|
[1]
|
Zhou, J. and Troyanskaya, O. (2014) Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction. Proceedings of the 31st International Conference on Machine Learning, Beijing, 22-24 June 2014, 745-753.
|
|
[2]
|
Yaseen, A. and Li, Y. (2014) Template-Based C8-Scorpion: A Protein 8-State Secondary Structure Prediction Method Using Structural Information and Context-Based Features. BMC Bioinformatics, 15, Article No. S3. [Google Scholar] [CrossRef]
|
|
[3]
|
Kabsch, W. and Sander, C. (1983) Dictionary of Protein Sec-ondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers, 22, 2577-2637. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Senior, A.W., Evans, R., Jumper, J., et al. (2020) Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature, 577, 706-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
骆建新, 郑崛村, 马用信, 张思仲. 人类基因组计划与后基因组时代[J]. 中国生物工程杂志, 2003, 23(11): 87-94.
|
|
[6]
|
Jumper, J., Evans, R., Pritzel, A., et al. (2021) Highly Ac-curate Protein Structure Prediction with AlphaFold. Nature, 596, 583-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Busia, A. and Jaitly, N. (2017) Next-Step Conditioned Deep Convolutional Neural Networks Improve Protein Secondary Structure Prediction. ArXiv Preprint ArXiv: 1702.03865.
|
|
[8]
|
Zhang, B., Li, J. and Lü, Q. (2018) Prediction of 8-State Protein Secondary Structures by a Novel Deep Learning Architecture. BMC Bioinformatics, 19, Article No. 293. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Krieger, S. and Kececioglu, J. (2020) Boosting the Accuracy of Protein Secondary Structure Prediction through Nearest Neighbor Search and Method Hybridization. Bioinformatics, 36, i317-i325. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Uddin, M.R., Mahbub, S., Rahman, M.S. and Bayzid, M.S. (2020) SAINT: Self-Attention Augmented Inception-Inside-Inception Network Improves Protein Secondary Structure Prediction. Bioinformatics, 36, 4599-4608. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sonsare, P.M. and Gunavathi, C. (2021) Cascading 1D-Convnet Bidirectional Long Short Term Memory Network with Modified COCOB Optimizer: A Novel Approach for Protein Secondary Structure Prediction. Chaos, Solitons & Fractals, 153, Article ID: 111446. [Google Scholar] [CrossRef]
|
|
[12]
|
Zvelebil, M. and Baum, J.O. (2007) Understanding Bioinformat-ics. Garland Science, London. [Google Scholar] [CrossRef]
|
|
[13]
|
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2020) Generative Ad-versarial Nets. Communications of the ACM, 63, 139-144. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, R., Xiao, X., Guo, B., Qin, Q. and Chen, R. (2018) An Effective Image Denoising Method for UAV Images via Improved Gener-ative Adversarial Networks. Sensors, 18, Article No. 1985. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yu, S., Chen, H., Reyes, E.B.G. and Poh, N. (2017) GaitGAN: Invariant Gait Feature Extraction Using Generative Adversarial Net-works. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, 21-26 July 2017, 532-539. [Google Scholar] [CrossRef]
|
|
[17]
|
赵亚武, 张华兰, 刘毅慧. 基于生成对抗和卷积神经网络的蛋白质二级结构预测[J]. 计算生物学, 2020, 10(4): 49-56.
|
|
[18]
|
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90. [Google Scholar] [CrossRef]
|
|
[19]
|
He, K., Zhang, X., Ren, S. and Sun, J. (2016) Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Ve-gas, 27-30 June 2016, 770-778. [Google Scholar] [CrossRef]
|
|
[20]
|
Wang, G. and Dunbrack, R.L. (2005) PISCES: Recent Improvements to a PDB Sequence Culling Server. Nucleic Acids Research, 33, W94-W98. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. and Tramontano, A. (2014) Critical Assessment of Methods of Protein Structure Prediction (CASP)—Round X. Proteins: Structure, Func-tion, and Bioinformatics, 82, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. and Tramontano, A. (2016) Critical Assessment of Methods of Protein Structure Prediction: Progress and New Directions in Round XI. Pro-teins: Structure, Function, and Bioinformatics, 84, 4-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. and Tramontano, A. (2018) Critical Assessment of Methods of Protein Structure Prediction (CASP)—Round XII. Proteins: Structure, Function, and Bioinformatics, 86, 7-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. and Moult, J. (2019) Critical Assessment of Methods of Protein Structure Prediction (CASP)—Round XIII. Proteins: Structure, Function, and Bioinformatics, 87, 1011-1020. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K. and Moult, J. (2021) Critical Assessment of Methods of Protein Structure Prediction (CASP)—Round XIV. Proteins: Structure, Function, and Bioinformatics, 89, 1607-1617. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Cuff, J.A. and Barton, G.J. (1999) Evaluation and Improvement of Multi-ple Sequence Methods for Protein Secondary Structure Prediction. Proteins: Structure, Function, and Bioinformatics, 34, 508-519. [Google Scholar] [CrossRef]
|