[1]
|
曹林, 佘光辉, 代劲松, 等. 激光雷达技术估测森林生物量的研究现状及展望[J]. 南京林业大学学报, 2013, 37(3): 163-169.
|
[2]
|
易静, 马开森, 向建平, 等. 点云切片结合聚类算法的TLS单木探测方法研究[J]. 南京林业大学学报(自然科学版), 2024, 48(4): 113-122.
|
[3]
|
刘开红, 汪琴. LiDAR与传统测绘在森林资源补充调查中的应用对比分析[J]. 江西测绘, 2024(4): 16-19.
|
[4]
|
Kuma, H., Fukuoka, H. and Komatsu, M. (2020) A Quantitative Analysis of Mine Mills by 3D Laser Scanner. Materials Science Forum, 983, 73-80. https://doi.org/10.4028/www.scientific.net/msf.983.73
|
[5]
|
Xu, D., Wang, H., Xu, W., Luan, Z. and Xu, X. (2021) Lidar Applications to Estimate Forest Biomass at Individual Tree Scale: Opportunities, Challenges and Future Perspectives. Forests, 12, Article 550. https://doi.org/10.3390/f12050550
|
[6]
|
Chen, M., Xiao, L., Jin, Z., Pan, J., Mu, F. and Tang, F. (2023) Registration of Terrestrial Laser Scanning Data in Forest Areas Using Smartphone Positioning and Orientation Data. Remote Sensing Letters, 14, 381-391. https://doi.org/10.1080/2150704x.2023.2206974
|
[7]
|
李响, 甄贞, 赵颖慧. 基于局域最大值法单木位置探测的适宜模型研究[J]. 北京林业大学学报, 2015, 37(3): 27-33.
|
[8]
|
Yang, J., Kang, Z., Cheng, S., Yang, Z. and Akwensi, P.H. (2020) An Individual Tree Segmentation Method Based on Watershed Algorithm and Three-Dimensional Spatial Distribution Analysis from Airborne Lidar Point Clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1055-1067. https://doi.org/10.1109/jstars.2020.2979369
|
[9]
|
Wang, D., Hollaus, M., Puttonen, E. and Pfeifer, N. (2016) Automatic and Self-Adaptive Stem Reconstruction in Landslide-Affected Forests. Remote Sensing, 8,Article 974. https://doi.org/10.3390/rs8120974
|
[10]
|
Chen, M., Wan, Y., Wang, M. and Xu, J. (2018) Automatic Stem Detection in Terrestrial Laser Scanning Data with Distance-Adaptive Search Radius. IEEE Transactions on Geoscience and Remote Sensing, 56, 2968-2979. https://doi.org/10.1109/tgrs.2017.2787782
|
[11]
|
Liang, X., Litkey, P., Hyyppa, J., Kaartinen, H., Vastaranta, M. and Holopainen, M. (2012) Automatic Stem Mapping Using Single-Scan Terrestrial Laser Scanning. IEEE Transactions on Geoscience and Remote Sensing, 50, 661-670. https://doi.org/10.1109/tgrs.2011.2161613
|
[12]
|
Chen, M., Liu, X., Pan, J., Mu, F. and Zhao, L. (2023) Stem Detection from Terrestrial Laser Scanning Data with Features Selected via Stem-Based Evaluation. Forests, 14, Article 2035. https://doi.org/10.3390/f14102035
|
[13]
|
Fan, X., Yang, X., Ye, Q. and Yang, Y. (2018) A Discriminative Dynamic Framework for Facial Expression Recognition in Video Sequences. Journal of Visual Communication and Image Representation, 56, 182-187. https://doi.org/10.1016/j.jvcir.2018.09.011
|
[14]
|
Qi, C.R., Su, H., Mo, K., et al. (2017) PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 21-26 July 2017, 77-85.
|
[15]
|
Qi, C.R., Yi, L., Su, H., et al. (2017) PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, 4-9 December 2017, 5105-5114.
|
[16]
|
Xi, Z., Hopkinson, C., Rood, S.B. and Peddle, D.R. (2020) See the Forest and the Trees: Effective Machine and Deep Learning Algorithms for Wood Filtering and Tree Species Classification from Terrestrial Laser Scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 168, 1-16. https://doi.org/10.1016/j.isprsjprs.2020.08.001
|
[17]
|
Wang, J., Chen, X., Cao, L., An, F., Chen, B., Xue, L., et al. (2019) Individual Rubber Tree Segmentation Based on Ground-Based Lidar Data and Faster R-CNN of Deep Learning. Forests, 10, Article 793. https://doi.org/10.3390/f10090793
|
[18]
|
Chen, X., Jiang, K., Zhu, Y., Wang, X. and Yun, T. (2021) Individual Tree Crown Segmentation Directly from Uav-Borne Lidar Data Using the PointNet of Deep Learning. Forests, 12, Article 131. https://doi.org/10.3390/f12020131
|
[19]
|
Windrim, L. and Bryson, M. (2020) Detection, Segmentation, and Model Fitting of Individual Tree Stems from Airborne Laser Scanning of Forests Using Deep Learning. Remote Sensing, 12, Article 1469. https://doi.org/10.3390/rs12091469
|
[20]
|
Liu, S., Zeng, Z., Ren, T., Li, F., Zhang, H., Yang, J., et al. (2024) Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T. and Varol, G., Eds., Computer Vision—ECCV 2024, Springer, 38-55. https://doi.org/10.1007/978-3-031-72970-6_3
|
[21]
|
Ren, T.H., Jiang, Q., Liu, S.L., Zeng, Z.Y., Liu, W.L., Gao, H., Huang, H.J., Ma, Z.Y., Jiang, X.K., Chen, Y.H., Xiong, Y.D., Zhang, H., Li, F., Tang, P.J., Yu, K. and Zhang, L. (2024) Grounding DINO 1. 5: Advance the “Edge” of Open-Set Object Detection. arXiv: 2405.10300.
|
[22]
|
Xu, H., Xie, S.N., Ellen Tan, X.Q., et al. (2023) Emystifying CLIP Data. arXiv: 2309.16671.
|
[23]
|
孙兴, 蔡肖红, 李明, 等. 视觉大模型SAM在医学图像分割中的应用综述[J]. 计算机工程与应用, 2024, 60(17): 1-16.
|
[24]
|
Chang, L., Fan, H., Zhu, N. and Dong, Z. (2022) A Two-Stage Approach for Individual Tree Segmentation from TLS Point Clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 8682-8693. https://doi.org/10.1109/jstars.2022.3212445
|
[25]
|
肖龙. 基于深度学习的森林地面点云分类与单木分割研究[D]: [硕士学位论文]. 重庆: 重庆交通大学, 2024.
|
[26]
|
Xiao, L., Chen, M., Zhang, X. and Liu, X. (2022. Classification of Forest Point Cloud Considering Relative Elevation and Change of Curvature Using Randla-Net. 2022 IEEE International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), Chongqing, 5-7 August 2022, 333-337. https://doi.org/10.1109/sdpc55702.2022.9915816
|
[27]
|
Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., et al. (2016) An Easy-To-Use Airborne Lidar Data Filtering Method Based on Cloth Simulation. Remote Sensing, 8, Article 501. https://doi.org/10.3390/rs8060501
|
[28]
|
Weinmann, M., Jutzi, B., Hinz, S. and Mallet, C. (2015) Semantic Point Cloud Interpretation Based on Optimal Neighborhoods, Relevant Features and Efficient Classifiers. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 286-304. https://doi.org/10.1016/j.isprsjprs.2015.01.016
|
[29]
|
Ren, T.H., et al. (2024) DINO-X: A Unified Vision Model for Open-World Object Detection and Understanding. arXiv: 2411.14347.
|
[30]
|
Devlin, J., Chang, M.W., Lee, K. and Toutanova, K. (2019) BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Proceeding of North American Chapter of the Association for Computational Linguistics, Minneapolis, 2-7 June 2019, 4171-4186.
|
[31]
|
Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L. M. and Shum, H. (2022) DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection. arXiv: 2203.03605.
|
[32]
|
Jiang, Q., Li, F., Zeng, Z., Ren, T., Liu, S. and Zhang, L. (2024) T-Rex2: Towards Generic Object Detection via Text-Visual Prompt Synergy. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T. and Varol, G., Eds., Computer Vision—ECCV 2024, Springer, 38-57. https://doi.org/10.1007/978-3-031-73414-4_3
|
[33]
|
Liang, X., Hyyppä, J., Kaartinen, H., Lehtomäki, M., Pyörälä, J., Pfeifer, N., et al. (2018) International Benchmarking of Terrestrial Laser Scanning Approaches for Forest Inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 144, 137-179. https://doi.org/10.1016/j.isprsjprs.2018.06.021
|