[1]
|
Paloczi, K. (1999) Immunophenotypic and Functional Characterization of Human Umbilical Cord Blood Mononuclear Cells. Leukemia, 13, S87-S89. https://doi.org/10.1038/sj.leu.2401318
|
[2]
|
Kaya, E. and Yilmaz, Y. (2022) Epidemiology, Natural History, and Diagnosis of Metabolic Dysfunction-Associated Fatty Liver Disease: A Comparative Review with Nonalcoholic Fatty Liver Disease. Therapeutic Advances in Endocrinology and Metabolism, 13. https://doi.org/10.1177/20420188221139650
|
[3]
|
Xiao, J., Wang, F., Wong, N., Lv, Y., Liu, Y., Zhong, J., et al. (2020) Epidemiological Realities of Alcoholic Liver Disease: Global Burden, Research Trends, and Therapeutic Promise. Gene Expression, 20, 105-118. https://doi.org/10.3727/105221620x15952664091823
|
[4]
|
Zhang, J., Zhai, H., Yu, P., Shang, D., Mo, R., Li, Z., et al. (2022) Human Umbilical Cord Blood Mononuclear Cells Ameliorate CCl4-Induced Acute Liver Injury in Mice via Inhibiting Inflammatory Responses and Upregulating Peripheral Interleukin-22. Frontiers in Pharmacology, 13, Article ID: 924464. https://doi.org/10.3389/fphar.2022.924464
|
[5]
|
Tran, N.T., Penny, T.R., Chan, K.Y., Tang, T., Papagianis, P.C., Sepehrizadeh, T., et al. (2024) Early Administration of Umbilical Cord Blood Cells Following Brief High Tidal Volume Ventilation in Preterm Sheep: A Cautionary Tale. Journal of Neuroinflammation, 21, Article No. 121. https://doi.org/10.1186/s12974-024-03053-3
|
[6]
|
Yuan, M., Yao, L., Chen, P., Wang, Z., Liu, P., Xiong, Z., et al. (2023) Human Umbilical Cord Mesenchymal Stem Cells Inhibit Liver Fibrosis via the MicroRNA-148a-5p/slit3 Axis. International Immunopharmacology, 125, Article ID: 111134. https://doi.org/10.1016/j.intimp.2023.111134
|
[7]
|
Xu, X., Huang, X., Sun, J., Wang, R., Yao, J., Han, W., et al. (2021) Recent Progress of Inertial Microfluidic-Based Cell Separation. The Analyst, 146, 7070-7086. https://doi.org/10.1039/d1an01160j
|
[8]
|
De Rosa, A., McGaughey, S., Magrath, I. and Byrt, C. (2023) Molecular Membrane Separation: Plants Inspire New Technologies. New Phytologist, 238, 33-54. https://doi.org/10.1111/nph.18762
|
[9]
|
Wang, M., Yang, Y., Yang, D., Luo, F., Liang, W., Guo, S., et al. (2009) The Immunomodulatory Activity of Human Umbilical Cord Blood‐Derived Mesenchymal Stem Cells in Vitro. Immunology, 126, 220-232. https://doi.org/10.1111/j.1365-2567.2008.02891.x
|
[10]
|
Ahn, S.Y., Maeng, Y., Kim, Y.R., Choe, Y.H., Hwang, H.S. and Hyun, Y. (2020) In Vivo Monitoring of Dynamic Interaction between Neutrophil and Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell in Mouse Liver during Sepsis. Stem Cell Research & Therapy, 11, Article No. 44. https://doi.org/10.1186/s13287-020-1559-4
|
[11]
|
Hua, Q., Zhang, Y., Li, H., Li, H., Jin, R., Li, L., et al. (2022) Human Umbilical Cord Blood-Derived MSCS Trans-Differentiate into Endometrial Cells and Regulate Th17/Treg Balance through NF-κB Signaling in Rabbit Intrauterine Adhesions Endometrium. Stem Cell Research & Therapy, 13, Article No. 301. https://doi.org/10.1186/s13287-022-02990-1
|
[12]
|
Chen, Y., Xu, Y., Chi, Y., Sun, T., Gao, Y., Dou, X., et al. (2024) Efficacy and Safety of Human Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Refractory Immune Thrombocytopenia: A Prospective, Single Arm, Phase I Trial. Signal Transduction and Targeted Therapy, 9, Article No. 102. https://doi.org/10.1038/s41392-024-01793-5
|
[13]
|
Liu, J., Xu, W., Xu, H., Zhang, S. and Jin, J. (2022) Therapeutic Potential of Umbilical Cord MSC in Crohn’s Disease Is Related to Regulation of the Relative Content and Function of Th17 Lymphocytes. Bulletin of Experimental Biology and Medicine, 172, 658-663. https://doi.org/10.1007/s10517-022-05450-1
|
[14]
|
Muthu, B., Manivannan, P., Subbaiah, M., Vanju, S. and Basavarajegowda, A. (2024) Effect of Fetal Distress on Viability and Yield of Umbilical Cord Blood Stem Cells—A Prospective Comparative Study. Hematology, Transfusion and Cell Therapy. https://doi.org/10.1016/j.htct.2024.03.004
|
[15]
|
Xi, Y., Yue, G., Gao, S., Ju, R. and Wang, Y. (2022) Human Umbilical Cord Blood Mononuclear Cells Transplantation for Perinatal Brain Injury. Stem Cell Research & Therapy, 13, Article No. 458. https://doi.org/10.1186/s13287-022-03153-y
|
[16]
|
Than, U.T.T., Le, H.T., Hoang, D.H., Nguyen, X., Pham, C.T., Bui, K.T.V., et al. (2020) Induction of Antitumor Immunity by Exosomes Isolated from Cryopreserved Cord Blood Monocyte-Derived Dendritic Cells. International Journal of Molecular Sciences, 21, Article No. 1834. https://doi.org/10.3390/ijms21051834
|
[17]
|
Hammerich, L. and Tacke, F. (2023) Hepatic Inflammatory Responses in Liver Fibrosis. Nature Reviews Gastroenterology & Hepatology, 20, 633-646. https://doi.org/10.1038/s41575-023-00807-x
|
[18]
|
Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G. and Pantopoulos, K. (2023) Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants, 12, Article No. 1653. https://doi.org/10.3390/antiox12091653
|
[19]
|
Blas-García, A. and Apostolova, N. (2023) Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants, 12, Article No. 1567. https://doi.org/10.3390/antiox12081567
|
[20]
|
Dewidar, B., Meyer, C., Dooley, S. and Meindl-Beinker, A.N. (2019) TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis—Updated 2019. Cells, 8, Article No. 1419. https://doi.org/10.3390/cells8111419
|
[21]
|
Yang, Y., Sun, M., Li, W., Liu, C., Jiang, Z., Gu, P., et al. (2021) Rebalancing TGF‐β/smad7 Signaling via Compound Kushen Injection in Hepatic Stellate Cells Protects against Liver Fibrosis and Hepatocarcinogenesis. Clinical and Translational Medicine, 11, e410. https://doi.org/10.1002/ctm2.410
|
[22]
|
Bonnardel, J., T’Jonck, W., Gaublomme, D., Browaeys, R., Scott, C.L., Martens, L., et al. (2019) Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 51, 638-654.e9. https://doi.org/10.1016/j.immuni.2019.08.017
|
[23]
|
Cai, J., Hu, M., Chen, Z. and Ling, Z. (2021) The Roles and Mechanisms of Hypoxia in Liver Fibrosis. Journal of Translational Medicine, 19, Article No. 186. https://doi.org/10.1186/s12967-021-02854-x
|
[24]
|
Zhang, G., Sun, H., Zheng, L., Guo, J. and Zhang, X. (2017) In Vivo Hepatic Differentiation Potential of Human Umbilical Cord-Derived Mesenchymal Stem Cells: Therapeutic Effect on Liver Fibrosis/cirrhosis. World Journal of Gastroenterology, 23, 8152-8168. https://doi.org/10.3748/wjg.v23.i46.8152
|
[25]
|
Wu, M. and Meng, Q. (2021) Current Understanding of Mesenchymal Stem Cells in Liver Diseases. World Journal of Stem Cells, 13, 1349-1359. https://doi.org/10.4252/wjsc.v13.i9.1349
|
[26]
|
Lee, Y. and Seki, E. (2023) In Vivo and in Vitro Models to Study Liver Fibrosis: Mechanisms and Limitations. Cellular and Molecular Gastroenterology and Hepatology, 16, 355-367. https://doi.org/10.1016/j.jcmgh.2023.05.010
|
[27]
|
Li, Z., Zhou, X., Han, L., Shi, M., Xiao, H., Lin, M., et al. (2023) Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation for Patients with Decompensated Liver Cirrhosis. Journal of Gastrointestinal Surgery, 27, 926-931. https://doi.org/10.1007/s11605-022-05528-1
|
[28]
|
Álvarez-Mercado, A.I., Sáez-Lara, M.J., García-Mediavilla, M.V., Sánchez-Campos, S., Abadía, F., Cabello-Donayre, M., et al. (2008) Xenotransplantation of Human Umbilical Cord Blood Mononuclear Cells to Rats with D-Galactosamine-Induced Hepatitis. Cell Transplantation, 17, 845-857. https://doi.org/10.3727/096368908786516837
|
[29]
|
Hoblos, R. and Kefalakes, H. (2022) Immunology of Hepatitis D Virus Infection: General Concepts and Present Evidence. Liver International, 43, 47-59. https://doi.org/10.1111/liv.15424
|
[30]
|
Ma, H., Yan, Q., Ma, J., Li, D. and Yang, J. (2024) Overview of the Immunological Mechanisms in Hepatitis B Virus Reactivation: Implications for Disease Progression and Management Strategies. World Journal of Gastroenterology, 30, 1295-1312. https://doi.org/10.3748/wjg.v30.i10.1295
|
[31]
|
Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A. and Yousefi, M. (2019) Human Umbilical Cord Mesenchymal Stem Cell‐Derived Extracellular Vesicles: A Novel Therapeutic Paradigm. Journal of Cellular Physiology, 235, 706-717. https://doi.org/10.1002/jcp.29004
|
[32]
|
Zhang, Z., Lin, H., Shi, M., Xu, R., Fu, J., Lv, J., et al. (2012) Human Umbilical Cord Mesenchymal Stem Cells Improve Liver Function and Ascites in Decompensated Liver Cirrhosis Patients. Journal of Gastroenterology and Hepatology, 27, 112-120. https://doi.org/10.1111/j.1440-1746.2011.07024.x
|
[33]
|
Um, S., Ha, J., Choi, S.J., Oh, W. and Jin, H.J. (2020) Prospects for the Therapeutic Development of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. World Journal of Stem Cells, 12, 1511-1528. https://doi.org/10.4252/wjsc.v12.i12.1511
|
[34]
|
Marengo, A., Rosso, C. and Bugianesi, E. (2016) Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annual Review of Medicine, 67, 103-117. https://doi.org/10.1146/annurev-med-090514-013832
|
[35]
|
Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362. https://doi.org/10.1016/s0140-6736(22)01200-4
|
[36]
|
Zumwalde, N.A. and Gumperz, J.E. (2018) Modeling Human Antitumor Responses in Vivo Using Umbilical Cord Blood-Engrafted Mice. Frontiers in Immunology, 9, Article No. 54. https://doi.org/10.3389/fimmu.2018.00054
|
[37]
|
Elmahdy, N.A., Sokar, S.S., Salem, M.L., Sarhan, N.I. and Abou-Elela, S.H. (2017) Anti-Fibrotic Potential of Human Umbilical Cord Mononuclear Cells and Mouse Bone Marrow Cells in CCl4-Induced Liver Fibrosis in Mice. Biomedicine & Pharmacotherapy, 89, 1378-1386. https://doi.org/10.1016/j.biopha.2017.03.007
|
[38]
|
Yin, F., Wang, W. and Jiang, W. (2019) Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Liver Fibrosis in Vitro and in Vivo: From Biological Characteristics to Therapeutic Mechanisms. World Journal of Stem Cells, 11, 548-564. https://doi.org/10.4252/wjsc.v11.i8.548
|