|
[1]
|
Cornell, C.N. and Ayalon, O. (2011) Evidence for Success with Locking Plates for Fragility Fractures. HSS Journal, 7, 164-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Parker, M.J., Raghavan, R. and Gurusamy, K. (2007) Incidence of Fracture-Healing Complications after Femoral Neck Fractures. Clinical Orthopaedics and Related Research, 458, 175-179. [Google Scholar] [CrossRef]
|
|
[3]
|
王小璐, 崔宇, 张令强. 促进骨折愈合的治疗策略及机制研究进展[J]. 生命科学, 2021, 33(1): 121-130.
|
|
[4]
|
Kolar, P., Gaber, T., Perka, C., Duda, G.N. and Buttgereit, F. (2011) Human Early Fracturehematoma Is Characterized by Inflammation and Hypoxia. Clinical Orthopaedics and Related Research, 469, 3118-3126. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ortinau, L.C., Wang, H., Lei, K., Deveza, L., Jeong, Y., Hara, Y., et al. (2019) Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells. Cell Stem Cell, 25, 784-796.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Duchamp de Lageneste, O., Julien, A., Abou-Khalil, R., Frangi, G., Carvalho, C., Cagnard, N., et al. (2018) Periosteum Contains Skeletal Stem Cells with High Bone Regenerative Potential Controlled by Periostin. Nature Communications, 9, Article No. 773. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Colnot, C. (2009) Skeletal Cell Fate Decisions within Periosteum and Bone Marrow during Bone Regeneration. Journal of Bone and Mineral Research, 24, 274-282. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hu, D.P., Ferro, F., Yang, F., Taylor, A.J., Chang, W., Miclau, T., et al. (2017) Cartilage to Bone Transformation during Fracture Healing Is Coordinated by the Invading Vasculature and Induction of the Corepluripotency Genes. Development, 144, 221-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, L., Tsang, K.Y., Tang, H.C. and Chan, D. and Cheah, K.S. (2014) Hypertrophicchondrocytes Can Become Osteoblasts and Osteocytes in Endochondral Bone Formation. Proceedings of the National Academy of Sciences of the United States of America, 111, 12097-12102. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhou, X., von der Mark, K., Henry, S., Norton, W., Adams, H. and de Crombrugghe, B. (2014) Chondrocytes Transdifferentiate into Osteoblasts in Endochondral Bone during Development, Postnatal Growth and Fracture Healingin Mice. PLoS Genetics, 10, Article ID: e1004820. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Steiner, M., Claes, L., Ignatius, A., Simon, U. and Wehner, T. (2014) Disadvantages of Interfragmentary Shear on Fracture Healing—Mechanical Insights through Numerical Simulation. Journal of Orthopaedic Research, 32, 865-872. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sellei, R.M., Garrison, R.L., Kobbe, P., Lichte, P., Knobe, M. and Pape, H.-C. (2011) Effects of Near Corticalslotted Holes in Locking Plate Constructs. Journal of Orthopaedic Trauma, 25, S35-S40. [Google Scholar] [CrossRef]
|
|
[13]
|
高哲辰, 周方, 田耘, 姬洪全 , 张志山, 郭琰, 等. 锁定接骨板内固定治疗股骨远端骨折[J]. 中华创伤骨科杂志, 2016, 18(11): 965-969.
|
|
[14]
|
Lujan, T.J., Henderson, C.E., Madey, S.M., Fitzpatrick, D.C., Marsh, J.L. and Bottlang, M. (2010) Locked Plating of Distalfemur Fractures Leads to Inconsistent and Asymmetric Callusformation. Journal of Orthopaedic Trauma, 24, 156-162. [Google Scholar] [CrossRef]
|
|
[15]
|
Märdian, S., Schaser, K.D., Duda, G.N. and Heyland, M. (2015) Working Length of Lockingplates Determines Interfragmentary Movement in Distal Femurfractures under Physiological Loading. Clinical Biomechanics, 30, 391-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, J., Zhang, X., Li, S., Yin, B., Liu, G., Cheng, X., et al. (2020) Plating System Design Determine Smechanical Environment in Long Bone Mid-Shaft Fractures: A Finite Element Analysis. Journal of Investigative Surgery, 33, 699-708. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
张宏军, 许纬洲, 贺长青, 刘又文. 自控微动带锁髓内钉对山羊骨折愈合的生物化学研究[J]. 中国临床解剖学杂志, 2008, 26(4): 423-425.
|
|
[18]
|
Bottlang, M., Doornink, J., Fitzpatrick, D.C. and Madey, S.M. (2009) Far Cortical Locking Can Reduce Stiffness of Locked Plating Constructs While Retaining Construct Strength. The Journal of Bone & Joint Surgery, 91, 1985-1994. [Google Scholar] [CrossRef]
|
|
[19]
|
Epari, D.R., Gurung, R., Hofmann-Fliri, L., Schwyn, R., Schuetz, M. and Windolf, M. (2021) Biphasic Plating Improves the Mechanical Performance of Locked Plating for Distalfemur Fractures. Journal of Biomechanics, 115, Article ID: 110192. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
向明, 胡晓川, 林砚铭, 邓友章. 可控性微动时间对骨折愈合影响的实验研究[J]. 中华骨科杂志, 2019, 39(21): 1333-1343.
|
|
[21]
|
Elkins, J., Marsh, J.L., Lujan, T., Peindl, R., Kellam, J., Anderson, D.D., et al. (2016) Motion Predicts Clinical Callusformation: Construct-Specific Finite Element Analysis of Supracondylar Femoral Fractures. The Journal of Bone and Joint Surgery, 98, 276-284. [Google Scholar] [CrossRef]
|
|
[22]
|
Epari, D.R., Duda, G.N. and Thompson, M.S. (2010) Mechanobiology of Bonehealing and Regeneration: In Vivo Models. Proceedings of the Institution of Mechanical Engineers, Part H, 224, 1543-1553. [Google Scholar] [CrossRef]
|
|
[23]
|
Glatt, V., Evans, C.H. and Tetsworth, K. (2017) A Concert between Biology and Biomechanics: The Influence of the Mechanical Environment on Bone Healing. Frontiers in Physiology, 7, Article No. 678. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
刘振东. 骨痂的形成与分类[J]. 中国矫形外科杂志, 2016, 24(4): 332-337.
|
|
[25]
|
Ueno, M., Urabe, K., Naruse, K., et al. (2011) Influence of Internal Fixator Stiffness on Murine Fracture Healing: Two Types of Fracture Healing Lead to Two Distinct Cellular Events and FGF-2 Expressions. Experimental Animals, 60, 79-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
乔林, 侯树勋, 李文峰, 高亚兵, 宋占春. 微动对骨折端微循环及血管内皮生长因子(VEGF)表达的影响[J]. 中华创伤骨科杂志, 2005, 7(1): 52-54.
|
|
[27]
|
Claes, L.E. and Meyers, N. (2020) The Direction of Tissue Strain Affects the Neovascularization in the Fracture-Healing Zone. Medical Hypotheses, 137, Article ID: 109537. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, X., Yan, J., He, F., Zhong, D., Yang, H., Pei, M., et al. (2018) Mechanical Stretch Induces Antioxidant Responses and Osteogenic Differentiation in Human Mesenchymal Stem Cells through Activation of the AMPK-SIRT1 Signaling Pathway. Free Radical Biology and Medicine, 126, 187-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Hulth, A. (1989) Current Concepts of Fracture Healing. Clinical Orthopaedics and Related Research, 249, 265-284. [Google Scholar] [CrossRef]
|
|
[30]
|
Augat, P., Merk, J., Ignatius, A., Margevicius, K., Bauer, G., Rosenbaum, D., et al. (1996) Early, Full Weight Bearing with Flexible Fixation Delays Fracture Healing. Clinical Orthopaedics and Related Research, 328, 194-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tzioupis, C. and Giannoudis, P.V. (2007) Prevalence of Long-Bone Nonunions. Injury, 38, S3-S9. [Google Scholar] [CrossRef]
|
|
[32]
|
Fillingham, Y. and Jacobs, J. (2016) Bone Grafts and Their Substitutes. The Bone & Joint Journal, 98B, 6-9. [Google Scholar] [CrossRef]
|
|
[33]
|
Gómez-Barrena, E., Rosset, P., Lozano, D., Stanovici, J., Ermthaller, C. and Gerbhard, F. (2015) Bone Fracture Healing: Cell Therapy in Delayed Unions and Nonunions. Bone, 70, 93-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hannouche, D., Petite, H. and Sedel, L. (2001) Current Trends in Theenhancement of Fracture Healing. The Journal of Bone and Joint Surgery, 83B, 157-164. [Google Scholar] [CrossRef]
|
|
[35]
|
Padilla, F., Puts, R., Vico, L., Guignandon, A. and Raum, K. (2016) Stimulation of Bone Repair with Ultrasound. In: Escoffre, J.M. and Bouakaz, A., Eds., Therapeutic Ultrasound, Vol. 880, Springer, Cham, 385-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lou, S., Lv, H., Li, Z., Zhang, L. and Tang, P. (2017) The Effects of Low-Intensity Pulsed Ultrasound on Fresh Fracture: A Meta-Analysis. Medicine, 96, Article No. e8181. [Google Scholar] [CrossRef]
|
|
[37]
|
Leighton, R., Watson, J.T., Giannoudis, P., Papakostidis, C., Harrison, A. and Grant Steen, R. (2017) Healing Offracture Nonunions Treated with Low-Intensity Pulsed Ultrasound (LIPUS): A Systematic Review and Meta Analysis. Injury, 48, 1339-1347. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Roussignol, X., Currey, C., Duparc, F. and Dujardin, F. (2012) Indications and Results for the Exogen™ Ultrasound System in the Management of Non-Union: A 59-Case Pilot Study. Orthopaedics & Traumatology: Surgery & Research, 98, 206-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nishimura, R., Hata, K., Ikeda, F., Ichida, F., Shimoyama, A., Matsubara, T., et al. (2008) Signal Transduction and Transcriptional Regulation during Mesenchymal Cell Differentiation. Journal of Bone and Mineral Metabolism, 26, Article No. 203. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
James, A.W., La Chaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., et al. (2016) A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering Part B: Reviews, 22, 284-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Khorsand, B., Nicholson, N., Do, A.V., Femino, J.E., Martin, J.A., Petersen, E., et al. (2017) Regeneration of Bone Using Nanoplex Delivery of FGF-2 and BMP-2 Genesin Diaphyseal Long Bone Radial Defects in a Diabetic Rabbit Model. Journal of Controlled Release, 248, 53-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Herberg, S., McDermott, A.M., Dang, P.N., Alt, D.S., Tang, R., Dawahare, J.H., et al. (2019) Combinatorialmorphogenetic and Mechanical Cues to Mimic Bone Development for Defect Repair. Science Advances, 5, Article No. eaax2476. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Peichl, P., Holzer, L.A., Maier, R. and Holzer, G. (2011) Parathyroid Hormone1-84 Accelerates Fracture-Healing in Pubic Bones of Elderly Osteoporotic Women. The Journal of Bone & Joint Surgery, 93, 1583-1587. [Google Scholar] [CrossRef]
|
|
[44]
|
Miller, P.D., Hattersley, G., Riis, B.J., Williams, G.C., Lau, E., Russo, L.A., et al. (2016) Effect of Abaloparatide vs Placebo on New Vertebral Fractures in Postmenopausal Women with Osteoporosis: A Randomized Clinical Trial. JAMA, 316, 722-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q. and Song, G. (2019) Mesenchymal Stem Cellmigration and Tissue Repair. Cells, 8, Article No. 784. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Garg, P., Mazur, M.M., Buck, A.C., Wandtke, M.E., Liu, J. and Ebraheim, N.A. (2017) Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts. Orthopaedic Surgery, 9, 13-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ding, D.C., Chang, Y.H., Shyu, W.C. and Lin, S.-Z. (2015) Human Umbilicalcord Mesenchymal Stem Cells: A New Era for Stem Cell Therapy. Cell Transplantation, 24, 339-347. [Google Scholar] [CrossRef]
|
|
[48]
|
Li, N., Song, J., Zhu, G., Li, X., Liu, L., Shi, X., et al. (2016) Periosteum Tissue Engineering—A Review. Biomaterials Science, 4, 1554-1561. [Google Scholar] [CrossRef]
|
|
[49]
|
Wang, X., Chu, W., Zhuang, Y., et al. (2019) Bone Mesenchymal Stem Cell-Enriched β-Tricalcium Phosphate Scaffold Processed by the Screen-Enrich-Combine Circulating System Promotes Regeneration of Diaphyseal Bone Nonunion. Cell Transplant, 28, 212-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Friedlaender, G.E., Perry, C.R., Cole, J.D., Cook, S.D., Cierny, G., Muschler, G.F., et al. (2001) Osteogenicprotein-1 (Bone Morphogenetic Protein-7) in the Treatment of Tibial Nonunions. The Journal of Bone & Joint Surgery, 83, S151-S158. [Google Scholar] [CrossRef]
|
|
[51]
|
Tseng, S.S., Lee, M.A. and Reddi, A.H. (2008) Nonunions and the Potential of Stem Cells in Fracture-Healing. The Journal of Bone & Joint Surgery, 90, 92-98. [Google Scholar] [CrossRef]
|
|
[52]
|
Novicoff, W.M., Manaswi, A., Hogan, M.V., Brubaker, S.M., Mihalko, W.M., Saleh, K.J., et al. (2008) Critical Analysis of the Evidence for Current Technologies Inbone-Healing and Repair. The Journal of Bone & Joint Surgery, 90, 85-91. [Google Scholar] [CrossRef]
|
|
[53]
|
Radomsky, M.L., Thompson, A.Y., Spiro, R.C. and Poser, J. (1998) Potential Role of Fibroblast Growth Factor in Enhancement of Fracture Healing. Clinical Orthopaedics and Related Research, 355, S283-S293. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
胥少汀, 葛宝丰, 徐印坎. 骨科实用学[M]. 第4版. 北京: 人民军医出版社, 2015.
|
|
[55]
|
Carofino, B.C. and Lieberman, J.R. (2008) Gene Therapy Applications for Fracture-Healing. The Journal of Bone & Joint Surgery, 90, 99-110. [Google Scholar] [CrossRef]
|
|
[56]
|
Rosa, N., Marta, M., Vaz, M., Tavares, S.M.O., Simoes, R., Magalhães, F.D., et al. (2019) Intramedullary Nailing Biomechanics: Evolution and Challenges. Proceedings of the Institution of Mechanical Engineers, Part H, 233, 295-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
黄正. 扩髓治疗骨折不愈合的生物学机理研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2007.
|
|
[58]
|
唐三元, 杨辉. 髓内钉治疗长骨骨折扩髓与不扩髓的争论[J]. 生物骨科材料与临床究, 2004, 1(1): 25-28.
|