基于网络药理学探究黄芪–茯苓药对治疗肝纤维化的作用机制
To Explore the Mechanism of Astragalus and Poria in Treating Liver Fibrosis Based on Network Pharmacology
DOI: 10.12677/tcm.2024.1310415, PDF,    科研立项经费支持
作者: 袁 媛:广西中医药大学研究生学院,广西 南宁;刘旭东*:广西中医药大学附属瑞康医院肝病科,广西 南宁
关键词: 黄芪茯苓肝纤维化网络药理学作用机制Astragalus Tuckahoe Liver Fibrosis Network Pharmacology Action Mechanism
摘要: 目的:运用网络药理学探讨黄芪–茯苓药对治疗肝纤维化的作用机制。方法:利用中医药系统药理学数据库与分析平台(TCMSP)分别检索黄芪、茯苓的活性成分和有效作用靶点信息,分别通过DrugBank、GeneCards、OMIM和PharmGKB数据库检索肝纤维化疾病靶点,通过微生信–在线生物信息分析平台对已检索的药物作用靶点和疾病靶点取交集,利用Cytoscape 3.10.1软件构建“药物–活性成分–靶点”网络图。并通过STRING数据库对交集靶点进行蛋白互作网络(PPI)分析,计算出核心靶点相关信息,将核心靶点分析结果导入Cytoscape 3.10.1软件构建核心靶点PPI网络,利用Metascape数据库进行GO生物过程与KEGG通路富集分析,将所分析结果通过微生信–在线生物信息分析、可视化云平台制作富集分析图,研究其作用机制。结果:黄芪–茯苓药对共筛选出活性成分35种,靶点207个,肝纤维化疾病靶点共1347个,对药物和疾病靶点分别删除重复值后取交集,黄芪–茯苓药对和肝纤维化的交集靶点共103个,通过对PPI网络分析,二者核心靶点主要是TNF、AKT1、IL-6、IL1B、TP53等。GO富集分析发现,富集的生物过程主要包括细胞迁移、对激素的反应、对细菌分子的反应、对细胞因子刺激的反应、正调控磷代谢过程等方面。KEGG通路富集分析发现了癌症通路、糖尿病并发症中的AGE-RAGE信号通路、PI3K-Akt信号通路、化学致癌作用——受体激活通路等。黄芪–茯苓通过调控癌症通路、糖尿病并发症中的AGE-RAGE信号通路、PI3K-Akt信号通路等发挥治疗肝纤维化的作用。结论:该研究预测了黄芪–茯苓药对可能通过某些靶点及通路对肝纤维化起治疗作用。
Abstract: Objective: The mechanism of astragalus and poria in treating liver fibrosis was studied by network pharmacology. Method: Active ingredients and effective target information of Astragalus and poria were retrieved using TCM Systematic Pharmacology database and Analysis Platform (TCMSP), and liver fibrosis disease targets were retrieved through DrugBank, GeneCards, OMIM and PharmGKB databases, respectively. Cytoscape 3.10.1 software was used to construct the “drug-active ingredients-target” network diagram by taking the intersection of drug action targets and disease targets retrieved on the Weishengxin online biological information analysis platform. In addition, the protein interaction network (PPI) analysis of intersecting targets was carried out using STRING database to calculate the relevant information of core targets. The core target analysis results were imported into Cytoscape 3.10.1 software to build core target PPI network, and the enrichment analysis of GO biological process and KEGG pathway was carried out using Metascape database. The results were analyzed by using Weisheng online bioinformation analysis and visualization cloud platform to make enrichment analysis diagram and study its mechanism. Results: A total of 35 active ingredients with 207 targets and 1347 targets of liver fibrosis disease were screened out for Astragalus and Tuckahoe drug pairs. Overlapping values were deleted for drug and disease targets, and 103 overlapping targets of Astragalus and Tuckahoe drug pairs with liver fibrosis were selected. Through PPI network analysis, the core targets are TNF, AKT1, IL-6, IL1B, TP53 and so on. GO enrichment analysis showed that the biological processes of enrichment mainly included cell migration, response to hormones, response to bacterial molecules, response to cytokine stimulation, and positive regulation of phosphorus metabolism. KEGG pathway enrichment analysis found cancer pathway, AGE-RAGE signaling pathway in diabetes complications, PI3K-Akt signaling pathway, chemical carcinogenity-receptor activation pathway, etc. Astragalus and poria played a role in the treatment of liver fibrosis by regulating the cancer pathway, AGE-RAGE signaling pathway and PI3K-Akt signaling pathway in diabetes complications. Conclusion: This study predicted that Astragalus and poria might have therapeutic effects on liver fibrosis through some targets and pathways.
文章引用:袁媛, 刘旭东. 基于网络药理学探究黄芪–茯苓药对治疗肝纤维化的作用机制[J]. 中医学, 2024, 13(10): 2796-2809. https://doi.org/10.12677/tcm.2024.1310415

参考文献

[1] 何迪, 陈鹏, 刘锋, 等. 肝纤维化病因与机制研究进展[J]. 昆明医科大学学报, 2022, 43(11): 165-171.
[2] 杨鑫. 扶正化瘀片治疗慢性乙型肝炎肝纤维化的临床病例分析[J]. 海峡药学, 2020, 32(6): 150-151.
[3] 李志恒. 益肝化瘀汤治疗乙肝肝纤维化(肝虚血瘀型)的临床疗效观察[D]: [硕士学位论文]. 郑州: 河南中医药大学, 2022.
[4] 赵晨, 姜美玲, 邱懿雯. 肝纤维化血清学和影像学诊断的研究进展[J]. 国际消化病杂志, 2024, 44(1): 13-16, 35.
[5] Roehlen, N., Crouchet, E. and Baumert, T.F. (2020) Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 9, Article 875.
https://doi.org/10.3390/cells9040875
[6] Berumen, J., Baglieri, J., Kisseleva, T. and Mekeel, K. (2020) Liver Fibrosis: Pathophysiology and Clinical Implications. WIREs Mechanisms of Disease, 13, e1499.
https://doi.org/10.1002/wsbm.1499
[7] Li, H. (2020) Advances in Anti Hepatic Fibrotic Therapy with Traditional Chinese Medicine Herbal Formula. Journal of Ethnopharmacology, 251, Article ID: 112442.
https://doi.org/10.1016/j.jep.2019.112442
[8] 赵迪, 徐佳. 中医药诊治肝纤维化的研究进展[J]. 中西医结合肝病杂志, 2023, 33(10): 953-956.
[9] 徐列明, 刘平, 沈锡中, 等. 肝纤维化中西医结合诊疗指南(2019年版) [J]. 中国中西医结合杂志, 2019, 39(11): 1286-1295.
[10] 朱小艳, 郭谦, 苏颖. 《医碥》之气论探颐[J]. 中国中医基础医学杂志, 2023, 29(5): 723-726.
[11] 凌清儿, 张戎. 肝纤维化治疗的研究进展[J]. 现代医药卫生, 2023, 39(11): 1926-1931.
[12] Sun, M., Tan, L. and Hu, M. (2021) The Role of Autophagy in Hepatic Fibrosis. American Journal of Translational Research, 13, 5747-5757.
[13] 卓永祥. “和”理论指导下的疏肝健脾法逆转乙肝肝纤维化的疗效评价研究[D]: [硕士学位论文]. 广州: 广州中医药大学, 2021.
[14] 邵长鑫, 林欢欢, 靳晓杰, 等. 黄芪的炮制历史沿革及现代研究进展[J]. 中草药, 2023, 54(15): 5057-5074.
[15] 高满军, 赵宝清, 莫启贵, 等. 茯苓的化学成分及其调节糖脂代谢的研究进展[J]. 湖北科技学院学报(医学版), 2023, 37(3): 272-276.
[16] 路平, 史汶龙, 杨思雨, 等. 茯苓化学成分及药理作用研究进展[J]. 中成药, 2024, 46(4): 1246-1254.
[17] 李博, 耿刚. 黄芪的化学成分与药理作用研究进展[J]. 中西医结合研究, 2022, 14(4): 262-264.
[18] 邓桃妹, 彭代银, 俞年军, 等. 茯苓化学成分和药理作用研究进展及质量标志物的预测分析[J]. 中草药, 2020, 51(10): 2703-2717.
[19] 张柂儇, 刘海龙, 王瑞琼, 等. 黄芪化学成分和药理作用及Q-marker预测分析[J]. 中国新药杂志, 2023, 32(4): 410-419.
[20] Huang, X., Shen, Q., Guo, H., Li, X. and Quan, Z. (2023) Pharmacological Overview of Hederagenin and Its Derivatives. RSC Medicinal Chemistry, 14, 1858-1884.
https://doi.org/10.1039/d3md00296a
[21] Xie, W., Fang, X., li, H., Lu, X., Yang, D., Han, S., et al. (2023) Advances in the Anti-Tumor Potential of Hederagenin and Its Analogs. European Journal of Pharmacology, 959, Article ID: 176073.
https://doi.org/10.1016/j.ejphar.2023.176073
[22] Ruan, Q., Wang, H., Burke, L.J., Bridle, K.R., Li, X., Zhao, C., et al. (2020) Therapeutic Modulators of Hepatic Stellate Cells for Hepatocellular Carcinoma. International Journal of Cancer, 147, 1519-1527.
https://doi.org/10.1002/ijc.32899
[23] Wu, M., Miao, H., Fu, R., Zhang, J. and Zheng, W. (2020) Hepatic Stellate Cell: A Potential Target for Hepatocellular Carcinoma. Current Molecular Pharmacology, 13, 261-272.
https://doi.org/10.2174/1874467213666200224102820
[24] Liu, F., Zhang, W., Yang, F., Feng, T., Zhou, M., Yu, Y., et al. (2016) Interleukin-6-Stimulated Progranulin Expression Contributes to the Malignancy of Hepatocellular Carcinoma Cells by Activating mTOR Signaling. Scientific Reports, 6, Article No. 21260.
https://doi.org/10.1038/srep21260
[25] 刘娜, 林艺, 韦梅, 等. 基于网络药理学探讨龙葵-半枝莲药对治疗胃癌的作用机制[J]. 中医临床研究, 2024, 16(12): 1-6.
[26] Salomon, B.L., Leclerc, M., Tosello, J., Ronin, E., Piaggio, E. and Cohen, J.L. (2018) Tumor Necrosis Factor α and Regulatory T Cells in Oncoimmunology. Frontiers in Immunology, 9, Article 444.
https://doi.org/10.3389/fimmu.2018.00444
[27] Reyes-Gordillo, K., Shah, R., Arellanes-Robledo, J., Cheng, Y., Ibrahim, J. and Tuma, P.L. (2019) Akt1 and Akt2 Isoforms Play Distinct Roles in Regulating the Development of Inflammation and Fibrosis Associated with Alcoholic Liver Disease. Cells, 8, Article 1337.
https://doi.org/10.3390/cells8111337
[28] Wang, D., Xu, H., Fan, L., Ruan, W., Song, Q., Diao, H., et al. (2023) Hyperphosphorylation of EGFR/ERK Signaling Facilitates Long-Term Arsenite-Induced Hepatocytes Epithelial-Mesenchymal Transition and Liver Fibrosis in Sprague-Dawley Rats. Ecotoxicology and Environmental Safety, 249, Article ID: 114386.
https://doi.org/10.1016/j.ecoenv.2022.114386
[29] 魏坚. 膜筏氧化还原信号对血管紧张素Ⅱ在大鼠胸主动脉内皮功能障碍及血管重构中的影响[D]: [硕士学位论文]. 上海: 上海交通大学, 2023.
[30] Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J. and Lv, X. (2022) New Drugs for Hepatic Fibrosis. Frontiers in Pharmacology, 13, Article 874408.
https://doi.org/10.3389/fphar.2022.874408
[31] Zheng, Y., Xie, L., Yang, D., Luo, K. and Li, X. (2023) Small-molecule Natural Plants for Reversing Liver Fibrosis Based on Modulation of Hepatic Stellate Cells Activation: An Update. Phytomedicine, 113, Article ID: 154721.
https://doi.org/10.1016/j.phymed.2023.154721
[32] Xu, Y., Huang, Y., Xu, W., Zheng, X., Yi, X., Huang, L., et al. (2020) Activated Hepatic Stellate Cells (HSCs) Exert Immunosuppressive Effects in Hepatocellular Carcinoma by Producing Complement C3. OncoTargets and Therapy, 13, 1497-1505.
https://doi.org/10.2147/ott.s234920
[33] 刘露, 刘占奎, 吴雪, 等. 狼毒大戟调节AGE-RAGE信号通路对肝硬化大鼠炎症反应和纤维化的影响[J]. 中国老年学杂志, 2023, 43(15): 3800-3804.
[34] Lan, T., Chen, B., Hu, X., Cao, J., Chen, S., Ding, X., et al. (2024) Tianhuang Formula Ameliorates Liver Fibrosis by Inhibiting CCL2-CCR2 Axis and MAPK/NF-κB Signaling Pathway. Journal of Ethnopharmacology, 321, Article ID: 117516.
https://doi.org/10.1016/j.jep.2023.117516