cancer Research, 21, 3870-3878.
https://doi.org/10.1158/1078-0432.ccr-14-3321
[66] Syed, Y.Y. (2020) Sacituzumab Govitecan: First Approval. Drugs, 80, 1019-1025.
https://doi.org/10.1007/s40265-020-01337-5
[67] Zhai, C., Cui, Y., Guo, L., Chen, C., Song, Y., Zhong, J., et al. (2024) Progress in the Study of Antibody-Drug Conjugates for the Treatment of Cervical Cancer. Frontiers in Oncology, 14, Article ID: 1395784.
https://doi.org/10.3389/fonc.2024.1395784
[68] Samanta, D. and Almo, S.C. (2014) Nectin Family of Cell-Adhesion Molecules: Structural and Molecular Aspects of Function and Specificity. Cellular and Molecular Life Sciences, 72, 645-658.
https://doi.org/10.1007/s00018-014-1763-4
[69] Bouleftour, W., Guillot, A. and Magne, N. (2022) The Anti-Nectin 4: A Promising Tumor Cells Target. a Systematic Review. Molecular Cancer Therapeutics, 21, 493-501.
https://doi.org/10.1158/1535-7163.mct-21-0846
[70] Zhang, J., Liu, R., Gao, S., Li, X., Chen, J., Yao, X., et al. (2023) 659MO Preliminary Results from a Phase I/II Study of 9MW2821, an Antibody-Drug Conjugate Targeting Nectin-4, in Patients with Advanced Solid Tumors. Annals of Oncology, 34, S464.
https://doi.org/10.1016/j.annonc.2023.09.1845
[71] Yan, P., Dong, Y., Zhang, F., Zhen, T., Liang, J., Shi, H., et al. (2024) Claudin18.2 Expression and Its Clinicopathological Feature in Adenocarcinoma from Various Parts. Journal of Clinical Pathology.
https://doi.org/10.1136/jcp-2023-209268
[72] Lund, M.E., Campbell, D.H. and Walsh, B.J. (2020) The Role of Glypican-1 in the Tumour Microenvironment. In: Advances in Experimental Medicine and Biology, Springer International Publishing, 163-176.
https://doi.org/10.1007/978-3-030-40146-7_8
[73] Harada, E., Serada, S., Fujimoto, M., Takahashi, Y., Takahashi, T., Hara, H., et al. (2017) Glypican-1 Targeted Antibody-Based Therapy Induces Preclinical Antitumor Activity against Esophageal Squamous Cell Carcinoma. Oncotarget, 8, 24741-24752.
https://doi.org/10.18632/oncotarget.15799
[74] Matsuda, K., Maruyama, H., Guo, F., et al. (2001) Glypican-1 Is Overexpressed in Human Breast Cancer and Modulates the Mitogenic Effects of Multiple Heparin-Binding Growth Factors in Breast Cancer Cells. Cancer Research, 61, 5562-5569.
[75] Qiao, D., Meyer, K., Mundhenke, C., Drew, S.A. and Friedl, A. (2003) Heparan Sulfate Proteoglycans as Regulators of Fibroblast Growth Factor-2 Signaling in Brain Endothelial Cells. Journal of Biological Chemistry, 278, 16045-16053.
https://doi.org/10.1074/jbc.m211259200
[76] Kleeff, J., Ishiwata, T., Kumbasar, A., Friess, H., Büchler, M.W., Lander, A.D., et al. (1998) The Cell-Surface Heparan Sulfate Proteoglycan Glypican-1 Regulates Growth Factor Action in Pancreatic Carcinoma Cells and Is Overexpressed in Human Pancreatic Cancer. Journal of Clinical Investigation, 102, 1662-1673.
https://doi.org/10.1172/jci4105
[77] Meng, Y., Chu, T., Lin, S., Wu, P., Zhi, W., Peng, T., et al. (2021) Clinicopathological Characteristics and Prognosis of Cervical Cancer with Different Histological Types: A Population-Based Cohort Study. Gynecologic Oncology, 163, 545-551.
https://doi.org/10.1016/j.ygyno.2021.10.007
[78] Matsuzaki, S., Serada, S., Hiramatsu, K., Nojima, S., Matsuzaki, S., Ueda, Y., et al. (2017) Anti‐Glypican‐1 Antibody‐drug Conjugate Exhibits Potent Preclinical Antitumor Activity against Glypican‐1 Positive Uterine Cervical Cancer. International Journal of Cancer, 142, 1056-1066.
https://doi.org/10.1002/ijc.31124
[79] García-Alonso, S., Ocaña, A. and Pandiella, A. (2018) Resistance to Antibody-Drug Conjugates. Cancer Research, 78, 2159-2165.
https://doi.org/10.1158/0008-5472.can-17-3671
[80] Loganzo, F., Sung, M. and Gerber, H. (2016) Mechanisms of Resistance to Antibody-Drug Conjugates. Molecular Cancer Therapeutics, 15, 2825-2834.
https://doi.org/10.1158/1535-7163.mct-16-0408
[81] Collins, D., Bossenmaier, B., Kollmorgen, G. and Niederfellner, G. (2019) Acquired Resistance to Antibody-Drug Conjugates. Cancers, 11, Article No. 394.
https://doi.org/10.3390/cancers11030394
[82] Khoury, R., Saleh, K., Khalife, N., Saleh, M., Chahine, C., Ibrahim, R., et al. (2023) Mechanisms of Resistance to Antibody-Drug Conjugates. International Journal of Molecular Sciences, 24, Article No. 9674.
https://doi.org/10.3390/ijms24119674
[83] Chen, Y., Xu, Y., Shao, Z. and Yu, K. (2022) Resistance to Antibody‐Drug Conjugates in Breast Cancer: Mechanisms and Solutions. Cancer Communications, 43, 297-337.
https://doi.org/10.1002/cac2.12387
[84] Kim, E.G. and Kim, K.M. (2015) Strategies and Advancement in Antibody-Drug Conjugate Optimization for Targeted Cancer Therapeutics. Biomolecules & Therapeutics, 23, 493-509.
https://doi.org/10.4062/biomolther.2015.116
[85] Dal Corso, A., Gébleux, R., Murer, P., Soltermann, A. and Neri, D. (2017) A Non-Internalizing Antibody-Drug Conjugate Based on an Anthracycline Payload Displays Potent Therapeutic Activity in Vivo. Journal of Controlled Release, 264, 211-218.
https://doi.org/10.1016/j.jconrel.2017.08.040
[86] Liu, R., Wang, R.E. and Wang, F. (2016) Antibody-Drug Conjugates for Non-Oncological Indications. Expert Opinion on Biological Therapy, 16, 591-593.
https://doi.org/10.1517/14712598.2016.1161753
[87] Chu, Y. and Polson, A. (2013) Antibody-Drug Conjugates for the Treatment of B-Cell Non-Hodgkin’s Lymphoma and Leukemia. Future Oncology, 9, 355-368.
https://doi.org/10.2217/fon.12.189