学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
应用数学进展
Vol. 11 No. 12 (December 2022)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
Frobenius扩张下的G
c
-投射(内射)复形
G
c
-Projective (Injective) Complex under Frobenius Extension
DOI:
10.12677/AAM.2022.1112956
,
PDF
,
HTML
,
,
被引量
国家自然科学基金支持
作者:
徐启帆
:浙江师范大学数学与计算机科学学院,浙江金华
关键词:
G
c
-投射复形
;
G
c
-内射复形
;
G
c
-投射复形维数
;
G
c
-内射复形维数
;
Frobenius扩张
;
G
c
-Projective Complex
;
G
c
-Injective Complex
;
G
c
-Projective Complex Dimensions
;
G
c
-Injective Complex Dimensions
;
Ftobenius Extension
摘要:
本文利用类比归纳的方法,证明了G
c
-投射(G
c
-内射)复形是投射(内射)可解的,以及在Frobenius 扩张下,复形的G
c
-投射性和内射性是保持的。进一步,得到了在Frobenius扩张下,复形的G
c
-投射维数和内射维数是不变的。
Abstract:
In this paper, by using the method of analogical induction, we prove that G
c
-projective (G
c
-injective) complexes are projectively (injectively) resolving and the G
c
-projective (G
c
-injective) properties of the complexes are preserved under the Frobenius exten-sion. Further, we obtain that Gc-Projective (G
c
-injective) dimensions of the complexes are invariant under the Frobenius exteiLsion.
文章引用:
徐启帆. Frobenius扩张下的G
c
-投射(内射)复形[J]. 应用数学进展, 2022, 11(12): 9066-9071.
https://doi.org/10.12677/AAM.2022.1112956
参考文献
[1]
Holm, H. and Wliite, D. (2007) Foxby Exiuivaleuce ov-er Associative Rings. Kyoto Journal of Mathematics. 47. 781-808.
https://doi.org/10.1215/kjm/1250692289
[2]
Wliite, D. (2010) Goreusteiu Projective Dimension with Respect to a Seinidualizing Module. Joumul of Commutative AUjebiu^ 2, 111-137.
https://doi.org/10.1216/JCA-2010-2-l-lll
[3]
Yang. C.H. and Li, L. (2012) Gorenstein Injective and Projective Complexes with Respect to a Semidualiziug Module. Communication in Algebra, 40, 3352-3364.
https://doi.org/10.1080/00927872.2011.568030
[4]
杨春花.复形的结构与模的Gorenstdii维数[D]:[博士学位论文].南京:南京大学,2011.
[5]
Zhao, Z.B. (2022) -Projectivity and Injectivity under Frobenius Extensions. Communica¬tions in Algebra, 50. 5155-5170.
[6]
Huaiig, C.L. (2012) -Projective, Injective and Flat Modules under Change of Rings. Joumul of Algebra and Its Applications, 11. Article ED: 1250032.
https://doi.org/10.1142/S0219498811005567
[7]
Holm, H. (2004) GoreiLStein Homological Dimensions. Journal of Pure and Applied Ahjebiu, 189. 167-193.
https://doi.org/10.1016/j,jpaa.2003.11.007
[8]
Auslander, M. and Bridger, M. (1969) Stable Module Theory. In: Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, ProvidenceN Rhode Lslaiid.
https://doi.org/10.1090/rnemo/0094
投稿
为你推荐
友情链接
科研出版社
开放图书馆