1. 引言
随机矩阵及其特征值定位在人口流动模型、计算机辅助设计等领域都有着重要应用 [1] [2] ,其定义如下:
定义1:设
为非负矩阵。若它的所有行和都为1,即

则称
为(行)随机矩阵。
由非负矩阵的Perron-Frobenius定理知,1是随机矩阵模的最大特征值,称为占优特征值,且
是其对应的一个特征向量。故对于随机矩阵特征值的定位问题,只需对其所有非1特征值定位即可。为研究该问题,L. J. Cvetković等在 [3] 中引入修正矩阵的概念,并将Gersgorin圆盘定理 [4] 应用于修正矩阵,得到如下结果:
定理2 [3] :设
为随机矩阵,
表示
的谱,
为
的迹,
,
,若
,则

Shen等在 [5] 中通过给出随机矩阵非奇异的三个充分条件,得到了随机矩阵非1实特征值的三个包含集。Li等在 [6] 中推广了Shen的结果,又得到了如下定理:
定理3 [6] :设
为随机矩阵,若
,则

其中

对于随机矩阵的特征值定位问题,人们总是力求用尽可能少的计算量得到尽可能精确的特征值包含区域,但现有的结果还远远未达到人们的期望。因此有必要对其继续进行研究。本文利用修正矩阵及双a-型特征值包含定理得到随机矩阵非1特征值的两个新包含集,且由此得到随机矩阵非奇异的两个充分条件。
2. 随机矩阵非1特征值包含集
为下文讨论方便,首先给出如下定义、引理、定理:
定义4 [7] :设
,若存在
使得

其中


则称
为双a1-型矩阵。
定理5 [8] :若
为双a1-矩阵,则
是非奇异的。
定理6 [8] :(双a-型特征值包含定理) 设
,则

其中

引理7 [3] :设
为随机矩阵,对任意的
,若
,则
是修正矩阵
的特征值。
下面给出随机矩阵非1特征值的两个新包含集。
定理8:设
为随机矩阵,若
,则

其中




证明:令
,其中
,则

设
,由引理7知
,再由定理6得

其中

又由于


故

故结论成立。
定理9:设
为随机矩阵,若
,则

其中

证明:令
,其中
,则

设
,由引理7知
,再由定理6得

其中

又由于


故

故结论成立。
3. 随机矩阵非奇异的两个新充分条件
本节利用定理8和定理9给出随机矩阵非奇异的两个新的充分条件。
定理10:设
为随机矩阵,若存在
使

则
是非奇异的。
证明:(反证法)假设
是奇异的,则
,由定理8得
,故对任意的
,存在
使得

即

这与条件矛盾,故
是非奇异的。
表1.
与
比较表
表2.
与
比较表
定理11:设
为随机矩阵,若存在
,使得

则
是非奇异的。
证明:(反证法)假设
是奇异的,则
,由定理9得
,故对任意的
,存在
使得

即

这与条件矛盾,故
是非奇异的。
4. 数值算例
本节应用数值算例对本文所得结果与 [6] 中结果进行比较,下例中统一取
。
首先比较定理7和定理8。
例1:利用MATLAB代码

生成50个随机矩阵,并对
和
作图,得到两者的包含关系(见表1),表1表明绝大部分情况下定理8比定理9得到的特征值包含集更精确。
下面比较定理8所给的特征值包含集
与 [6] 中
的包含关系。
例2:利用MATLAB代码

产生50个随机矩阵,并对
和
作图,得到两者的包含关系(见表2),表2表明定理8比 [6] 中所给的特征值包含集更精确。