|
[1]
|
Matos, T.R., O’Malley, J.T., Lowry, E.L., et al. (2017) Clinically Resolved Psoriatic Lesions Contain Psoriasis-Specific IL-17-Producing αβ T Cell Clones. Journal of Clinical Investigation, 127, 4031-4041. [Google Scholar] [CrossRef]
|
|
[2]
|
Brembilla, N.C., Senra, L. and Boehncke, W.H. (2018) The IL-17 Family of Cytokines in Psoriasis: IL-17A and Beyond. Frontiers in Immunology, 9, 1682. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Yang, D., Chen, X., Wang, J., Lou, Q., et al. (2019) Dysregulated Lung Commensal Bacteria Drive Interleukin-17B Production to Promote Pulmonary Fibrosis through Their Outer Mem-brane Vesicles. Immunity, 50, 692-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lee, Y., Clinton, J., Yao, C. and Chang, S.H. (2019) Interleu-kin-17D Promotes Pathogenicity during Infection by Suppressing CD8 T Cell Activity. Frontiers in Immunology, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yan, X., Tu, H., Liu, Y., Chen, T. and Cao, J. (2020) Inter-leukin-17D Aggravates Sepsis by Inhibiting Macrophage Phagocytosis. Critical Care Medicine, 48, e58-e65. [Google Scholar] [CrossRef]
|
|
[6]
|
Xu, M. and Dong, C. (2017) IL-25 in Allergic Inflamma-tion. Immunological Reviews, 278, 185-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Liu, Y., Lagowski, J.P., Gao, S., Raymond, J.H., White, C.R. and Ku-lesz-Martin, M.F. (2010) Regulation of the Psoriatic Chemokine CCL20 by E3 Ligases trim32 and Piasy in Keratinocytes. Journal of Investigative Dermatology, 130, 1384-1390. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ha, H.L., Wang, H., Pisitkun, P., et al. (2014) IL-17 Drives Psoriatic Inflammation via Distinct, Target Cell-Specific Mechanisms. Pro-ceedings of the National Academy of Sciences of the United States of America, 111, e3422-e3431. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Carrier, Y., Ma, H.L., Ramon, H.E., et al. (2011) Inter-Regulation of Th17 Cytokines and the IL-36 Cytokines in Vitro and in Vivo: Implications in Psoriasis Pathogenesis. Journal of In-vestigative Dermatology, 131, 2428-2437. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Michalek, I.M., Loring, B. and John, S.M. (2017) A Systematic Review of Worldwide Epidemiology of Psoriasis. Journal of the European Academy of Dermatology and Venereology, 31, 205-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fotiadou, C., Lazaridou, E., Sotiriou, E., et al. (2015) IL-17A, IL22, and IL-23 as Markers of Psoriasis Activity: A Cross-Sectional, Hospital-Based Study. Journal of Cutaneous Med-icine and Surgery, 19, 555-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Nanda, H., Ponnusamy, N., Odumpatta, R., et al. (2020) Explor-ing Genetic Targets of Psoriasis Using Genome Wide Association Studies (GWAS) for Drug Repurposing. 3 Biotech, 10, 43. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Gutowska-Owsiak, D., Schaupp, A.L., Salimi, M., et al. (2012) IL-17 Downregulates Filaggrin and Affects Keratinocyte Expression of Genes Associated with Cellular Adhesion. Experimental Dermatology, 21, 104-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Iznardo, H. and Puig, L. (2021) Exploring the Role of IL-36 Cytokines as a New Target in Psoriatic Disease. International Journal of Molecular Sciences, 22, 4344. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Soderstrom, C., Berstein, G., Zhang, W., et al. (2017) Ultra-Sensitive Measurement of IL-17A and IL-17F in Psoriasis Patient Serum and Skin. The AAPS Journal, 19, 1218-1222. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Fujishima, S., Watanabe, H., Kawaguchi, M., et al. (2010) In-volvement of IL-17F via the Induction of IL-6 in Psoriasis. Archives of Dermatological Research, 302, 499-505. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Senra, L., Stalder, R., Alvarez Martinez, D., Chizzolini, C., Boehncke, W.H. and Brembilla, N.C. (2016) Keratinocyte-Derived IL-17E Contributes to Inflammation in Psoriasis. Journal of Investigative Dermatology, 136, 1970-1980. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ong, X., Zhu, S., Shi, P., et al. (2011) IL-17RE Is the Functional Receptor for IL17C and Mediates Mucosal Immunity to Infection with Intestinal Pathogens. Nature Immunology, 12, 1151-1158. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Xu, M., Lu, H., Lee, Y.H., et al. (2018) An Interleu-kin-25-Mediated Autoregulatory Circuit in Keratinocytes Plays a Pivotal Role in Psoriatic Skin Inflammation. Immunity, 48, 787-798.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
López-Ferrer, A., Vilarrasa, E. and Puig, L. (2015) Secukinumab (AIN457) for the Treatment of Psoriasis. Expert Review of Clinical Immunology, 11, 1177-1188. [Google Scholar] [CrossRef]
|
|
[21]
|
Papp, K.A., Leonardi, C.L., Blauvelt, A., Reich, K., Korman, N.J., Ohtsuki, M., Paul, C., Ball, S., Cameron, G.S., Erickson, J., et al. (2018) Ixekizumab Treatment for Psoriasis: Inte-grated Efficacy Analysis of Three Double-Blinded, Controlled Studies (UNCOVER-1, UNCOVER-2, UNCOVER-3). British Journal of Dermatology, 178, 674-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Papp, K.A., Merola, J.F., Gottlieb, A.B., Griffiths, C.E.M., et al. (2018) Dual Neutralization of both Interleukin 17A and Interleukin 17F with Bimekizumab in Patients with Psoriasis: Results from BE ABLE 1, a 12-Week Randomized, Double-Blinded, Placebo-Controlled Phase 2b Trial. Journal of the American Academy of Dermatology, 79, 277- 286e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sabat, R., Jemec, G.B.E., Matusiak, Ł., Kimball, A.B., Prens, E. and Wolk, K. (2020) Hidradenitis Suppurativa. Nature Reviews Disease Primers, 6, 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Vinkel, C. and Thomsen, S.F. (2018) Hidradenitis Suppurativa: Causes, Features, and Current Treatments. Journal of Clinical and Aesthetic Dermatology, 11, 17-23.
|
|
[25]
|
Constantinou, C.A., Fragoulis, G.E. and Nikiphorou, E. (2019) Hidradenitis Suppurativa: Infection, Auto-immunity, or Both? Therapeutic Advances in Musculoskeletal Disease, 11. [Google Scholar] [CrossRef]
|
|
[26]
|
Del Duca, E., Morelli, P., Bennardo, L., Di Raimondo, C. and Nisticò, S.P. (2020) Cytokine Pathways and Investigational Target Therapies in Hidradenitis Suppurativa. International Journal of Molecular Sciences, 21, 8436. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wolk, K., Join‐Lambert, O. and Sabat, R. (2020) Aetiology and Patho-genesis of Hidradenitis Suppurativa. British Journal of Dermatology, 183, 999-1010. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Prussick, L., Rothstein, B., Joshipura, D., et al. (2019) Open-Label, Inves-tigator-Initiated, Single-Site Exploratory Trial Evaluating Secukinumab, an Anti-Interleukin-17A Monoclonal Antibody, for Patients with Moderate-to-Severe Hidradenitis Suppurativa. British Journal of Dermatology, 181, 609-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Frew, J.W., Navrazhina, K., Grand, D., et al. (2020) The Effect of Subcuta-neous Brodalumab on Clinical Disease Activity in Hidradenitis Suppurativa: An Open-Label Cohort Study. Journal of the American Academy of Dermatology, 83, 1341-1348. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Maverakis, E., Marzano, A.V., Le, S.T., et al. (2020) Pyoderma Gangrenosum. Nature Reviews Disease Primers, 6, 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ahn, C., Negus, D. and Huang, W. (2018) Pyoderma Gangreno-sum: A Review of Pathogenesis and Treatment. Expert Review of Clinical Immunology, 14, 225-233. [Google Scholar] [CrossRef]
|
|
[32]
|
Caproni, M., Antiga, E., Volpi, W., et al. (2015) The Treg/Th17 Cell Ratio Is Reduced in the Skin Lesions of Patients with Pyoderma Gangrenosum. British Journal of Der-matology 173, 275-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Marzano, A.V., Damiani, G., Ceccherini, I., Berti, E., Gattorno, M. and Cugno, M. (2017) Autoinflammation in Pyoderma Gangrenosum and Its Syndromic Form (Pyo-derma Gangrenosum, Acne and Suppurative Hidradenitis). British Journal of Dermatology 176, 1588-1598. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lauffer, F., Seiringer, P., Böhmer, D., Oesterlin, C. and Eyerich, K. (2021) 044 Safety and Efficacy of Anti-IL-17 (Secukinumab) for the Treatment of Pyoderma Gangrenosum. Journal of Investi-gative Dermatology, 141, S156. [Google Scholar] [CrossRef]
|
|
[35]
|
Feldmeyer, L., Mylonas, A., Demaria, O., et al. (2017) Interleukin 23-Helper T Cell 17 Axis as a Treatment Target for Pityriasis Rubra Pilaris. JAMA Dermatology, 153, 304-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Napolitano, M., Abeni, D. and Didona, B. (2018) Biologics for Pityriasis Rubra Pilaris Treatment: A Review of the Literature. Journal of the American Academy of Dermatology, 79, 353-359.e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Schuster, D., Pfister-Wartha, A., Bruckner-Tuderman, L. and Schempp, C.M. (2016) Successful Treatment of Refractory Pityriasis Rubra Pilaris with Secukinumab. JAMA Derma-tology, 152, 1278-1280. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Hughes, M., Allanore, Y., Chung, L., et al. (2020) Raynaud Phenomenon and Digital Ulcers in Systemic Sclerosis. Nature Reviews Rheumatology, 16, 208-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cutolo, M., Soldano, S. and Smith, V. (2019) Pathophysiology of Systemic Sclerosis: Current Understanding and New Insights. Expert Review of Clinical Immunology, 15, 753-7640. [Google Scholar] [CrossRef]
|
|
[40]
|
Gonçalves, R.S.G., Pereira, M.C., Dantas, A.T., et al. (2018) IL-17 and Related Cytokines Involved in Systemic Sclerosis: Perspectives. Autoimmunity, 51, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gonçalves, R.S.G., Pereira, M.C., Dantas, A.T., Almeida, A.R., Rego, M., Lima, E.A., et al. (2019) CCL3, IL-7, IL-13 and IFNg Transcripts Are Increased in Skin’s Biopsy of Systemic Sclerosis. Experimental Dermatology, 28, 1172-1175. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yang, X., Yang, J., Xing, X., Wan, L. and Li, M. (2014) Increased Fre-quency of Th17 Cells in Systemic Sclerosis Is Related to Disease Activity and Collagen Overproduction. Arthritis Re-search & Therapy, 16, R4. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Liu, M., Yang, J., Xing, X., Cui, X. and Li, M. (2014) Interleukin-17A Pro-motes Functional Activation of Systemic Sclerosis Patient-Derived Dermal Vascular Smooth Muscle Cells by Extracellu-lar-Regulated Protein Kinases Signalling Pathway. Arthritis Research & Therapy, 16, 4223. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Luchsinger, I., Knöpfel, N., Theiler, M., et al. (2020) Secuki-numab Therapy for Netherton Syndrome. JAMA Dermatology, 156, 907-911. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Atwa, M.A., Youssef, N. and Bayoumy, N.M. (2016) T-Helper 17 Cytokines (Interleukins 17, 21, 22, and 6, and Tumor Necrosis Factor-a) in Patients with Alopecia Areata: Association with Clinical Type and Severity. International Journal of Dermatology, 55, 666-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Han, Y.M., Sheng, Y.Y., Xu, F., Qi, S.S., Liu, X.J., Hu, R.M., et al. (2015) Imbalance of T-Helper 17 and Regulatory T Cells in Patients with Alopecia Areata. The Journal of Dermatology, 42, 981-988. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ortolan, L.S., Kim, S.R., Crotts, S., et al. (2019) IL-12/IL-23 Neu-tralization Is Ineffective for Alopecia Areata in Mice and Humans. The Journal of Allergy and Clinical Immunology, 144, 1731-1734.e1. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Suárez-Fariñas, M., Ungar, B., Correa da Rosa, J., Ewald, D.A., Rozenblit, M., Gonzalez, J., Xu, H., Zheng, X., Peng, X., Estrada, Y.D., Dillon, S.R., Krueger, J.G. and Guttman-Yassky, E. (2015) RNA Sequencing Atopic Dermatitis Transcriptome Profiling Provides Insights into Novel Disease Mechanisms with Potential Therapeutic Implications. Journal of Allergy and Clinical Immunology, 135, 1218-1227. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Vakharia, P.P. and Silverberg, J.I. (2018) New Thera-pies for Atopic Dermatitis: Additional Treatment Classes. Journal of the American Academy of Dermatology, 78, S76-S83. [Google Scholar] [CrossRef] [PubMed]
|