白细胞介素-17在相关皮肤病中的研究进展
Research Progress of Interleukin-17 in Related Skin Diseases
DOI: 10.12677/ACM.2023.134740, PDF, HTML, XML,   
作者: 何酉丰:青海大学研究生院,青海 西宁;青海省人民医院皮肤性病科,青海 西宁;王宝庭*:青海省人民医院皮肤性病科,青海 西宁
关键词: 皮肤病白细胞介素-17Dermatopathya Interleukin-17
摘要: 白细胞介素-17 (IL-17)是一种必不可少的促炎细胞因子,主要由CD4+辅助T细胞(Th17细胞)和先天淋巴样细胞亚群分泌。IL-17与多种炎症性疾病的发病机制有关,包括银屑病、化脓性汗腺炎、毛发红糠疹、特应性皮炎、斑秃和系统性硬化症。目前已经证实IL-23/IL-17轴是炎症性疾病的靶向治疗的重要途径。来自临床试验的新证据表明,针对IL-17的单克隆抗体对治疗银屑病、化脓性汗腺炎、毛发红糠疹和系统性硬化症患者是有效的。
Abstract: Interleukin-17 (IL-17), an essential pro-inflammatory cytokine, is largely released by CD4+ helper T cells (Th17 cells) and a subset of innate lymphoid cells. IL-17 has been linked to the pathogenesis of various inflammatory diseases, including psoriasis, hidradenitis suppurativa, pityriasis rubra pi-laris, atopic dermatitis, alopecia areata and systemic sclerosis. Recently, it has been demonstrated that the IL-23/IL-17 axis is a crucial approach for targeted treatments of inflammatory diseases. According to new evidence from clinical trials, monoclonal antibodies against IL-17 may be helpful in treating patients with psoriasis, hidradenitis suppurativa, pityriasis rubra pilaris and systemic sclerosis.
文章引用:何酉丰, 王宝庭. 白细胞介素-17在相关皮肤病中的研究进展[J]. 临床医学进展, 2023, 13(4): 5229-5235. https://doi.org/10.12677/ACM.2023.134740

1. IL-17简介

白细胞介素-17A (通常称为IL-17)是从啮齿类动物中活化的T细胞杂交瘤克隆而来,主要由CD4+辅助T细胞(Th17细胞)和先天淋巴样细胞亚群分泌 [1] 。IL-17细胞因子家族由不同的成员组成,包括IL-17A-F [2] 。IL-17A、C和F与自身免疫性炎症有关。IL-17A通过其下游信号通路中诱导各种促炎基因来发挥其促炎作用 [2] 。IL-17B的作用目前尚不清楚;它已被证明在炎症性关节炎、肺纤维化和一些癌症中具有致病作用 [3] 。IL-17C是皮肤炎症的关键参与者,主要由上皮细胞和角质形成细胞表达,以响应细胞因子和Toll样受体的激活。IL-17D在激活的免疫细胞中低表达,但已在骨骼肌、脑、脂肪、心脏和肺等组织中发现 [2] 。它已被证明在病毒感染和败血症的情况下既具有保护性又具有致病性 [2] [4] [5] 。IL-17E (IL-25)是IL-17家族中分化最大的一种,由角质形成细胞产生,也可由内皮细胞、T细胞、巨噬细胞、髓系细胞和ILC分泌 [6] 。IL-17E最为人所知的是它在促进Th2反应和过敏方面的作用 [7] 。IL-17A可以在靶细胞中诱导中性粒细胞趋化因子CXCL1,CXCL2,CXCL5,CCL8和CXCL20的表达 [2] ;促进淋巴细胞的募集;生长因子G-CSF和GM-CSF也被上调 [7] 。同时,CCL20还促进Th17细胞募集到炎症发生的部位,导致炎症部位IL-17A水平上调,从而使与TH17相关炎症途径发生恶性循环 [8] 。IL-17具有与TNF-α、IL-1β、IL-22、IFN-γ和GM-CSF细胞因子的协同能力,从而增强IL-6和IL-8等炎症介质的产生。进而增强Th17细胞因子的功能,揭示了Th17细胞和IL-36细胞因子之间的反馈回路 [9] 。总之,IL-17是在各种不同类型的细胞因子相互作用的环境中发生炎症反应的关键因子。本文主要介绍与IL-17相关的一些皮肤病及其治疗的进展。

2. 与IL-17相关的皮肤病

2.1. IL-17与银屑病

银屑病是一种常见的非传染性皮肤疾病,通常表现为覆盖有银白色鳞屑的红色丘疹或斑块。银屑病的患病率在成人中为0.5%~11.4%,在儿童中为0%~1.4% [10] 。虽然银屑病的发病机制复杂且尚未完全阐明,但它被认为是免疫、遗传和环境因素共同结合作用的结果。白细胞介素-23/T辅助因子17 (IL-23/Th17)介导的IL-17的激活被认为是主导途径,在银屑病的发病机制中起着关键作用。银屑病患者皮损和血清中IL-17A水平升高 [11] 。此外,GWAS研究已经确定了参与IL-17A信号传导的基因中与银屑病相关的变异 [12] 。IL-17A是表皮角质形成细胞功能障碍的罪魁祸首,并促进其异常分化和增殖 [13] 。IL-17A还刺激角质形成细胞释放促炎介质,如CCL20、IL-8和抗菌肽,从而通过间接促进中性粒细胞和Th17细胞的募集来促进炎症 [8] 。此外,IL-17A与的其它细胞因子协同包括TNF和IL-22作用。它们共同上调IL-1家族成员IL-36细胞因子的水平,除了激活Th17细胞外,还与脓疱性银屑病有关 [14] 。IL-17F在银屑病患者的血清和皮损中也升高 [15] 。有证据表明IL-17F在诱导角质形成细胞产生IL-6和IL-8中起关键作用 [16] 。IL-17C与IL-17E在银屑病皮损中增加 [17] ,IL-17C与TNF起协同作用,诱导促炎细胞因子和趋化因子以及抗菌肽的分泌 [18] 。在银屑病动物模型中,IL-17E与IL-17RB的结合通过STAT3通路诱导角质形成细胞增殖,从而放大皮肤炎症 [19] 。提示IL-17E在银屑病发病机制中的重要作用。

针对IL-17在银屑病的发病机制,司库奇尤单抗、依奇珠单抗和布达鲁单抗目前作为IL-17抑制剂用于治疗银屑病。在用药第12周,300 mg司库奇尤的PASI75/90/100有效率分别为77.1%/54%/24%,80 mg依奇珠单抗的PASI75/90/100有效率分别为90%/70%/40%,210 mg布达鲁单抗的PASI75/90/100有效率分别为83%/70%/42% [20] [21] [22] 。这些单抗的主要不良事件为念珠菌病、中性粒细胞减少症、炎症性肠病、抑郁和自杀风险 [20] [21] [22] 。

2.2. IL-17与化脓性汗腺炎

化脓性汗腺炎(HS)又称反常性痤疮,是一种慢性炎症性皮肤病,全球大概有1%的人患病 [23] 。HS通常发生在青春期后,平均发病年龄在20岁或30岁,女性居多。约1/3的患者具有遗传易感性 [24] 。此外,生活方式因素,如吸烟和肥胖,在HS的临床病程中起着至关重要的作用 [25] 。

免疫细胞和角质形成细胞介导的产物被广泛认为是HS发病机制中的关键角色 [26] 。在HS皮损和皮损周围皮肤中,促炎细胞因子(如IL-1β、TNF-α、IL-23和IL-17)和抗炎细胞因子(如IL-10)均增加 [27] 。IL-17A和IL-17F与其他细胞因子协同作用以增加炎症细胞因子和趋化因子。IL-17C在受到IL17A和IL-17F的刺激时,Th17细胞会升高炎症细胞因子(包括IL-17A和IL-17F)的产生,从而形成炎症反馈回路。一项探索性试验已经报道了用司库奇尤靶向IL-17A治疗IL-17和炎症性皮肤病的疗效,9名患者从基线开始每周给药一次300 mg司库奇尤单抗,持续5周,然后每4周给药一次。在24周时,67%的HS患者达到化脓性汗腺炎临床反应(HiSCR)评分 [28] 。HiSCR指脓肿和炎性结节计数比基线减少至少50%,且脓肿和引流瘘计数没有增加。最近,一项针对10名患者的开放标签试点队列研究评估了布达鲁单抗治疗中重度HS的良好耐受性和临床反应。结果表明,患者在第12周接受210 mg布达鲁单抗治疗,达到HiSCR,早在第2周HiSCR就出现改善 [29] 。目前关于治疗HS的生物制剂的疗效和安全性的资料有限,进一步的研究应注重治疗的有效性和长期影响。

2.3. IL-17坏疽性脓皮病(PG)

坏疽脓皮病(PG)是一种复杂的中性粒细胞皮肤病,临床上以疼痛、快速发展的皮肤溃疡为特征 [30] 。虽然PG的病因还不完全清楚,但它被归类为中性粒细胞皮肤病以及其他皮肤病。相关研究发现,PG病变中(TNF)-α、(IL)-8、(IL)-17、MMP-2、MMP-9和VEGF增加 [31] 。Caproni等人报告说,与健康皮肤相比,PG皮损中Tregs的比例降低。Treg有助于减轻免疫反应,这种失衡可能是PG患者T细胞过度活跃的原因 [32] ]。T细胞的过渡活跃也得到了Marzano等人两项独立研究的支持,这两项研究表明PG皮肤中(IL)-17增加。(IL)-17是Th17细胞的产物,最终吸引中性粒细胞 [33] 。在PG中,不受调节的T细胞活动和(IL)-17水平的增加会创造了一个促炎环境,并将中性粒细胞招募到真皮。可以看出IL-23/Th17轴似乎在PG的发病机制中起重要作用,所以新兴的抗(IL)-17和(IL)-7R的生物制剂,如依奇珠单抗和布达鲁单抗是新的潜在治疗方法。最近进行了一项I-II阶段的初步研究,以进一步评估司库奇尤单抗单一疗法治疗PG的有效性和安全性。7名患者在0~4周每周服用司库奇尤单抗300 mg,2名患者每4周服用一次,直到第16周,5名患者每2周服用一次,直到第32周,同时保持相同的剂量。两名患者持续治疗到32周,溃疡大小、炎症标志物和皮肤病生活质量指数均有明显改善。所有参与的患者都报告疼痛减轻 [34] 。

2.4. IL-17与毛发红糠疹

毛发红糠疹(PRP)是一种罕见的获得性炎症性皮肤病。PRP患者皮损处Th17和Th1细胞因子水平升高,包括IL-17A、IL-17F、IL-22、TNF、IL-6、IL-12、IL-23和IL-1b [35] 。IL-23/Th17轴似乎在PRP的发病机制中起重要作用,因为靶向IL-12/23和IL-17A (乌司奴单抗,司库奇尤单抗,依奇珠单抗)治疗PRP [36] [37] [38] [39] 患者的临床和组织病理学改善。在一项单组试验中,分析临床体征和症状的变化(使用PASI评分)表明,在依奇珠单抗治疗PRP的24周期间,PASI50、PASI75和PASI90的应答率分别为58、42和17% [37] 。

2.5. IL-17与系统性硬化症

系统性硬化症(SSc),又名系统性硬皮病,是一种复杂的独立疾病,以血管表现、早期炎症特征和皮肤及肺等内脏器官纤维化为特征 [38] ,该病病因目前尚不明确,但最近针对关键免疫途径的临床试验证明了自身免疫在SSc发病机制中的关键作用 [39] 。各种改变的细胞类型(如上皮细胞,内皮细胞和免疫细胞)以及它们分泌的致病分子之间的相互作用导致成纤维细胞性质的典型变化 [39] 。特别是在纤维化部位,Th2细胞释放的可溶性纤维化介质(IL-4,IL-6,IL-13)及其与成纤维细胞的相互作用促进了过量ECM的沉积并诱导了SSc中的纤维化 [40] 。相关研究还发现SSc患者皮损组织中IL-17A、IL-13、IL-22、IL-26 mRNA的表达均高于健康对照 [41] 。SSc患者外周血Th17细胞和IL-17水平升高。它们与疾病严重程度和胶原过度生成相关 [42] 。高水平的IL-17A作用于SSc患者的真皮血管平滑肌细胞,通过激活细胞外信号调节激酶1/2信号通路促进血管纤维化 [43] 。

2.6. IL-17和Netherton综合征

Netherton综合征是一种罕见、严重的角化性遗传病,发病率较高且治疗困难。最近的研究表明,在Netherton综合征中,可见辅助性T细胞(TH)17/白介素23(IL-23)途径上调,提示针对IL-17的单克隆抗体对Netherton综合征可能有较好的疗效。Drs Luchsinger [44] 等人的研究结果表明,司库奇尤单抗抑制IL-17对4例NS患者有良好的治疗效果。

2.7. IL-17与斑秃

斑秃(AA)是一种导致脱发而没有疤痕的疾病。该疾病以毛囊上皮为目标,涉及头部和身体其他部位的毛发区域。相关研究IL-2、IFN-g、IL-10、IL-13、IL-17a在AA患者血清中呈高水平表达,而转化生长因子-b1水平降低 [45] 。斑秃患者外周血和头皮皮损中Th17细胞频率和IL-17平均明显升高,Treg细胞频数减少 [46] 。但相关研究报道,患者对抗IL-23/IL-12乌司奴单抗(n = 4)或抗il-17a司库奇尤单抗(n = 7)治疗无反应 [47] 。因此,不能认为Th17/IL-17在斑秃发病机制中发挥作用。进一步的大样本临床试验可能揭示IL-17作为靶点治疗AA的价值。

2.8. IL-17与特应性皮炎

特应性皮炎(AD)是最常见的炎症性皮肤病之一,瘙痒是其主要症状。AD是一种Th2细胞介导的疾病。然而,非Th2型细胞因子也可能在疾病的发病机制中发挥作用。研究表明,Th1细胞和IL-17A在AD患者外周血中升高,AD皮损表现出不同程度的Th17激活。司库奇尤单抗是一种选择性靶IL-17A的重组人单克隆抗体。在AD小鼠模型中,司库奇尤的作用已被证明可减轻肤炎症 [48] [49] 。一项第二阶段的安慰剂对照随机对照试验目前正在进行中(NCT02594098) [48] ,评估司库奇尤对患有中重度AD的成年人的有效性和安全性。IL-17家族中另一个与AD发病相关的细胞因子是IL-17C。这种细胞因子主要由上皮细胞产生,参与调节天然的上皮免疫通路,与IL-1和IL-22有协同作用 [49] ,MOR106P是在一项随机、双盲、安慰剂对照的I期试验中对25名AD患者进行评估的第一个针对IL17C的单抗,83%的患者达到了EASI-50,并且有良好的安全性,目前需要2期临床研究 [49] 。

3. 小结

IL-17作为一种关键的细胞因子,Th17/IL-17轴已被确定为皮肤炎症性疾病的关键因素,如银屑病、HS、AD、PG和PRP。在银屑病、HS、PRP、PG、AD等疾病中,抗IL-17治疗已经有了明显的疗效。目前需要更多的研究来确定IL-17是否与AA、Netherto综合征和SSC的发病机制有关,对于IL-17的其他生物学功能及其是否也参与其他疾病的发生,目前还需更深入的研究完善,从而为临床疾病的治疗提供新思路。

NOTES

*通讯作者。

参考文献

[1] Matos, T.R., O’Malley, J.T., Lowry, E.L., et al. (2017) Clinically Resolved Psoriatic Lesions Contain Psoriasis-Specific IL-17-Producing αβ T Cell Clones. Journal of Clinical Investigation, 127, 4031-4041. [Google Scholar] [CrossRef
[2] Brembilla, N.C., Senra, L. and Boehncke, W.H. (2018) The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Frontiers in Immunology, 9, 1682. [Google Scholar] [CrossRef] [PubMed]
[3] Yang, D., Chen, X., Wang, J., Lou, Q., et al. (2019) Dysregulated Lung Commensal Bacteria Drive Interleukin-17B Production to Promote Pulmonary Fibrosis through Their Outer Mem-brane Vesicles. Immunity, 50, 692-706. [Google Scholar] [CrossRef] [PubMed]
[4] Lee, Y., Clinton, J., Yao, C. and Chang, S.H. (2019) Interleu-kin-17D Promotes Pathogenicity during Infection by Suppressing CD8 T Cell Activity. Frontiers in Immunology, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
[5] Yan, X., Tu, H., Liu, Y., Chen, T. and Cao, J. (2020) Inter-leukin-17D Aggravates Sepsis by Inhibiting Macrophage Phagocytosis. Critical Care Medicine, 48, e58-e65. [Google Scholar] [CrossRef
[6] Xu, M. and Dong, C. (2017) IL-25 in Allergic Inflamma-tion. Immunological Reviews, 278, 185-191. [Google Scholar] [CrossRef] [PubMed]
[7] Liu, Y., Lagowski, J.P., Gao, S., Raymond, J.H., White, C.R. and Ku-lesz-Martin, M.F. (2010) Regulation of the Psoriatic Chemokine CCL20 by E3 Ligases trim32 and Piasy in Keratinocytes. Journal of Investigative Dermatology, 130, 1384-1390. [Google Scholar] [CrossRef] [PubMed]
[8] Ha, H.L., Wang, H., Pisitkun, P., et al. (2014) IL-17 Drives Psoriatic Inflammation via Distinct, Target Cell-Specific Mechanisms. Pro-ceedings of the National Academy of Sciences of the United States of America, 111, e3422-e3431. [Google Scholar] [CrossRef] [PubMed]
[9] Carrier, Y., Ma, H.L., Ramon, H.E., et al. (2011) Inter-Regulation of Th17 Cytokines and the IL-36 Cytokines in Vitro and in Vivo: Implications in Psoriasis Pathogenesis. Journal of In-vestigative Dermatology, 131, 2428-2437. [Google Scholar] [CrossRef] [PubMed]
[10] Michalek, I.M., Loring, B. and John, S.M. (2017) A Systematic Review of Worldwide Epidemiology of Psoriasis. Journal of the European Academy of Dermatology and Venereology, 31, 205-212. [Google Scholar] [CrossRef] [PubMed]
[11] Fotiadou, C., Lazaridou, E., Sotiriou, E., et al. (2015) IL-17A, IL22, and IL-23 as Markers of Psoriasis Activity: A Cross-Sectional, Hospital-Based Study. Journal of Cutaneous Med-icine and Surgery, 19, 555-560. [Google Scholar] [CrossRef] [PubMed]
[12] Nanda, H., Ponnusamy, N., Odumpatta, R., et al. (2020) Explor-ing Genetic Targets of Psoriasis Using Genome Wide Association Studies (GWAS) for Drug Repurposing. 3 Biotech, 10, 43. [Google Scholar] [CrossRef] [PubMed]
[13] Gutowska-Owsiak, D., Schaupp, A.L., Salimi, M., et al. (2012) IL-17 Downregulates Filaggrin and Affects Keratinocyte Expression of Genes Associated with Cellular Adhesion. Experimental Dermatology, 21, 104-110. [Google Scholar] [CrossRef] [PubMed]
[14] Iznardo, H. and Puig, L. (2021) Exploring the Role of IL-36 Cytokines as a New Target in Psoriatic Disease. International Journal of Molecular Sciences, 22, 4344. [Google Scholar] [CrossRef] [PubMed]
[15] Soderstrom, C., Berstein, G., Zhang, W., et al. (2017) Ultra-Sensitive Measurement of IL-17A and IL-17F in Psoriasis Patient Serum and Skin. The AAPS Journal, 19, 1218-1222. [Google Scholar] [CrossRef] [PubMed]
[16] Fujishima, S., Watanabe, H., Kawaguchi, M., et al. (2010) In-volvement of IL-17F via the Induction of IL-6 in Psoriasis. Archives of Dermatological Research, 302, 499-505. [Google Scholar] [CrossRef] [PubMed]
[17] Senra, L., Stalder, R., Alvarez Martinez, D., Chizzolini, C., Boehncke, W.H. and Brembilla, N.C. (2016) Keratinocyte-Derived IL-17E Contributes to Inflammation in Psoriasis. Journal of Investigative Dermatology, 136, 1970-1980. [Google Scholar] [CrossRef] [PubMed]
[18] Ong, X., Zhu, S., Shi, P., et al. (2011) IL-17RE Is the Functional Receptor for IL17C and Mediates Mucosal Immunity to Infection with Intestinal Pathogens. Nature Immunology, 12, 1151-1158. [Google Scholar] [CrossRef] [PubMed]
[19] Xu, M., Lu, H., Lee, Y.H., et al. (2018) An Interleu-kin-25-Mediated Autoregulatory Circuit in Keratinocytes Plays a Pivotal Role in Psoriatic Skin Inflammation. Immunity, 48, 787-798.e4. [Google Scholar] [CrossRef] [PubMed]
[20] López-Ferrer, A., Vilarrasa, E. and Puig, L. (2015) Secukinumab (AIN457) for the Treatment of Psoriasis. Expert Review of Clinical Immunology, 11, 1177-1188. [Google Scholar] [CrossRef
[21] Papp, K.A., Leonardi, C.L., Blauvelt, A., Reich, K., Korman, N.J., Ohtsuki, M., Paul, C., Ball, S., Cameron, G.S., Erickson, J., et al. (2018) Ixekizumab Treatment for Psoriasis: Inte-grated Efficacy Analysis of Three Double-Blinded, Controlled Studies (UNCOVER-1, UNCOVER-2, UNCOVER-3). British Journal of Dermatology, 178, 674-681. [Google Scholar] [CrossRef] [PubMed]
[22] Papp, K.A., Merola, J.F., Gottlieb, A.B., Griffiths, C.E.M., et al. (2018) Dual Neutralization of both Interleukin 17A and Interleukin 17F with Bimekizumab in Patients with Psoriasis: Results from BE ABLE 1, a 12-Week Randomized, Double-Blinded, Placebo-Controlled Phase 2b Trial. Journal of the American Academy of Dermatology, 79, 277- 286e10. [Google Scholar] [CrossRef] [PubMed]
[23] Sabat, R., Jemec, G.B.E., Matusiak, Ł., Kimball, A.B., Prens, E. and Wolk, K. (2020) Hidradenitis Suppurativa. Nature Reviews Disease Primers, 6, 18. [Google Scholar] [CrossRef] [PubMed]
[24] Vinkel, C. and Thomsen, S.F. (2018) Hidradenitis Suppurativa: Causes, Features, and Current Treatments. Journal of Clinical and Aesthetic Dermatology, 11, 17-23.
[25] Constantinou, C.A., Fragoulis, G.E. and Nikiphorou, E. (2019) Hidradenitis Suppurativa: Infection, Auto-immunity, or Both? Therapeutic Advances in Musculoskeletal Disease, 11. [Google Scholar] [CrossRef
[26] Del Duca, E., Morelli, P., Bennardo, L., Di Raimondo, C. and Nisticò, S.P. (2020) Cytokine Pathways and Investigational Target Therapies in Hidradenitis Suppurativa. International Journal of Molecular Sciences, 21, 8436. [Google Scholar] [CrossRef] [PubMed]
[27] Wolk, K., Join‐Lambert, O. and Sabat, R. (2020) Aetiology and Patho-genesis of Hidradenitis Suppurativa. British Journal of Dermatology, 183, 999-1010. [Google Scholar] [CrossRef] [PubMed]
[28] Prussick, L., Rothstein, B., Joshipura, D., et al. (2019) Open-Label, Inves-tigator-Initiated, Single-Site Exploratory Trial Evaluating Secukinumab, an Anti-Interleukin-17A Monoclonal Antibody, for Patients with Moderate-to-Severe Hidradenitis Suppurativa. British Journal of Dermatology, 181, 609-611. [Google Scholar] [CrossRef] [PubMed]
[29] Frew, J.W., Navrazhina, K., Grand, D., et al. (2020) The Effect of Subcuta-neous Brodalumab on Clinical Disease Activity in Hidradenitis Suppurativa: An Open-Label Cohort Study. Journal of the American Academy of Dermatology, 83, 1341-1348. [Google Scholar] [CrossRef] [PubMed]
[30] Maverakis, E., Marzano, A.V., Le, S.T., et al. (2020) Pyoderma Gangrenosum. Nature Reviews Disease Primers, 6, 81. [Google Scholar] [CrossRef] [PubMed]
[31] Ahn, C., Negus, D. and Huang, W. (2018) Pyoderma Gangreno-sum: A Review of Pathogenesis and Treatment. Expert Review of Clinical Immunology, 14, 225-233. [Google Scholar] [CrossRef
[32] Caproni, M., Antiga, E., Volpi, W., et al. (2015) The Treg/Th17 Cell Ratio Is Reduced in the Skin Lesions of Patients with Pyoderma Gangrenosum. British Journal of Der-matology 173, 275-278. [Google Scholar] [CrossRef] [PubMed]
[33] Marzano, A.V., Damiani, G., Ceccherini, I., Berti, E., Gattorno, M. and Cugno, M. (2017) Autoinflammation in Pyoderma Gangrenosum and Its Syndromic Form (Pyo-derma Gangrenosum, Acne and Suppurative Hidradenitis). British Journal of Dermatology 176, 1588-1598. [Google Scholar] [CrossRef] [PubMed]
[34] Lauffer, F., Seiringer, P., Böhmer, D., Oesterlin, C. and Eyerich, K. (2021) 044 Safety and Efficacy of Anti-IL-17 (Secukinumab) for the Treatment of Pyoderma Gangrenosum. Journal of Investi-gative Dermatology, 141, S156. [Google Scholar] [CrossRef
[35] Feldmeyer, L., Mylonas, A., Demaria, O., et al. (2017) Interleukin 23-Helper T Cell 17 Axis as a Treatment Target for Pityriasis Rubra Pilaris. JAMA Dermatology, 153, 304-308. [Google Scholar] [CrossRef] [PubMed]
[36] Napolitano, M., Abeni, D. and Didona, B. (2018) Biologics for Pityriasis Rubra Pilaris Treatment: A Review of the Literature. Journal of the American Academy of Dermatology, 79, 353-359.e11. [Google Scholar] [CrossRef] [PubMed]
[37] Schuster, D., Pfister-Wartha, A., Bruckner-Tuderman, L. and Schempp, C.M. (2016) Successful Treatment of Refractory Pityriasis Rubra Pilaris with Secukinumab. JAMA Derma-tology, 152, 1278-1280. [Google Scholar] [CrossRef] [PubMed]
[38] Hughes, M., Allanore, Y., Chung, L., et al. (2020) Raynaud Phenomenon and Digital Ulcers in Systemic Sclerosis. Nature Reviews Rheumatology, 16, 208-221. [Google Scholar] [CrossRef] [PubMed]
[39] Cutolo, M., Soldano, S. and Smith, V. (2019) Pathophysiology of Systemic Sclerosis: Current Understanding and New Insights. Expert Review of Clinical Immunology, 15, 753-7640. [Google Scholar] [CrossRef
[40] Gonçalves, R.S.G., Pereira, M.C., Dantas, A.T., et al. (2018) IL-17 and Related Cytokines Involved in Systemic Sclerosis: Perspectives. Autoimmunity, 51, 1-9. [Google Scholar] [CrossRef] [PubMed]
[41] Gonçalves, R.S.G., Pereira, M.C., Dantas, A.T., Almeida, A.R., Rego, M., Lima, E.A., et al. (2019) CCL3, IL-7, IL-13 and IFNg Transcripts Are Increased in Skin’s Biopsy of Systemic Sclerosis. Experimental Dermatology, 28, 1172-1175. [Google Scholar] [CrossRef] [PubMed]
[42] Yang, X., Yang, J., Xing, X., Wan, L. and Li, M. (2014) Increased Fre-quency of Th17 Cells in Systemic Sclerosis Is Related to Disease Activity and Collagen Overproduction. Arthritis Re-search & Therapy, 16, R4. [Google Scholar] [CrossRef] [PubMed]
[43] Liu, M., Yang, J., Xing, X., Cui, X. and Li, M. (2014) Interleukin-17A Pro-motes Functional Activation of Systemic Sclerosis Patient-Derived Dermal Vascular Smooth Muscle Cells by Extracellu-lar-Regulated Protein Kinases Signalling Pathway. Arthritis Research & Therapy, 16, 4223. [Google Scholar] [CrossRef] [PubMed]
[44] Luchsinger, I., Knöpfel, N., Theiler, M., et al. (2020) Secuki-numab Therapy for Netherton Syndrome. JAMA Dermatology, 156, 907-911. [Google Scholar] [CrossRef] [PubMed]
[45] Atwa, M.A., Youssef, N. and Bayoumy, N.M. (2016) T-Helper 17 Cytokines (Interleukins 17, 21, 22, and 6, and Tumor Necrosis Factor-a) in Patients with Alopecia Areata: Association with Clinical Type and Severity. International Journal of Dermatology, 55, 666-672. [Google Scholar] [CrossRef] [PubMed]
[46] Han, Y.M., Sheng, Y.Y., Xu, F., Qi, S.S., Liu, X.J., Hu, R.M., et al. (2015) Imbalance of T-Helper 17 and Regulatory T Cells in Patients with Alopecia Areata. The Journal of Dermatology, 42, 981-988. [Google Scholar] [CrossRef] [PubMed]
[47] Ortolan, L.S., Kim, S.R., Crotts, S., et al. (2019) IL-12/IL-23 Neu-tralization Is Ineffective for Alopecia Areata in Mice and Humans. The Journal of Allergy and Clinical Immunology, 144, 1731-1734.e1. [Google Scholar] [CrossRef] [PubMed]
[48] Suárez-Fariñas, M., Ungar, B., Correa da Rosa, J., Ewald, D.A., Rozenblit, M., Gonzalez, J., Xu, H., Zheng, X., Peng, X., Estrada, Y.D., Dillon, S.R., Krueger, J.G. and Guttman-Yassky, E. (2015) RNA Sequencing Atopic Dermatitis Transcriptome Profiling Provides Insights into Novel Disease Mechanisms with Potential Therapeutic Implications. Journal of Allergy and Clinical Immunology, 135, 1218-1227. [Google Scholar] [CrossRef] [PubMed]
[49] Vakharia, P.P. and Silverberg, J.I. (2018) New Thera-pies for Atopic Dermatitis: Additional Treatment Classes. Journal of the American Academy of Dermatology, 78, S76-S83. [Google Scholar] [CrossRef] [PubMed]