学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
流体动力学
Vol. 1 No. 2 (June 2013)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
非定常Stokes方程的稳定化CN有限体积元格式
A Stabilized Crank-Nicolson Finite Volume Element Formulation for Non-Stationary Stokes Equation
DOI:
10.12677/IJFD.2013.12005
,
PDF
,
HTML
,
,
被引量
国家自然科学基金支持
作者:
李 宏
,
赵智慧
:内蒙古大学数学科学学院,呼和浩特;
罗振东
*
:华北电力大学数理学院,北京
关键词:
Stokes方程
;
稳定化Crank-Nicolson有限体积元格式
;
误差估计
;
Stokes Equation; Stabilized Crank-Nicolson Finite Volume Element Formulation; Error Estimate
摘要:
建立二维非定常Stokes方程的时间二阶精度的稳定化Crank-Nicolson (CN)有限体积元格式, 并给出其稳定化CN有限体积元解的误差估计。数值实验说明时间二阶精度的稳定化CN有限体积元格式比时间一阶精度格式更优越, 从而表明稳定化CN有限体积元格式对于求解非定常Stokes方程的数值解是有效可行的。
Abstract:
A stabilized Crank-Nicolson (CN) finite volume element formulation with time second-order accuracy is established for two-dimensional non-stationary Stokes equation. The error estimates of its numerical solutions are provided. Some numerical experiments are presented illustrating that the stabilized CN finite volume element formulation with time second-order accuracy is far more advantageous than that with time first-order accuracy, thus validating that the stabilized CN finite volume element formulation is feasible and efficient for finding the numerical solutions for two- dimensional non-stationary Stokes equation.
文章引用:
李宏, 赵智慧, 罗振东. 非定常Stokes方程的稳定化CN有限体积元格式[J]. 流体动力学, 2013, 1(2): 26-33.
http://dx.doi.org/10.12677/IJFD.2013.12005
参考文献
[
1
]
[1] Girault V, Raviart P A. Finite Element Methods for Navier- Stokes Equations: Theory and Algorithms [M]. Berlin Heidelberg: Springer-Verlag, 1986.
[
2
]
Heywood J G, Rannacher R. Finite element approximation of the non-stationary Navier–Stokes problem part IV: error analysis for second–order time discretization [J]. SIAM Journal on Numerical Analysis, 1990, 27(2): 353–384.
[
3
]
Brezzi F, Douglas Jr J. Stabilized mixed method for the Stokes problem [J]. Numerische Mathematik, 1988, 53: 225–235.
[
4
]
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods [M]. New York: Springer–Verlag, 1991.
[
5
]
罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.
[
6
]
Cai Z, McCormick S. On the accuracy of the finite volume element method for diffusion equations on composite grid [J]. SIAM Journal on Numerical Analysis, 1990, 27: 636–655.
[
7
]
Suli E. Convergence of finite volume schemes for Poisson's equation on no-nuniform meshes [J]. SIAM Journal on Numerical Analysis, 1991, 28 (5): 1419–1430.
[
8
]
Jones W P, Menziest K R. Analysis of the cell-centered finite volume method for the diffusion equation [J]. Journal of Computational Physics, 2000, 165: 45–68.
[
9
]
Bank R E, Rose D J. Some error estimates for the box methods[J]. SIAM Journal on Numerical Analysis, 1987, 24(4): 777–787.
[
10
]
Li R H, Chen Z Y, Wu W. Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods [M]. New York: Marcel Dekker Inc., 2000.
[
11
]
Chatzipantelidis P, Lazarrov R D, Thomee V. Error estimates for a finite volume element method for parabolic equations in convex in polygonal domains [J]. Numerical Methods for Partial Differential Equations, 2004, 20: 650–674.
[
12
]
Ye X. On the relation between finite volume and finite element methods applied to the Stokes equations [J]. Numerical Methods for Partial Differential Equations, 2001, 17: 440–453.
[
13
]
Yang M, Song H L. A post processing finite volume method for time-dependent Stokes equations [J]. Applied Numerical Mathematics, 2009, 59: 1922–1932.
[
14
]
Li J, Chen Z X. A new stabilized finite volume method for the stationary Stokes equations [J]. Adv. Comput. Math., 2009, 30: 141–152.
[
15
]
安静, 孙萍, 罗振东, 黄晓鸣. 非定常Stokes方程的稳定化全离散有限体积元格式[J]. 计算数学, 2011, 33(2): 213–224.
[
16
]
Adams R A. Sobolev Space [M]. New York: Academic Press, 1975.
[
17
]
Girault V, Raviart P A. Finite Element Methods for Navier- Stokes Equations: Theory and Algorithms [M]. Berlin Heidelberg: Springer-Verlag, 1986.
[
18
]
Heywood J G, Rannacher R. Finite element approximation of the non-stationary Navier–Stokes problem part IV: error analysis for second–order time discretization [J]. SIAM Journal on Numerical Analysis, 1990, 27(2): 353–384.
[
19
]
Brezzi F, Douglas Jr J. Stabilized mixed method for the Stokes problem [J]. Numerische Mathematik, 1988, 53: 225–235.
[
20
]
Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods [M]. New York: Springer–Verlag, 1991.
[
21
]
罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.
[
22
]
Cai Z, McCormick S. On the accuracy of the finite volume element method for diffusion equations on composite grid [J]. SIAM Journal on Numerical Analysis, 1990, 27: 636–655.
[
23
]
Suli E. Convergence of finite volume schemes for Poisson's equation on no-nuniform meshes [J]. SIAM Journal on Numerical Analysis, 1991, 28 (5): 1419–1430.
[
24
]
Jones W P, Menziest K R. Analysis of the cell-centered finite volume method for the diffusion equation [J]. Journal of Computational Physics, 2000, 165: 45–68.
[
25
]
Bank R E, Rose D J. Some error estimates for the box methods[J]. SIAM Journal on Numerical Analysis, 1987, 24(4): 777–787.
[
26
]
Li R H, Chen Z Y, Wu W. Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods [M]. New York: Marcel Dekker Inc., 2000.
[
27
]
Chatzipantelidis P, Lazarrov R D, Thomee V. Error estimates for a finite volume element method for parabolic equations in convex in polygonal domains [J]. Numerical Methods for Partial Differential Equations, 2004, 20: 650–674.
[
28
]
Ye X. On the relation between finite volume and finite element methods applied to the Stokes equations [J]. Numerical Methods for Partial Differential Equations, 2001, 17: 440–453.
[
29
]
Yang M, Song H L. A post processing finite volume method for time-dependent Stokes equations [J]. Applied Numerical Mathematics, 2009, 59: 1922–1932.
[
30
]
Li J, Chen Z X. A new stabilized finite volume method for the stationary Stokes equations [J]. Adv. Comput. Math., 2009, 30: 141–152.
[
31
]
安静, 孙萍, 罗振东, 黄晓鸣. 非定常Stokes方程的稳定化全离散有限体积元格式[J]. 计算数学, 2011, 33(2): 213–224.
[
32
]
Adams R A. Sobolev Space [M]. New York: Academic Press, 1975.
投稿
为你推荐
友情链接
科研出版社
开放图书馆