|
[1]
|
Cohen, S.N., Chang, A.C., Boyer, H.W. and Helling, R.B. (1973) Construction of biologically functional bacterial plasmids in vitro. Proceedings of the National Academy of Sciences of the United States of America, 70, 3240-3244.
http://dx.doi.org/10.1073/pnas.70.11.3240 [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
De, M.A. (2011) Biotechnological applications of recombinant sin-gle-domain antibody fragments. Microbial Cell Factories, 10, 44-58. http://dx.doi.org/10.1186/1475-2859-10-44 [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kohler, G. and Milstein, C. (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495-497. http://dx.doi.org/10.1038/256495a0 [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Smith, G.P. (1985) Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science (New York, NY), 228, 1315-1317. http://dx.doi.org/10.1126/science.4001944 [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Weiner, L.M. (2006) Fully human therapeutic monoclonal antibodies. Journal of Immunotherapy, 29, 1-9.
http://dx.doi.org/10.1097/01.cji.0000192105.24583.83 [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Skerra, A. and Pluckthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science (New York, NY), 240, 1038-1041. http://dx.doi.org/10.1126/science.3285470 [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Songa, E.B., Bendahman, N. and Hamers, R. (1993) Naturally occurring antibodies devoid of light chains. Nature, 363, 446-448.
http://dx.doi.org/10.1038/363446a0 [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Muyldermans, S. and Lauwereys, M. (1999) Unique single-domain antigen binding fragments derived from naturally occurring camel heavy-chain antibodies. Journal of Molecular Recognition, 12, 131-140.
http://dx.doi.org/10.1002/(SICI)1099-1352(199903/04)12:2<131::AID-JMR454>3.0.CO;2-M [Google Scholar] [CrossRef]
|
|
[9]
|
Greenberg, A.S., Avila, D., Hughes, M., Hughes, A., Mckinney, E.C. and Flajnik, M.F. (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature, 374, 168-173.
http://dx.doi.org/10.1038/374168a0 [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Flajnik, M.F., Deschacht, N. and Muyldermans, S. (2011) A case of convergence: Why did a simple alternative to canonical antibodies arise in sharks and camels? Plos Biology, 9, 1-5.
http://dx.doi.org/10.1371/journal.pbio.1001120 [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kovaleva, M., Ferguson, L., Steven, J., Porter, A. and Barelle, C. (2014) Shark variable new antigen receptor biologics— A novel technology platform for therapeutic drug development. Expert Opinion on Biological Therapy, 14, 1527-1539.
http://dx.doi.org/10.1517/14712598.2014.937701 [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Goyvaerts, C., Robays, L., De Groeve, K., Raes, G., De Baetselier, P., Thielemans, K. and Breckpot, K. (2010) Targeting lentiviral vectors to dendritic cells by the nanobody display technology. Human Gene Therapy, 21, 1440-1441.
|
|
[13]
|
Nuttall, S.D., Krishnan, U.V., Hattarki, M., De Gori, R., Irving, R.A. and Hudson, P.J. (2001) Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Molecular Immunology, 38, 313-326. http://dx.doi.org/10.1016/S0161-5890(01)00057-8 [Google Scholar] [CrossRef]
|
|
[14]
|
Rahbarizadeh, F., Ahmadvand, D. and Sharifzadeh, Z. (2011) Nanobody: An old concept and new vehicle for immunotargeting. Immunological Investigations, 40, 299-338. http://dx.doi.org/10.3109/08820139.2010.542228 [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Swain, M.D., Anderson, G.P., Zabetakis, D., Bernstein, R.D., Liu, J.L., Sherwood, L.J., Hayhurst, A. and Goldman, E.R. (2010) Llama-derived single-domain antibodies for the detection of botulinum A neurotoxin. Analytical and Bioanalytical Chemistry, 398, 339-348. http://dx.doi.org/10.1007/s00216-010-3905-3 [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Smolarek, D., Hattab, C., Hassanzadeh-Ghassabeh, G., Cochet, S., Gutiérrez, C., de Brevern, A.G., et al. (2010) A recombinant dromedary antibody fragment (VHH or nanobody) directed against human Duffy antigen receptor for chemokines. Cellular and Molecular Life Sciences, 67, 3371-3387. http://dx.doi.org/10.1007/s00018-010-0387-6 [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bond, C.J., Wiesmann, C., Marsters, J.C. and Sidhu, S.S. (2005) A structure-based database of antibody variable domain diversity. Journal of Molecular Biology, 348, 699-709. http://dx.doi.org/10.1016/j.jmb.2005.02.063 [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Araste, F., Ebrahimizadeh, W., Rasooli, I., Rajabibazl, M. and Gargari, S.L.M. (2014) A novel VHH nanobody against the active site (the CA domain) of tumor-associated, carbonic anhydrase isoform IX and its usefulness for cancer diagnosis. Biotechnology Letters, 36, 21-28. http://dx.doi.org/10.1007/s10529-013-1340-1 [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Blanc, M.R., Anouassi, A., Abed, M.A., Tsikis, G., Canepa, S., Labas, V., Belghazi, M. and Bruneau, G. (2009) A one-step exclusion-binding procedure for the purification of functional heavy-chain and mammalian-type gamma- globulins from camelid sera. Biotechnology and Applied Biochemistry, 54, 207-212.
http://dx.doi.org/10.1042/BA20090208 [Google Scholar] [CrossRef]
|
|
[20]
|
Stanfield, R.L., Dooley, H., Flajnik, M.F. and Wilson, I.A. (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science, 305, 1770-1773. http://dx.doi.org/10.1126/science.1101148 [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Dooley, H. and Flajnik, M.F. (2006) Antibody repertoire development in cartilaginous fish. Developmental and Comparative Immunology, 30, 43-56. http://dx.doi.org/10.1016/j.dci.2005.06.022 [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Stanfield, R.L., Dooley, H., Flajnik, M.F. and Wilson, I.A. (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science, 305, 1770-1773. http://dx.doi.org/10.1126/science.1101148 [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Diaz, M., Stanfield, R.L., Greenberg, A.S. and Flajnik, M.F. (2002) Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): Identification of a new locus preferentially expressed in early development. Immunogenetics, 54, 501-512. http://dx.doi.org/10.1007/s00251-002-0479-z [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, J.L., Anderson, G.P., Delehanty, J.B., Baumann, R., Hayhurst, A. and Goldman, E.R. (2007) Selection of cholera toxin specific IgNAR single-domain antibodies from a naive shark library. Molecular Immunology, 44, 1775-1783.
http://dx.doi.org/10.1016/j.molimm.2006.07.299 [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shoae-Hassani, A., Mortazavi-Tabatabaei, S.A., Sharif, S., Madadi, S., Rezaei-Khaligh, H. and Verdi, J. (2013) Recombinant lambda bacteriophage displaying nanobody towards third domain of HER-2 epitope inhibits proliferation of breast carcinoma SKBR-3 cell line. Archivum Immunologiae et Therapiae Experimentalis, 61, 75-83.
http://dx.doi.org/10.1007/s00005-012-0206-x [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Schroter, C., Gunther, R., Rhiel, L., Becker, S., Toleikis, L., Doerner, A., Becker, J., Schonemann, A., Nasu, D., Neuteboom, B., Kolmar, H. and Hock, B. (2015) A generic approach to engineer antibody pH-switches using combinatorial histidine scanning libraries and yeast display. mAbs, 7, 138-151. http://dx.doi.org/10.4161/19420862.2014.985993 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Boder, E.T., Raeeszadeh-Sarmazdeh, M. and Price, J.V. (2012) Engineering antibodies by yeast display. Archives of Biochemistry and Biophysics, 526, 99-106. http://dx.doi.org/10.1016/j.abb.2012.03.009 [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Heyduk, E. and Heyduk, T. (2014) Ribosome display enhanced by next generation sequencing: A tool to identify antibody-specific peptide ligands. Analytical Biochemistry, 464, 73-82. http://dx.doi.org/10.1016/j.ab.2014.07.014 [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pan, Y.B., Mao, W.P., Liu, X.X., Xu, C., He, Z.J., Wang, W.Q. and Yan, H. (2012) Selection of single chain variable fragments specific for the human-inducible costimulator using ribosome display. Applied Biochemistry and Biotechnology, 168, 967-979. http://dx.doi.org/10.1007/s12010-012-9800-y [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Jiang, W.Z., Rosenberg, J.N., Wauchope, A.D., Tremblay, J.M., Shoemaker, C.B., Weeks, D.P. and Oyler, G.A. (2013) Generation of a phage-display library of single-domain camelid VHH antibodies directed against Chlamydomonas reinhardtii antigens, and characterization of V(H)Hs binding cell-surface antigens. Plant Journal, 76, 709-717.
http://dx.doi.org/10.1111/tpj.12316 [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Abbady, A.Q., Al-Mariri, A., Zarkawi, M., Al-Assad, A. and Muyldermans, S. (2011) Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel. Veterinary Immunology and Immunopathology, 142, 49- 56. http://dx.doi.org/10.1016/j.vetimm.2011.04.004 [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Goldman, E.R., Anderson, G.P., Liu, J.L., Delehanty, J.B., Sherwood, L.J., Osborn, L.E., Cummins, L.B. and Hayhurst, A. (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Analytical Chemistry, 78, 8245-8255. http://dx.doi.org/10.1021/ac0610053 [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Muyldermans, S. (2013) Nanobodies: Natural single-domain antibodies. Annual Review of Biochemistry, 82, 775-797.
http://dx.doi.org/10.1146/annurev-biochem-063011-092449 [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Liu, J.L., Zabetakis, D., Goldman, E.R. and Anderson, G.P. (2013) Selection and evaluation of single domain antibodies toward MS2 phage and coat protein. Molecular Immunology, 53, 118-125.
http://dx.doi.org/10.1016/j.molimm.2012.07.010 [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Goldman, E.R., Anderson, G.P., Bernstein, R.D. and Swain, M.D. (2010) Amplification of immunoassays using phage- displayed single domain antibodies. Journal of Immunological Methods, 352, 182-185.
http://dx.doi.org/10.1016/j.jim.2009.10.014 [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Behdani, M., Zeinali, S., Khanahmad, H., Karimipour, M., Asadzadeh, N., Azadmanesh, K., Khabiri, A., Schoonooghe, S., Anbouhi, M.H., Hassanzadeh-Ghassabeh, G. and Muyldermans, S. (2012) Generation and characterization of a functional nanobody against the vascular endothelial growth factor receptor-2; angiogenesis cell receptor. Molecular Immunology, 50, 35-41. http://dx.doi.org/10.1016/j.molimm.2011.11.013 [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Liu, J.L., Zabetakis, D., Brown, J.C., Anderson, G.P. and Goldman, E.R. (2014) Thermal stability and refolding capability of shark derived single domain antibodies. Molecular Immunology, 59, 194-199.
http://dx.doi.org/10.1016/j.molimm.2014.02.014 [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Liu, J.L., Anderson, G.P. and Goldman, E.R. (2007) Isolation of anti-toxin single domain antibodies from a semi-synthetic spiny dogfish shark display library. BMC Biotechnology, 7, 78-88. http://dx.doi.org/10.1186/1472-6750-7-78 [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Walper, S.A., Anderson, G.P., Lee, P.A.B., Glaven, R.H., Liu, J.L., Bernstein, R.D., Zabetakis, D., Johnson, L., Czarnecki, J.M. and Czarnecki, J.M. (2012) Rugged single domain antibody detection elements for Bacillus anthracis spores and vegetative cells. Plos One, 3, 1-10.
|
|
[40]
|
Graef, R.R., Anderson, G.P., Doyle, K.A., Zabetakis, D., Sutton, F.N., Liu, J.L., Serrano-Gonzalez, J., Goldman, E.R. and Cooper, L.A. (2011) Isolation of a highly thermal stable lama single domain antibody specific for Staphylococcus aureus enterotoxin B. BMC Biotechnology, 11, 86-96. http://dx.doi.org/10.1186/1472-6750-11-86 [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Goldman, E.R., Anderson, G.P., Zabetakis, D., Walper, S., Liu, J.L., Bernstein, R., Calm, A., Carney, J.P., O’Brien, T.W., Walker, J.L. and Garber, E.A.E. (2011) Llama-derived single domain antibodies specific for Abrus agglutinin. Toxins, 3, 1405-1419. http://dx.doi.org/10.3390/toxins3111405 [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hagihara, Y. and Saerens, D. (2014) Engineering disulfide bonds within an antibody. Biochimica et Biophysica Acta— Proteins and Proteomics, 1844, 2016-2023. http://dx.doi.org/10.1016/j.bbapap.2014.07.005 [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wolper, S.A., Battle, S.R., Lee, P.A.B., Zabetakis, D., Turner, K.B., Buckley, P.E., Calm, A.M., Welsh, H.S., Warner, C.R., Zacharko, M.A., Goldman, E.R. and Anderson, G.P. (2014) Thermostable single domain antibody-maltose binding protein fusion for Bacillus anthracis spore protein BclA detection. Analytical Biochemistry, 447, 64-73.
http://dx.doi.org/10.1016/j.ab.2013.10.031 [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Sircar, A., Sanni, K.A., Shi, J.Y. and Gray, J.J. (2011) Analysis and modeling of the variable region of camelid single- domain antibodies. Journal of Immunology, 186, 6357-6367. http://dx.doi.org/10.4049/jimmunol.1100116 [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L.G.J., Muyldermans, S., Wyns, L. and Matagne, A. (2002) Single-domain antibody fragments with high conformational stability. Protein Science, 11, 500-515. http://dx.doi.org/10.1110/ps.34602 [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dolk, E., van der Vaart, M., Hulsik, D.L., Vriend, G., de Haard, H., Spinelli, S., Cambillau, C., Frenken, L. and Verrips, T. (2005) Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Applied and Envi-ronmental Microbiology, 71, 442-450. http://dx.doi.org/10.1128/AEM.71.1.442-450.2005 [Google Scholar] [CrossRef]
|
|
[47]
|
Hussack, G., Hirama, T., Ding, W., MacKenzie, R. and Tanha, J. (2011) Engineered single-domain antibodies with high protease resistance and thermal stability. PloS ONE, 6, 1-6. http://dx.doi.org/10.1371/journal.pone.0028218 [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wesolowski, J., Alzogaray, V., Reyelt, J., Unger, M., Juarez, K., Urrutia, M., Cauerhff, A., Danquah, W., Rissiek, B., Scheuplein, F., Schwarz, N., Adriouch, S., Boyer, O., Seman, M., Licea, A., Serreze, D.V., Goldbaum, F.A., Haag, F. and Koch-Nolte, F. (2009) Single domain antibodies: Promising experimental and therapeutic tools in infection and immunity. Medical Microbiology and Immunology, 198, 157-174. http://dx.doi.org/10.1007/s00430-009-0116-7 [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Coppieters, K., Dreier, T., Silence, K., de Haard, H., Lauwereys, M., Casteels, P., Beirnaert, E., Jonckheere, H., de Wiele, C.V., Staelens, L., Hostens, J., Revets, H., Remaut, E., Elewaut, D. and Rottiers, P. (2006) Formatted anti-tumor necrosis factor alpha VHH proteins derived from camelids show superior potency and targeting to inflamed joints in a murine model of col-lagen-induced arthritis. Arthritis and Rheumatism, 54, 1856-1866.
http://dx.doi.org/10.1002/art.21827 [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Alzogaray, V., Danquah, W., Aguirre, A., Urrutia, M., Berguer, P., Vescovi, E.G., Haag, F., Koch-Nolte, F. and Goldbaum, F.A. (2011) Single-domain llama antibodies as specific intracellular inhibitors of SpvB, the actin ADP-ribosylating toxin of Salmonella typhimurium. Faseb Journal, 25, 526-534. http://dx.doi.org/10.1096/fj.10-162958 [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Li, T.F., Bourgeois, J.P., Celli, S., Glacial, F., Le Sourd, A.M., Mecheri, S., Weksler, B., Romero, I., Couraud, P.O., Rougeon, F. and Lafaye, P. (2012) Cell-penetrating anti-GFAP VHH and corresponding fluorescent fusion protein VHH-GFP spontaneously cross the blood-brain barrier and specifically recognize astrocytes: Application to brain imaging. Faseb Journal, 26, 3969-3979. http://dx.doi.org/10.1096/fj.11-201384 [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Hmila, I., Abdallah, B.A.B., Saerens, D., Benlasfar, Z., Conrath, K., El Ayeb, M., Muyldermans, S. and Bouhaouala- Zahar, B. (2008) VHH, bivalent domains and chimeric heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI’. Molecular Immunology, 45, 3847-3856. http://dx.doi.org/10.1016/j.molimm.2008.04.011 [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Anderson, G.P., Matney, R., Liu, J.L., Hayhurst, A. and Goldman, E.R. (2007) Multiplexed fluid array screening of phage displayed anti-ricin single domain antibodies for rapid assessment of specificity. Biotechniques, 43, 806-811.
http://dx.doi.org/10.2144/000112600 [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Chakravarty, R., Goel, S. and Cai, W.B. (2014) Nanobody: The “magic bullet” for molecular imaging? Theranostics, 4, 386-398. http://dx.doi.org/10.7150/thno.8006 [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Vosjan, M.J.W.D., Vercammen, J., Kolkman, J.A., Stigter-van Walsum, M., Revets, H. and van Dongen, G.A.M.S. (2012) Nanobodies targeting the hepatocyte growth factor: Potential new drugs for molecular cancer therapy. Molecular Cancer Therapeutics, 11, 1017-1025. http://dx.doi.org/10.1158/1535-7163.MCT-11-0891 [Google Scholar] [CrossRef]
|
|
[56]
|
Hernot, S., Unnikrishnan, S., Du, Z., Cosyns, B., Broisat, A., Muyldermans, S., Lahoutte, T., Klibanov, A.L. and Devoogdt, N. (2012) Nanobody-coupled microbubbles as novel molecular tracer. European Heart Journal, 33, 403-404.
http://dx.doi.org/10.1016/j.jconrel.2011.12.007 [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Huang, L., Gainkam, L.O.T., Caveliers, V., Vanhove, C., Keyaerts, M., De Baetselier, P., Bossuyt, A., Revets, H. and Lahoutte, T. (2008) SPECT imaging with 99mTc-labeled EGFR-specific nanobody for in vivo monitoring of EGFR expression. Molecular Imaging and Biology, 10, 167-175. http://dx.doi.org/10.1007/s11307-008-0133-8 [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Oliveira, S., van Dongen, G.A.M.S., Stigter-van Walsum, M., Roovers, R.C., Stam, J.C., Mali, W., van Diest, P.J. and van Bergen en Henegouwen, P.M.P. (2012) Rapid visualization of human tumor xenografts through optical imaging with a near-infrared fluorescent anti-epidermal growth factor receptor nanobody. Molecular Imaging, 11, 33-46.
|
|
[59]
|
Broisat, A., Hernot, S., Toczek, J., De Vos, J., Riou, L.M., Martin, S., Ahmadi, M., Thielens, N., Wernery, U., Caveliers, V., Muyldermans, S., Lahoutte, T., Fagret, D., Ghezzi, C. and Devoogdt, N. (2012) Nanobodies targeting mouse/ human VCAM1 for the nuclear imaging of atherosclerotic lesions. Circulation Research, 110, 927-937.
http://dx.doi.org/10.1161/CIRCRESAHA.112.265140 [Google Scholar] [CrossRef]
|
|
[60]
|
Muller, M.R., Saunders, K., Grace, C., Jin, M., Piche-Nicholas, N., Steven, J., O’Dwyer, R., Wu, L.Y., Khetemenee, L., Vugmeyster, Y., Hickling, T.P., Tchistiakova, L., Olland, S., Gill, D., Jensen, A. and Barelle, C.J. (2012) Improving the pharmacokinetic properties of biologics by fusion to an anti-HSA shark VNAR domain. mAbs, 4, 673-685.
http://dx.doi.org/10.4161/mabs.22242 [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Tang, J.C.Y., Szikra, T., Kozorovitskiy, Y., Teixiera, M., Sabatini, B.L., Roska, B. and Cepko, C.L. (2013) A nanobody-based system using fluorescent proteins as scaffolds for cell-specific gene manipulation. Cell, 154, 928-939.
http://dx.doi.org/10.1016/j.cell.2013.07.021 [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Franco, E.J., Sonneson, G.J., DeLegge, T.J., Hofstetter, H., Horn, J.R. and Hofstetter, O. (2010) Production and characterization of a genetically engineered anti-caffeine camelid antibody and its use in immunoaffinity chromatography. Journal of Chromatography B—Analytical Technologies in the Biomedical and Life Sciences, 878, 177-186.
http://dx.doi.org/10.1016/j.jchromb.2009.06.017 [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Rothbauer, U., Zolghadr, K., Tillib, S., Nowak, D., Schermelleh, L., Gahl, A., Backmann, N., Conrath, K., Muyldermans, S., Cardoso, M.C. and Leonhardt, H. (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nature Methods, 3, 887-889. http://dx.doi.org/10.1038/nmeth953 [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Hernot, S., Unnikrishnan, S., Du, Z.M., Shevchenko, T., Cosyns, B., Broisat, A., Toczek, J., Caveliers, V., Muyldermans, S., Lahoutte, T., Klibanov, A.L. and Devoogdt, N. (2012) Nanobody-coupled microbubbles as novel molecular tracer. Journal of Controlled Release, 158, 346-353. http://dx.doi.org/10.1016/j.jconrel.2011.12.007 [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Caussinus, E., Kanca, O. and Affolter, M. (2012) Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nature Structural & Molecular Biology, 19, 117-121. http://dx.doi.org/10.1038/nsmb.2180 [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Sennhauser, G. and Grutter, M.G. (2008) Chaperone-assisted crystallography with DARPins. Structure, 16, 1443-1453.
http://dx.doi.org/10.1016/j.str.2008.08.010 [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Ermolenko, D.N., Zherdev, A.V. and Dzantiev, B.B. (2004) Antibodies as specific chaperones. Biochemistry—Moscow, 69, 1233-1238. http://dx.doi.org/10.1007/s10541-005-0069-4 [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Koide, S. (2009) Engineering of recombinant crystallization chaperones. Current Opinion in Structural Biology, 19, 449-457. http://dx.doi.org/10.1016/j.sbi.2009.04.008 [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Abskharon, R., Soror, S., Giachin, G., Pardon, E., El Hassan, H., Le, N., Legname, G., Wohlkonig, A. and Steyaert, J. (2012) Nanobody-stabilize the crystal structure of full-length human PrP. Prion, 6, 115-115.
|
|
[70]
|
Van de Broek, B., Devoogdt, N., D’Hollander, A., Gijs, H.L., Jans, K., Lagae, L., Muyldermans, S., Maes, G. and Borghs, G. (2011) Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. Acs Nano, 5, 4319-4328. http://dx.doi.org/10.1021/nn1023363 [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Haselberg, R., Oliveira, S., van der Meel, R., Somsen, G.W. and de Jong, G.J. (2014) Capillary electrophoresis-based assessment of nanobody affinity and purity. Analytica Chimica Acta, 818, 1-6.
http://dx.doi.org/10.1016/j.aca.2014.01.048 [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
He, T., Wang, Y.R., Li, P.E., Zhang, Q., Lei, J.E., Zhang, Z.E., Ding, X.X., Zhou, H.Y. and Zhang, W. (2014) Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol. Analytical Chemistry, 86, 8873-8880. http://dx.doi.org/10.1021/ac502390c [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Anderson, G.P., Glaven, R.H., Algar, W.R., Susumu, K., Stewart, M.H., Medintz, I.L. and Goldman, E.R. (2013) Single domain antibody-quantum dot conjugates for ricin detection by both fluoroimmunoassay and surface plasmon resonance. Analytica Chimica Acta, 786, 132-138. http://dx.doi.org/10.1016/j.aca.2013.05.010 [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Alvarez-Rueda, N., Behar, G., Ferre, V., Pugniere, M., Roquet, F., Gastinel, L., Jacquot, C., Aubry, J., Baty, D., Barbet, J. and Birkle, S. (2007) Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Molecular Immunology, 44, 1680-1690. http://dx.doi.org/10.1016/j.molimm.2006.08.007 [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Doyle, P.J., Arbabi-Ghahroudi, M., Gaudette, N., Furzer, G., Savard, M.E., Gleddie, S., McLean, M.D., Mackenzie, C.R. and Hall, J.C. (2008) Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Molecular Immunology, 45, 3703-3713. http://dx.doi.org/10.1016/j.molimm.2008.06.005 [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Anderson, G.P. and Goldman, E.R. (2008) TNT detection using llama antibodies and a two-step competitive fluid array immunoassay. Journal of Immunological Methods, 339, 47-54. http://dx.doi.org/10.1016/j.jim.2008.08.001 [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Peyvandi, F., Breems, D.A., Knoebl, P., De Man, C., Wu, K.L., Lyssens, C. and Holz, J.B. (2011) First results of the phase II TITAN trial: Anti-von Willebrand factor nanobody as adjunctive treatment for patients with acquired thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis, 9, 720-721.
|
|
[78]
|
贺生芳 (2013) Intein介导的纳米抗体在大肠杆菌中的表达和纯化. 硕士论文, 西北农林科技大学, 杨凌.
|
|
[79]
|
丁志凌 (2013) 99mTc-EGFR Nanobodies用于肿瘤放射免疫显像的初步研究. 博士论文, 华中科技大学, 武汉.
|