|
[1]
|
(2020) 2020 Alzheimer’s Disease Facts and Figures. Alzheimer’s & Dementia, 16, 391-460. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bekris, L.M., Yu, C.E., Bird, T.D., et al. (2010) Genetics of Alzheimer Disease. Journal of Geriatric Psychiatry and Neurology, 23, 213-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Reitz, C., Rogaeva, E. and Beecham, G.W. (2020) Late-Onset vs Nonmendelian Early-Onset Alzheimer Disease: A Distinction without a Difference? Neurology Genetics, 6, e512. [Google Scholar] [CrossRef]
|
|
[4]
|
Zou, K., Abdullah, M. and Michikawa, M. (2020) Current Biomarkers for Alzheimer’s Disease: From CSF to Blood. Journal of Personalized Medicine, 10, Article 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Merz, P.A., Wisniewski, H.M., Somerville, R.A., et al. (1983) Ultrastructural Morphology of Amyloid Fibrils from Neuritic and Amyloid Plaques. Acta Neuropathologica, 60, 113-124. [Google Scholar] [CrossRef]
|
|
[6]
|
Masters, C.L., Simms, G., Weinman, N.A., et al. (1985) Amyloid Plaque Core Protein in Alzheimer Disease and Down Syndrome. Proceedings of the National Academy of Sciences of the United States of America, 82, 4245-4249. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kang, J., Lemaire, H.G., Unterbeck, A., et al. (1987) The Precursor of Alzheimer’s Disease Amyloid A4 Protein Resembles a Cell-Surface Receptor. Nature, 325, 733-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Blennow, K., Hampel, H., Weiner, M., et al. (2010) Cerebrospinal Fluid and Plasma Biomarkers in Alzheimer Disease. Nature Reviews Neurology, 6, 131-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Masters, C.L., Bateman, R., Blennow, K., et al. (2015) Alzheimer’s Disease. Nature Reviews Disease Primers, 1, Article No. 15056. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Blennow, K. and Hampel, H. (2003) CSF Markers for Incipient Alzheimer’s Disease. The Lancet Neurology, 2, 605-613. [Google Scholar] [CrossRef]
|
|
[11]
|
Blennow, K. and Zetterberg, H. (2015) Understanding Biomarkers of Neurodegeneration: Ultrasensitive Detection Techniques Pave the Way for Mechanistic Understanding. Nature Medicine, 21, 217-219. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
O’Bryant, S.E., Gupta, V., Henriksen, K., et al. (2015) Guidelines for the Standardization of Preanalytic Variables for Blood-Based Biomarker Studies in Alzheimer’s Disease Research. Alzheimer’s & Dementia, 11, 549-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Andreasson, U., Blennow, K. and Zetterberg, H. (2016) Update on Ultrasensitive Technologies to Facilitate Research on Blood Biomarkers for Central Nervous System Disorders. Alzheimer’s & Dementia (Amst), 3, 98-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hansson, O., Lehmann, S., Otto, M., et al. (2019) Advantages and Disadvantages of the Use of the CSF Amyloid β (Aβ) 42/40 Ratio in the Diagnosis of Alzheimer’s Disease. Alzheimer’s Research & Therapy, 11, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Blennow, K., Mattsson, N., Schöll, M., Hansson, O. and Zetterberg, H. (2015) Amyloid Biomarkers in Alzheimer’s Disease. Trends in Pharmacological Sciences, 36, 297-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Olsson, B., Lautner, R., Andreasson, U., et al. (2016) CSF and Blood Biomarkers for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. The Lancet Neurology, 15, 673-684. [Google Scholar] [CrossRef]
|
|
[17]
|
Hansson, O., Zetterberg, H., Vanmechelen, E., et al. (2010) Evaluation of Plasma Aβ40 and Aβ42 as Predictors of Conversion to Alzheimer’s Disease in Patients with Mild Cognitive Impairment. Neurobiology of Aging, 31, 357-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kuo, Y.M., Emmerling, M.R., Lampert, H.C., et al. (1999) High Levels of Circulating Aβ42 Are Sequestered by Plasma Proteins in Alzheimer’s Disease. Biochemical and Biophysical Research Communications, 257, 787-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zetterberg, H., Mortberg, E., Song, L., et al. (2011) Hypoxia Due to Cardiac Arrest Induces a Time-Dependent Increase in Serum Amyloid Beta Levels in Humans. PLOS ONE, 6, e28263. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Janelidze, S., Stomrud, E., Palmqvist, S., et al. (2016) Plasma Beta-Amyloid in Alzheimer’s Disease and Vascular Disease. Scientific Reports, 6, Article No. 26801. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mayeux, R., Honig, L.S., Tang, M.X., et al. (2003) Plasma Aβ40 and Aβ42 and Alzheimer’s Disease: Relation to Age, Mortality, and Risk. Neurology, 61, 1185-1190. [Google Scholar] [CrossRef]
|
|
[22]
|
van Oijen, M., Hofman, A., Soares, H.D., et al. (2006) Plasma Aβ1-40 and Aβ1-42 and the Risk of Dementia: A Prospective Case-Cohort Study. The Lancet Neurology, 5, 655-660. [Google Scholar] [CrossRef]
|
|
[23]
|
Yaffe, K., Weston, A., Graff-Radford, N.R., et al. (2011) Association of Plasma Beta-Amyloid Level and Cognitive Reserve with Subsequent Cognitive Decline. JAMA, 305, 261-266. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zou, K., Liu, J., Watanabe, A., et al. (2013) Aβ43 Is the Earliest-Depositing Aβ Species in APP Transgenic Mouse Brain and Is Converted to Aβ41 by Two Active Domains of ACE. American Journal of Pathology, 182, 2322-2331. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Nakamura, A., Kaneko, N., Villemagne, V.L., et al. (2018) High Performance Plasma Amyloid-Beta Biomarkers for Alzheimer’s Disease. Nature, 554, 249-254. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Perez-Grijalba, V., Romero, J., Pesini, P., et al. (2019) Plasma Aβ42/40 Ratio Detects Early Stages of Alzheimer’s Disease and Correlates with CSF and Neuroimaging Biomarkers in the AB255 Study. The Journal of Prevention of Alzheimer’s Disease, 6, 34-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gao, F., Shang, S., Chen, C., et al. (2020) Non-Linear Relationship between Plasma Amyloid-Beta 40 Level and Cognitive Decline in a Cognitively Normal Population. Frontiers in Aging Neuroscience, 12, Article ID: 557005. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, J.Y., Gao, L., Wei, S., et al. (2019) The Plasma Level of Amyloid-Beta Is Associated with Cognitive Decline: A Two Years Follow-Up Study in Xi’an Rural Areas. Chinese Journal of Internal Medicine, 58, 656-661. (In Chinese)
|
|
[29]
|
Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., et al. (1986) Abnormal Phosphorylation of the Microtubule-Associated Protein Tau (Tau) in Alzheimer Cytoskeletal Pathology. Proceedings of the National Academy of Sciences of the United States of America, 83, 4913-4917. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Blennow, K. and Zetterberg, H. (2018) Biomarkers for Alzheimer’s Disease: Current Status and Prospects for the Future. Journal of Internal Medicine, 284, 643-663. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Hanes, J., Kovac, A., Kvartsberg, H., et al. (2020) Evaluation of a Novel Immunoassay to Detect p-Tau Thr217 in the CSF to Distinguish Alzheimer Disease from Other Dementias. Neurology, 95, e3026-e3035. [Google Scholar] [CrossRef]
|
|
[32]
|
Janelidze, S., Stomrud, E., Smith, R., et al. (2020) Cerebrospinal Fluid p-tau217 Performs Better than p-tau181 as a Biomarker of Alzheimer’s Disease. Nature Communications, 11, Article No. 1683. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Benussi, A., Karikari, T.K., Ashton, N., et al. (2020) Diagnostic and Prognostic Value of Serum NfL and p-Tau181 in Frontotemporal Lobar Degeneration. Journal of Neurology, Neurosurgery & Psychiatry, 91, 960-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Karikari, T.K., Pascoal, T.A., Ashton, N.J., et al. (2020) Blood Phosphorylated Tau 181 as a Biomarker for Alzheimer’s Disease: A Diagnostic Performance and Prediction Modelling Study Using Data from Four Prospective Cohorts. The Lancet Neurology, 19, 422-433. [Google Scholar] [CrossRef]
|
|
[35]
|
Lantero, R.J., Karikari, T.K., Suarez-Calvet, M., et al. (2020) Plasma p-tau181 Accurately Predicts Alzheimer’s Disease Pathology at Least 8 Years Prior to Post-Mortem and Improves the Clinical Characterisation of Cognitive Decline. Acta Neuropathologica, 140, 267-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Palmqvist, S., Janelidze, S., Quiroz, Y.T., et al. (2020) Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA, 324, 772-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Arai, H., Ishiguro, K., Ohno, H., et al. (2000) CSF Phosphorylated Tau Protein and Mild Cognitive Impairment: A Prospective Study. Experimental Neurology, 166, 201-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Blennow, K, Vanmechelen, E. and Hampel, H. (2001) CSF Total Tau, Aβ42 and Phosphorylated Tau Protein as Biomarkers for Alzheimer’s Disease. Molecular Neurobiology, 24, 87-97. [Google Scholar] [CrossRef]
|
|
[39]
|
Brys, M., Pirraglia, E., Rich, K., et al. (2009) Prediction and Longitudinal Study of CSF Biomarkers in Mild Cognitive Impairment. Neurobiology of Aging, 30, 682-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Buerger, K., Teipel, S.J., Zinkowski, R., et al. (2002) CSF Tau Protein Phosphorylated at Threonine 231 Correlates with Cognitive Decline in MCI Subjects. Neurology, 59, 627-629. [Google Scholar] [CrossRef]
|
|
[41]
|
de Leon, M.J., Segal, S., Tarshish, C.Y., et al. (2002) Longitudinal Cerebrospinal Fluid Tau Load Increases in Mild Cognitive Impairment. Neuroscience Letters, 333, 183-186. [Google Scholar] [CrossRef]
|
|
[42]
|
Hampel, H., Burger, K., Pruessner, J.C., et al. (2005) Correlation of Cerebrospinal Fluid Levels of Tau Protein Phosphorylated at Threonine 231 with Rates of Hippocampal Atrophy in Alzheimer Disease. Archives of Neurology, 62, 770-773. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kidemet-Piskac, S., Babic, L.M., Blazekovic, A., et al. (2018) Evaluation of Cerebrospinal Fluid Phosphorylated Tau231 as a Biomarker in the Differential Diagnosis of Alzheimer’s Disease and Vascular Dementia. CNS Neuroscience & Therapeutics, 24, 734-740. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Kohnken, R., Buerger, K., Zinkowski, R., et al. (2000) Detection of Tau Phosphorylated at Threonine 231 in Cerebrospinal Fluid of Alzheimer’s Disease Patients. Neuroscience Letters, 287, 187-190. [Google Scholar] [CrossRef]
|
|
[45]
|
Santos, J., Bauer, C., Schuchhardt, J., et al. (2019) Validation of a Prototype Tau Thr231 Phosphorylation CSF ELISA as a Potential Biomarker for Alzheimer’s Disease. Journal of Neural Transmission (Vienna), 126, 339-348. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Suarez-Calvet, M., Karikari, T.K., Ashton, N.J., et al. (2020) Novel Tau Biomarkers Phosphorylated at T181, T217 or T231 Rise in the Initial Stages of the Preclinical Alzheimer’s Continuum When Only Subtle Changes in Aβ Pathology Are Detected. EMBO Molecular Medicine, 12, e12921. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ashton, N.J., Pascoal, T.A., Karikari, T.K., et al. (2021) Plasma p-tau231: A New Biomarker for Incipient Alzheimer’s Disease Pathology. Acta Neuropathologica, 141, 709-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Mattsson, N., Andreasson, U., Zetterberg, H., et al. (2017) Association of Plasma Neurofilament Light with Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurology, 74, 557-566. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Weston, P., Poole, T., Ryan, N.S., et al. (2017) Serum Neurofilament Light in Familial Alzheimer Disease: A Marker of Early Neurodegeneration. Neurology, 89, 2167-2175. [Google Scholar] [CrossRef]
|
|
[50]
|
Rohrer, J.D., Woollacott, I.O., Dick, K.M., et al. (2016) Serum Neurofilament Light Chain Protein Is a Measure of Disease Intensity in Frontotemporal Dementia. Neurology, 87, 1329-1336. [Google Scholar] [CrossRef]
|
|
[51]
|
Rojas, J.C., Karydas, A., Bang, J., et al. (2016) Plasma Neurofilament Light Chain Predicts Progression in Progressive Supranuclear Palsy. Annals of Clinical and Translational Neurology, 3, 216-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Pilotto, A., Parigi, M., Bonzi, G., et al. (2022) Differences between Plasma and Cerebrospinal Fluid p-Tau181 and p-Tau231 in Early Alzheimer’s Disease. The Journal of Alzheimer’s Disease, 87, 991-997. [Google Scholar] [CrossRef]
|
|
[53]
|
Rembach, A., Watt, A.D., Wilson, W.J., et al. (2014) Plasma Amyloid-Beta Levels Are Significantly Associated with a Transition toward Alzheimer’s Disease as Measured by Cognitive Decline and Change in Neocortical Amyloid Burden. The Journal of Alzheimer’s Disease, 40, 95-104. [Google Scholar] [CrossRef]
|
|
[54]
|
Mapstone, M., Cheema, A.K., Fiandaca, M.S., et al. (2014) Plasma Phospholipids Identify Antecedent Memory Impairment in Older Adults. Nature Medicine, 20, 415-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Mehta, P.D., Patrick, B.A., Miller, D.L., et al. (2020) A Sensitive and Cost-Effective Chemiluminescence ELISA for Measurement of Amyloid-Beta 1-42 Peptide in Human Plasma. The Journal of Alzheimer’s Disease, 78, 1237-1244. [Google Scholar] [CrossRef]
|
|
[56]
|
Hu, S., Loo, J.A. and Wong, D.T. (2006) Human Body Fluid Proteome Analysis. Proteomics, 6, 6326-6353. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Huang, Y., Potter, R., Sigurdson, W., et al. (2012) Beta-Amyloid Dynamics in Human Plasma. Archives of Neurology, 69, 1591-1597. [Google Scholar] [CrossRef] [PubMed]
|