[1]
|
Xue, R., Gui, D., Zheng, L., et al. (2017) Mechanistic Insight and Management of Diabetic Nephropathy: Recent Pro-gress and Future Perspective. Journal of Diabetes Research, 2017, Article ID: 1839809.
https://doi.org/10.1155/2017/1839809
|
[2]
|
柯昌荣, 赵树勇, 玄美燕, 等. 中国1990-2019年慢性肾病疾病负担及变化趋势分析[J]. 中国预防医学杂志, 2021, 22(10): 757-761.
|
[3]
|
熊思, 彭辉勇, 柳迎昭. MicroRNAs在糖尿病肾病中的研究进展[J]. 中国现代医学杂志, 2019, 29(1): 60-66.
|
[4]
|
田莎莎, 杨晓鹏, 郭珲. 微小RNA在糖尿病肾病中的研究进展[J]. 中国医药导报, 2020, 17(27): 58-61.
|
[5]
|
王瑞鹏, 陈震, 张培松. 糖尿病肾病患者血清中miR-21表达及作用机制[J]. 黑龙江医药科学, 2022, 45(5): 36-38.
|
[6]
|
陈月英, 罗晓星, 谢咏梅, 等. 糖尿病肾病患者尿液miR-192的表达及临床意义[J]. 检验医学与临床, 2018, 15(18): 2711-2714.
|
[7]
|
晏强, 邹耀霜, 眭维国, 等. MicroRNA在肾脏疾病和生理中的研究进展[J]. 医学综述, 2018, 24(3): 428-433.
|
[8]
|
毛玉熠, 李格菲, 韩睿. MicroRNAs调控糖尿病肾病发展的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(2): 133-138.
|
[9]
|
韩琦, 朱伟, 王晓慧, 等. miR-638在糖尿病肾病中的研究进展[J]. 华南国防医学杂志, 2020, 34(8): 591-593.
|
[10]
|
Cabral, A., Da, S.C.D., Monteiro, S.M., et al. (2019) Differential MicroRNA Profile in Operational Tol-erance: A Potential Role in Favoring Cell Survival. Frontiers in Immunology, 10, Article 740.
https://doi.org/10.3389/fimmu.2019.00740
|
[11]
|
Loboda, A., Sobczak, M., Jozkowicz, A. and Dulak, J. (2016) TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators of Inflammation, 2016, Article ID: 8319283. https://doi.org/10.1155/2016/8319283
|
[12]
|
林森, 周枫林, 胡亚哲. 不同强度运动对糖尿病造模大鼠的血清IL-6、β2-MG及肾脏TGF-β1蛋白表达的影响[J]. 华南国防医学杂志, 2019, 33(5): 295-299.
|
[13]
|
Xia, Y., Wu, Y., Liu, B., Wang, P.L. and Chen,Y.J. (2014) Downregulation of miR-638 Promotes Invasion and Proliferation by Regulat-ing SOX2 and Induces EMT in NSCLC. FEBS Letters, 588, 2238-2245.
https://doi.org/10.1016/j.febslet.2014.05.002
|
[14]
|
Hu, P., Guan, K., Feng, Y., et al. (2017) miR-638 Inhibits Im-mature Sertoli Cell Growth by Indirectly Inactivating PI3K/AKT Pathway via SPAG1 Gene. Cell Cycle, 16, 2290-2300. https://doi.org/10.1080/15384101.2017.1380130
|
[15]
|
Wang, J., Bai, X., Song, Q., et al. (2015) miR-223 Inhibits Lipid Deposition and Inflammation by Suppressing Toll-Like Receptor 4 Signaling in Macrophages. International Jour-nal of Molecular Sciences, 16, 24965-24982.
https://doi.org/10.3390/ijms161024965
|
[16]
|
Zhuang, G., Meng, C., Guo, X., et al. (2012) A Novel Regulator of Macrophage Activation: miR-223 in Obesity-Associated Adipose Tissue Inflammation. Circulation, 125, 2892-2903.
https://doi.org/10.1161/CIRCULATIONAHA.111.087817
|
[17]
|
You, Z.P., Zhang, Y.L., Li, B.Y., Zhu, X.G. and Shi, K. (2018) Bioinformatics Analysis of Weighted Genes in Diabetic Retinopathy. Investigative Ophthalmology & Vis-ual Science, 59, 5558-5563. https://doi.org/10.1167/iovs.18-25515
|
[18]
|
Li, Y., Deng, S., Peng, J., et al. (2019) MicroRNA-223 Is Essential for Maintaining Functional β-Cell Mass during Diabetes through Inhibiting Both FOXO1 and SOX6 Pathways. Journal of Biological Chemistry, 294, 10438-10448.
https://doi.org/10.1074/jbc.RA119.007755
|
[19]
|
Wang, L.P., Gao, Y.Z., Song, B., et al. (2019) MicroRNAs in the Progress of Diabetic Nephropathy: A Systematic Review and Meta-Analysis. Evidence-Based Complementary and Al-ternative Medicine, 2019, Article ID: 3513179.
https://doi.org/10.1155/2019/3513179
|
[20]
|
陈娟, 陈拉斯, 陈丽, 等. miR-223-3p/SOX6轴调控糖尿病肾病炎症反应与肾间质纤维化的机制研究[J]. 徐州医科大学学报, 2021, 41(12): 873-880.
|
[21]
|
Khordadmehr, M., Shahbazi, R., Sadreddini, S. and Baradaran, B. (2019) miR-193: A New Weapon against Cancer. Journal of Cellular Physiology, 234, 16861-16872. https://doi.org/10.1002/jcp.28368
|
[22]
|
Zhu, Y.N., Ao, Y., Li, B., et al. (2018) De-velopmental Disorder of Podocytes and the Related Renal Diseases. Hereditas, 40, 116-125.
|
[23]
|
Wan, J., Hou, X., Zhou, Z., et al. (2017) WT1 Ameliorates Podocyte Injury via Repression of EZH2/β-Catenin Pathway in Diabetic Nephropathy. Free Radical Biology and Medicine, 108, 280-299.
https://doi.org/10.1016/j.freeradbiomed.2017.03.012
|
[24]
|
Li, J., Chen, Y., Shen, L.L. and Deng, Y.Y. (2019) Im-provement of Membranous Nephropathy by Inhibition of miR-193a to Affect Podocytosis via Targeting WT1. Journal of Cellular Biochemistry, 120, 3438-3446.
https://doi.org/10.1002/jcb.27616
|
[25]
|
Wu, C., Wang, S., Xu, C., et al. (2015) WT1 Enhances Proliferation and Impedes Apoptosis in KRAS Mutant NSCLC via Targeting cMyc. Cellular Physiology and Biochemistry, 35, 647-662. https://doi.org/10.1159/000369726
|
[26]
|
高飞, 张欣欣, 杨冰, 等. 微小RNA-193a调控Wilms瘤基因1促进小鼠糖尿病肾病足细胞凋亡[J]. 解剖学报, 2021, 52(5): 728-736.
|
[27]
|
白小岗, 王晶, 白婷, 等. miR-9、miR-214在糖尿病肾病中的表达及临床意义[J]. 临床肾脏病杂志, 2021, 21(12): 981-985.
|
[28]
|
Xiao, Y., Guo, S., Zhang, Y., et al. (2017) Diabetic Nephropathy: Serum miR-9 Confers a Poor Prognosis in and Is Associated with Level Changes of Vascular Endothelial Growth Factor and Pigment Epithelium-Derived Factor. Biotechnology Letters, 39, 1583-1590. https://doi.org/10.1007/s10529-017-2390-6
|
[29]
|
Yue, P.J., Jing, L.J., Zhao, X.Y., Zhu, H.C. and Teng, J.F. (2019) Down-Regulation of Taurine-up-Regulated Gene 1 Attenuates Inflammation by Sponging miR-9-5p via Targeting NF-κB1/p50 in Multiple Sclerosis. Life Sciences, 233, Article ID: 116731. https://doi.org/10.1016/j.lfs.2019.116731
|
[30]
|
Shi, Y., Sun, C.F., Ge, W.H., Du, Y.P. and Hu, N.B. (2020) Circu-lar RNA VMA21 Ameliorates Sepsis-Associated Acute Kidney Injury by Regulating miR-9-3p/SMG1/Inflammation Axis and Oxidative Stress. Journal of Cellular and Molecular Medicine, 24, 11397-11408. https://doi.org/10.1111/jcmm.15741
|
[31]
|
Ma, Z., Li, L., Livingston, M.J., et al. (2020) p53/MicroRNA-214/ULK1 Axis Impairs Renal Tubular Autophagy in Diabetic Kidney Disease. Journal of Clinical Investigation, 130, 5011-5026. https://doi.org/10.1172/JCI135536
|
[32]
|
Eissa, S., Matboli, M. and Bekhet, M.M. (2016) Clinical Verification of a Novel Urinary MicroRNA Panal: 133b, -342 and -30 as Biomarkers for Diabetic Nephropathy Identified by Bioinfor-matics Analysis. Biomedicine & Pharmacotherapy, 83, 92-99. https://doi.org/10.1016/j.biopha.2016.06.018
|