1. 引言
热电材料是一种利用固体内部载流子运动实现热能和电能直接相互转换的功能材料,可以把废弃的热能源直接转化为电能。热电材料的热电性能用ZT来表征,其定义式为ZT = S2σT/κ,S,σ,κ,T分别是塞贝克系数、电导率、热导率和绝对温度 [1] 。与传统的合金热电材料相比,钴基氧化物热电材料有更好的抗氧化性、无毒性、使用寿命长、制备方便等优点,在环保时代吸引了越来越多的关注 [2] 。而钴基氧化物中,Ca3Co4O9材料展示了更好的化学稳定性,高温下不易分解,被视为层状钴基氧化物中最有热电材料应用潜力的材料之一。
Ca3Co4O9基质结构由两种交替错配的子系统组成,岩盐层Ca2CoO3层和CoO2层,CoO2层主要控制载流子运输,而岩盐型Ca2CoO3层则主要给CoO2层提供电荷,使其具有较高的电导率 [3] 。为了提高材料的性能,一种有效的方法是用金属元素替代Ca离子的位置。例如,用Ag代替Ca时,可以增加电导率σ,从而提高热电优值 [4] - [6] 。而在这个交替错配体系中,由于CoO2层和岩盐层Ca2CoO3具有相同的a, c轴和不同的b轴,使得其内部层状结构存在明显的晶格失配 [7] ,导致其晶格周期不对称,随之材料表现出的磁性质也非常丰富,如自选密度波过度,自旋态过度,亚铁磁行为等[8] -[10] ,通过掺杂改变其磁性能也特别明显。因此,本文对Sr替换Ca位的材料进行分析,并对其磁性进行测试分析。
2. 实验
本工作中,采用溶胶–凝胶与热压烧结相结合法制备Ca3−xSrxCo4O9+δ(x = 0, 0.05, 0.15和0.25)块体样品。将Ca(NO3)2·H2O以及Co(No3)2·H2O和Sr(NO3)2的混合溶液分别溶于60 ml和80 ml离子水中,制成摩尔浓度分别为1 mo/L和2 mol/L的溶液、混合搅拌均匀至353 K,将1 mol/L柠檬酸溶液滴入上述混合溶液中,待到溶液pH为1.5时滴加完毕,继续搅拌混合溶液直至呈紫色透明胶体。将此湿凝胶放入473 K烘箱中干燥12 h后,获得干凝胶。通过采取自蔓延燃烧的方法将干凝胶中的有机物去除,获得前驱体;将此前驱体研磨,然后经1073 K热处理6 h后获得Ca3−xSrxCo4O9+δ(x = 0, 0.05, 0.15和0.25)粉体。氧化物粉体经过充分研磨后,在473 K,40 MPa下预压形成20 mm圆片样品,然后所得块体在1123 K下进一步烧结12 h,得到最终块体。
3. 结果与讨论
首先利用日本理学电机D/max-rB型X射线衍射仪(Cu-Kа1, λ = 1.5406 Å)进行物相分析。如图1给出的是Ca3−xSrxCo4O9+δ(x = 0, 0.15)掺杂的XRD图谱,可以得出,所有的衍射峰与Ca3Co4O9+δ相的JCPDS卡片(PDF21-0139)一致,没有杂峰的出现,证明所合成的Ca3Co4O9+δ基质材料为纯相。图2给出的是,

Figure 1. XRD patterns of Ca3−xSrxCo4O9+δ (x = 0, 0.15)
图1. Ca3−xSrxCo4O9+δ(x = 0, 0.15)的XRD衍射图谱

Figure 2. Magnified (004) peaks of Ca3−xSrxCo4O9+δ (x = 0, 0.15)
图2. Ca3−xSrxCo4 O9+δ(x = 0, 0.15)的最高峰(004)图谱
Ca3−xSrxCo4 O9+δ (x = 0, 0.15)的最高峰(004)图谱随着掺杂浓度的增加,衍射峰向低角度方向偏移,这种角度的轻微移动是样品的晶面间距变化引起的,根据布拉格方程:
,以金属Sr替代Ca位,Sr的半径为1.18 Å,大于Ca的半径1.00Å,d长度变大,波长λ保持不变,因此θ变小而向角度偏移,说明Sr已进入Ca3Co4O9+δ晶格,从而引起了晶格参数的变化。
然后将试样喷金后在Hitachi S-4800型扫描电子显微镜下观察材料的块体表面形貌。如图3给出了Sr掺杂的Ca3Co4O9+δ(x = 0, 0.15)块体材料断口截面的SEM图像,研究Sr掺杂对微观结构的影响。从(a)中可以看出,纯Ca3Co4O9+δ样品晶粒呈片状结构且晶粒大小均匀,约为1~2 μm,基于Ca3Co4O9+δ基质结构是由岩盐层Ca2CoO3层和CoO2层交替错配组成,该图证明了该合成体系是层状的晶体结构。从图(b)可以看出,样品粒子尺寸略微增大,这是由于Sr的离子半径(1.18 Å)大于Ca(1.00Å)离子半径,使晶格间距变宽的结果,但总体的影响效果不是很大。
最后利用Lakeshore7410型振动样品强磁计测试样品磁性。如图4是Ca3−xSrxCo4O9+δ样品(x = 0.05,

Figure 3. SEM images of Ca3−xSrxCo4O9+δ (x = 0, 0.15) (a) Ca3Co4O9; (b) Ca2.85Sr0.15Co4O9
图3. Ca3−xSrxCo4O9+δ(x = 0, 0.15)的扫描电镜(a) Ca3Co4O9; (b) Ca2.85Sr0.15Co4O9

Figure 4. Magnetic hysteresis loop of Ca3−xSrxCo4O9+δ (x = 0.05, 0.15, 0.25)
图4. Ca3−xSrxCo4 O9+δ的M-H磁性曲线
0.15和0.25)的室内M-H磁滞回线测试曲线。由图可知,所有测试曲线均经原点并与外磁场成正比,随着Sr掺杂含量的增加,样品的磁化强度增强。这是因为金属中电子在磁场作用下,在费米面附近有少量的传导电子自旋导向,使样品感生出顺磁性,原子磁矩随着外磁场的增加而比较规则的取向。当金属Sr掺杂在Ca时,金属性增强,自由电子增多导致了顺磁性的增强,磁化强度也明显增强。
4. 结束语
本文研究了Sr掺杂对Ca3Co4O9+δ物相、微观结构以及磁性质的影响。所有的衍射峰与Ca3Co4O9+δ相的JCPDS卡片(PDF21-0139)一致,随着Sr掺杂含量的增加,衍射峰向低角度偏移,说明Sr已完全进入Ca3−xSrxCo4O9+δ中而引起了晶胞参数的变化。样品晶粒呈片状结构且各晶粒大小均匀,大小均为1 - 2 μm。所有样品均呈现顺磁性,随着Sr含量增加,磁化强度明显增强。
基金项目
黑龙江省教育厅资助项目(12541229)。
NOTES
*通讯作者。