脐带血单个核细胞在肝病治疗中的应用前景
The Application Prospects of Umbilical Cord Blood Mononuclear Cells in the Treatment of Liver Diseases
摘要: 脐带血单个核细胞(Umbilical cord blood-mononuclear cells, UCB-MNCs)由于其独特的干细胞来源及显著的免疫调节特性,近年来在肝病治疗领域引起了广泛的关注。肝病,尤其是肝纤维化、肝炎和肝癌,已成为全球公共健康面临的重大挑战。尽管传统治疗方法的效果有限,UCB-MNCs凭借其再生与修复的潜力,展现出良好的临床应用前景。本文旨在深入分析UCB-MNCs在肝病治疗中的应用现状,探讨其作用机制,回顾相关临床研究的进展,并展望未来的发展方向。通过对相关文献的系统性梳理,我们揭示了UCB-MNCs在促进肝脏再生及免疫调节中的关键作用,展望了未来研究的潜在方向,以期为UCB-MNCs在肝病治疗中的应用提供更为明确的指导。
Abstract: Umbilical cord blood mononuclear cells (UCB-MNCs), due to their unique stem cell source and significant immunomodulatory properties, have garnered widespread attention in recent years in the field of liver disease treatment. Liver diseases, especially liver fibrosis, hepatitis, and liver cancer, have become major challenges in global public health. Although the effects of traditional treatment methods are limited, UCB-MNCs show promising clinical potential with their regenerative and reparative capabilities. This paper aims to analyze the current applications of UCB-MNCs in liver disease treatment, explore their mechanisms of action, review the progress of related clinical studies, and look ahead to future developments. By systematically reviewing relevant literature, we highlight the key roles of UCB-MNCs in promoting liver regeneration and immunomodulation, and anticipate potential directions for future research, providing clearer guidance for the application of UCB-MNCs in liver disease treatment.
文章引用:刘雪纯, 荆雪. 脐带血单个核细胞在肝病治疗中的应用前景[J]. 临床医学进展, 2024, 14(11): 888-893. https://doi.org/10.12677/acm.2024.14112959

1. 引言

脐带血单个核细胞(UCB-MNCs)是从新生儿脐带血中提取的细胞群体,主要包括淋巴细胞、单核细胞及其他血液成分[1]。这些细胞展现出优异的增殖能力和多向分化潜力,能够分泌多种细胞因子并具有免疫调节功能,在多种疾病的治疗中显示出潜在的应用价值,尤其是在肝病治疗方面,UCB-MNCs可能通过促进肝细胞再生、改善肝功能和调节免疫反应等机制发挥作用。肝病在全球范围内普遍存在,特别是非酒精性脂肪性肝病(NAFLD)和酒精性肝病(ALD)的发病率逐年上升,给公共卫生带来了严峻挑战。根据最新的流行病学研究,NAFLD的全球患病率已达到25% [2],而ALD相关的死亡率也在逐年上升[3]。肝病的临床挑战主要表现在早期诊断的困难、治疗选择的有限以及疾病进展的迅速,这使得探索新的治疗策略显得尤为重要。

UCB-MNCs在肝病治疗中的潜在应用价值正逐渐受到重视。一方面,UCB-MNCs能够通过其免疫调节特性减轻肝脏的炎症反应,促进肝细胞的修复与再生[4];另一方面,UCB-MNCs的应用可能减少肝病患者对传统治疗方法的依赖,从而减轻药物的副作用,改善患者的生活质量。有研究显示,脐带血来源的细胞在动物模型中对肝损伤具有显著的修复效果[5] [6]。因此,进一步研究UCB-MNCs在肝病领域的应用将为肝病的治疗提供新的思路与方法。

2. 脐带血单个核细胞的生物学特性

2.1. 细胞组成与分离技术

脐带血单个核细胞(UCB-MNCs)主要包括淋巴细胞、单核细胞和少量的粒细胞。这些细胞在生物医学研究和临床治疗中具有重要的应用价值。脐带血的采集相对简单且无创,能够在分娩后迅速获得。分离技术方面,常用的方法包括密度梯度离心法和免疫磁珠分离法。密度梯度离心法通过不同细胞的密度差异,将细胞分层,从而实现分离;而免疫磁珠分离法则利用特异性抗体结合到目标细胞表面,再通过磁场分离出标记的细胞。近年来,随着微流控技术的发展,基于微流体的细胞分离方法逐渐兴起,能够实现高效、快速和高纯度的细胞分离,这对脐带血单个核细胞的研究与应用具有重要意义[7] [8]

2.2. 干细胞特性及其免疫调节功能

UCB-MNCs富含多种干细胞(stem cells),特别是间充质干细胞(Mesenchymal stem cells, MSC)和造血干细胞。这些干细胞具备自我更新及多向分化的特性,使其在再生医学领域展现出显著的应用前景。研究结果表明,脐带血中的MSC不仅能够向多种细胞类型分化,还具备显著的免疫调节能力[9] [10]。这些细胞通过分泌多种细胞因子和生长因子来抑制T细胞的增殖和活化,从而调控免疫反应[11]。此外,脐带血单个核细胞在自身免疫性疾病及移植排斥反应的治疗中也表现出良好的前景[12]。例如,脐带血来源的MSC在克罗恩病的干预中,通过调节Th17淋巴细胞的功能和相对丰度,显示出其治疗潜力[13] [14]。因此,脐带血单个核细胞的干细胞特性及免疫调节功能,使其成为临床应用的重要研究领域[15] [16]

3. 脐带血单个核细胞在肝纤维化中的应用

3.1. 肝纤维化的病理生理机制

肝纤维化是一种以肝细胞损伤为基础的病理状态,伴随肝脏内纤维组织的异常增生,其病理生理机制复杂多变。肝脏纤维化的主要过程是由肝星状细胞(HSCs)的激活引发的,HSCs在肝损伤情况下转变为肌成纤维细胞,并大量分泌胶原蛋白及细胞外基质成分,导致肝脏结构及功能的改变[17]。此外,炎症反应、氧化应激及细胞凋亡等因素在肝纤维化的进展中也起到重要作用。活性氧的过度生成不仅直接损伤肝细胞,引发细胞坏死或凋亡,还通过刺激Kupffer细胞和循环中的免疫细胞,促进了促纤维化因子的释放,进一步激活HSCs [18]。凋亡的肝细胞会释放出某些信号分子,如凋亡小体,这些分子能够直接激活HSCs并诱导纤维化[19]。研究显示,促纤维化因子如转化生长因子β (TGF-β)和肿瘤坏死因子α (TNF-α)在这一过程中发挥了关键作用,它们通过激活HSCs并促进细胞外基质的沉积,加速了纤维化的进展[20]-[22]。此外,肝脏微环境的变化,如缺氧及细胞间相互作用,也会促进纤维化的发生与发展[23]。因此,深入理解这些病理生理机制对于开发有效治疗手段至关重要。

3.2. UCB-MNCs对肝纤维化的治疗效果研究

UCB-MNCs因其丰富的干细胞资源及良好的免疫调节特性,近年来在肝纤维化的治疗中备受关注。研究表明,UCB-MNCs能够通过多种机制改善肝纤维化的状况。首先,UCB-MNCs能够分化为肝细胞样细胞,直接参与肝组织的修复和再生[24]。其次,UCB-MNCs所释放的生长因子和细胞因子,能够抑制HSCs的激活,减少胶原蛋白的沉积,从而缓解肝纤维化的程度。此外,UCB-MNCs还通过调节免疫反应,降低肝脏的炎症水平,进一步促进肝脏的恢复[25] [26]。动物实验结果显示,UCB-MNCs的治疗能够显著改善肝功能,降低肝纤维化评分,并且在临床研究中展现出良好的安全性及有效性[6] [27] [28]。因此,作为一种新兴的细胞治疗手段,UCB-MNCs在肝纤维化的治疗中展现出巨大的潜力。

4. UCB-MNCs在病毒性肝炎中的应用

4.1. 病毒性肝炎的免疫机制

病毒性肝炎是一种由多种病毒引起的肝脏炎症,主要包括甲型、乙型、丙型、丁型和戊型肝炎病毒。其免疫机制复杂,涉及先天免疫和获得性免疫的相互作用。在感染初期,宿主的先天免疫系统通过识别病毒的特征分子(如病毒RNA和蛋白)启动免疫反应,产生干扰素和细胞因子,招募免疫细胞如巨噬细胞和自然杀伤细胞(NK细胞)到感染部位,抑制病毒的复制[29]。随着感染的进展,获得性免疫系统逐渐激活,特异性T细胞和B细胞应运而生,产生针对病毒抗原的特异性免疫应答。特别是在慢性乙型肝炎中,病毒可以通过变异逃避免疫监视,导致免疫耐受和慢性炎症[30]。因此,理解病毒性肝炎的免疫机制对于开发新的治疗策略至关重要。

4.2. UCB-MNCs在病毒性肝炎治疗中的临床试验

UCB-MNCs作为一种富含干细胞和免疫细胞的细胞来源,近年来在病毒性肝炎的治疗中显示出良好的前景。多项临床试验探讨了UCB-MNCs在治疗慢性乙型肝炎和丙型肝炎中的应用,结果表明UCB-MNCs能够有效改善患者的肝功能和免疫状态,为病毒性肝炎的治疗提供了新的可能性。通过调节免疫反应、促进肝细胞再生及抑制病毒复制,UCB-MNCs被证明对改善患者的临床症状和生化指标具有显著效果[31]。例如,一项研究指出,接受UCB-MNCs治疗的患者在肝功能指标上表现出显著改善,且治疗过程中的副作用较少,但对于乙肝病毒DNA载量,差异无统计学意义[32]。此外,UCB-MNCs还能够通过诱导抗肿瘤免疫反应来抵抗与病毒性肝炎相关的肝癌,从而拓展其应用范围[33]。尽管目前的研究结果颇具希望,但UCB-MNCs在病毒性肝炎治疗中的长期效果与机制仍需进一步探讨。

5. UCB-MNCs在肝癌治疗中的应用

5.1. 肝癌的发生机制与治疗现状

肝癌,特别是肝细胞癌(HCC),是全球范围内致死率较高的恶性肿瘤之一,其发生机制复杂,涉及多种因素。主要致病因素包括病毒性肝炎(如乙型和丙型肝炎)、酒精性肝病、NAFLD及代谢综合症等。这些因素通过引发慢性炎症、肝纤维化,最终导致肝硬化,从而促进肝细胞的恶性转化[34]。当前,肝癌的治疗手段主要包括手术切除、肝移植、局部消融、化疗、靶向治疗及免疫治疗[35]。然而,由于肝癌早期症状不明显,许多患者在确诊时已处于晚期,从而限制了手术治疗的有效性,因此,对于无法手术以及术后复发率和并发症高的患者来说,找到方法来延长生存期显得尤为重要。

5.2. UCB-MNCs在肝癌免疫治疗中的前景

UCB-MNCs作为一种新兴的细胞治疗手段,展现出在肝癌免疫治疗中的潜力。UCB-MNCs富含多种免疫细胞,包括T细胞、B细胞和自然杀伤细胞等,这些细胞展现出较强的免疫调节能力和抗肿瘤活性[36]。此外,UCB-MNCs的来源相对丰富且获取简便,使其在临床应用中具有明显优势。尽管目前关于UCB-MNCs在肝癌治疗中的临床研究仍较为有限,但已有的实验室和动物研究结果为其在肝癌免疫治疗中的应用奠定了良好的基础[37] [38]。未来,通过优化UCB-MNCs的制备及应用策略,结合其他治疗手段,可能为肝癌患者带来新的希望。

6. 结论

在肝病治疗研究领域,UCB-MNCs展现出良好的应用前景及多重机制,成为一种重要的治疗选择。现有研究表明,UCB-MNCs能够通过多种途径促进肝组织的再生与修复。这些细胞不仅具备分化为肝细胞的潜能,还能通过分泌细胞因子和生长因子改善肝脏微环境,减轻炎症反应。此外,UCB-MNCs在调节免疫反应中也发挥了重要作用,为免疫治疗提供了新思路。

尽管当前的研究结果显示UCB-MNCs在肝病治疗中具有显著的疗效,但不同研究观点与发现之间存在一定不一致性。部分研究强调UCB-MNCs在肝脏再生中的直接作用,而另一些则认为其主要功效源于对免疫微环境的调节。这种多样性要求我们在未来研究中采取更为全面的视角,以深入理解UCB-MNCs的作用机制及其在不同类型肝病中的适用性。

UCB-MNCs的临床应用前景广阔,尤其是在再生医学和免疫治疗领域。为实现其在临床上的成功应用,需要进行系统的临床试验,以验证其安全性与有效性。此外,研究者还应关注UCB-MNCs的来源、处理与输注方式等因素,以优化治疗方案。随着技术的不断进步,我们期待UCB-MNCs能够为肝病患者带来新的希望,推动再生医学与免疫治疗的发展,提供更为有效的治疗选择。

基金项目

2021年山东省医学会脐带血临床科研专项资金(YXH2021ZX064)。

NOTES

*通讯作者。

参考文献

[1] Paloczi, K. (1999) Immunophenotypic and Functional Characterization of Human Umbilical Cord Blood Mononuclear Cells. Leukemia, 13, S87-S89.
https://doi.org/10.1038/sj.leu.2401318
[2] Kaya, E. and Yilmaz, Y. (2022) Epidemiology, Natural History, and Diagnosis of Metabolic Dysfunction-Associated Fatty Liver Disease: A Comparative Review with Nonalcoholic Fatty Liver Disease. Therapeutic Advances in Endocrinology and Metabolism, 13.
https://doi.org/10.1177/20420188221139650
[3] Xiao, J., Wang, F., Wong, N., Lv, Y., Liu, Y., Zhong, J., et al. (2020) Epidemiological Realities of Alcoholic Liver Disease: Global Burden, Research Trends, and Therapeutic Promise. Gene Expression, 20, 105-118.
https://doi.org/10.3727/105221620x15952664091823
[4] Zhang, J., Zhai, H., Yu, P., Shang, D., Mo, R., Li, Z., et al. (2022) Human Umbilical Cord Blood Mononuclear Cells Ameliorate CCl4-Induced Acute Liver Injury in Mice via Inhibiting Inflammatory Responses and Upregulating Peripheral Interleukin-22. Frontiers in Pharmacology, 13, Article ID: 924464.
https://doi.org/10.3389/fphar.2022.924464
[5] Tran, N.T., Penny, T.R., Chan, K.Y., Tang, T., Papagianis, P.C., Sepehrizadeh, T., et al. (2024) Early Administration of Umbilical Cord Blood Cells Following Brief High Tidal Volume Ventilation in Preterm Sheep: A Cautionary Tale. Journal of Neuroinflammation, 21, Article No. 121.
https://doi.org/10.1186/s12974-024-03053-3
[6] Yuan, M., Yao, L., Chen, P., Wang, Z., Liu, P., Xiong, Z., et al. (2023) Human Umbilical Cord Mesenchymal Stem Cells Inhibit Liver Fibrosis via the MicroRNA-148a-5p/slit3 Axis. International Immunopharmacology, 125, Article ID: 111134.
https://doi.org/10.1016/j.intimp.2023.111134
[7] Xu, X., Huang, X., Sun, J., Wang, R., Yao, J., Han, W., et al. (2021) Recent Progress of Inertial Microfluidic-Based Cell Separation. The Analyst, 146, 7070-7086.
https://doi.org/10.1039/d1an01160j
[8] De Rosa, A., McGaughey, S., Magrath, I. and Byrt, C. (2023) Molecular Membrane Separation: Plants Inspire New Technologies. New Phytologist, 238, 33-54.
https://doi.org/10.1111/nph.18762
[9] Wang, M., Yang, Y., Yang, D., Luo, F., Liang, W., Guo, S., et al. (2009) The Immunomodulatory Activity of Human Umbilical Cord Blood‐Derived Mesenchymal Stem Cells in Vitro. Immunology, 126, 220-232.
https://doi.org/10.1111/j.1365-2567.2008.02891.x
[10] Ahn, S.Y., Maeng, Y., Kim, Y.R., Choe, Y.H., Hwang, H.S. and Hyun, Y. (2020) In Vivo Monitoring of Dynamic Interaction between Neutrophil and Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell in Mouse Liver during Sepsis. Stem Cell Research & Therapy, 11, Article No. 44.
https://doi.org/10.1186/s13287-020-1559-4
[11] Hua, Q., Zhang, Y., Li, H., Li, H., Jin, R., Li, L., et al. (2022) Human Umbilical Cord Blood-Derived MSCS Trans-Differentiate into Endometrial Cells and Regulate Th17/Treg Balance through NF-κB Signaling in Rabbit Intrauterine Adhesions Endometrium. Stem Cell Research & Therapy, 13, Article No. 301.
https://doi.org/10.1186/s13287-022-02990-1
[12] Chen, Y., Xu, Y., Chi, Y., Sun, T., Gao, Y., Dou, X., et al. (2024) Efficacy and Safety of Human Umbilical Cord-Derived Mesenchymal Stem Cells in the Treatment of Refractory Immune Thrombocytopenia: A Prospective, Single Arm, Phase I Trial. Signal Transduction and Targeted Therapy, 9, Article No. 102.
https://doi.org/10.1038/s41392-024-01793-5
[13] Liu, J., Xu, W., Xu, H., Zhang, S. and Jin, J. (2022) Therapeutic Potential of Umbilical Cord MSC in Crohn’s Disease Is Related to Regulation of the Relative Content and Function of Th17 Lymphocytes. Bulletin of Experimental Biology and Medicine, 172, 658-663.
https://doi.org/10.1007/s10517-022-05450-1
[14] Muthu, B., Manivannan, P., Subbaiah, M., Vanju, S. and Basavarajegowda, A. (2024) Effect of Fetal Distress on Viability and Yield of Umbilical Cord Blood Stem Cells—A Prospective Comparative Study. Hematology, Transfusion and Cell Therapy.
https://doi.org/10.1016/j.htct.2024.03.004
[15] Xi, Y., Yue, G., Gao, S., Ju, R. and Wang, Y. (2022) Human Umbilical Cord Blood Mononuclear Cells Transplantation for Perinatal Brain Injury. Stem Cell Research & Therapy, 13, Article No. 458.
https://doi.org/10.1186/s13287-022-03153-y
[16] Than, U.T.T., Le, H.T., Hoang, D.H., Nguyen, X., Pham, C.T., Bui, K.T.V., et al. (2020) Induction of Antitumor Immunity by Exosomes Isolated from Cryopreserved Cord Blood Monocyte-Derived Dendritic Cells. International Journal of Molecular Sciences, 21, Article No. 1834.
https://doi.org/10.3390/ijms21051834
[17] Hammerich, L. and Tacke, F. (2023) Hepatic Inflammatory Responses in Liver Fibrosis. Nature Reviews Gastroenterology & Hepatology, 20, 633-646.
https://doi.org/10.1038/s41575-023-00807-x
[18] Allameh, A., Niayesh-Mehr, R., Aliarab, A., Sebastiani, G. and Pantopoulos, K. (2023) Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants, 12, Article No. 1653.
https://doi.org/10.3390/antiox12091653
[19] Blas-García, A. and Apostolova, N. (2023) Novel Therapeutic Approaches to Liver Fibrosis Based on Targeting Oxidative Stress. Antioxidants, 12, Article No. 1567.
https://doi.org/10.3390/antiox12081567
[20] Dewidar, B., Meyer, C., Dooley, S. and Meindl-Beinker, A.N. (2019) TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis—Updated 2019. Cells, 8, Article No. 1419.
https://doi.org/10.3390/cells8111419
[21] Yang, Y., Sun, M., Li, W., Liu, C., Jiang, Z., Gu, P., et al. (2021) Rebalancing TGF‐β/smad7 Signaling via Compound Kushen Injection in Hepatic Stellate Cells Protects against Liver Fibrosis and Hepatocarcinogenesis. Clinical and Translational Medicine, 11, e410.
https://doi.org/10.1002/ctm2.410
[22] Bonnardel, J., T’Jonck, W., Gaublomme, D., Browaeys, R., Scott, C.L., Martens, L., et al. (2019) Stellate Cells, Hepatocytes, and Endothelial Cells Imprint the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage Niche. Immunity, 51, 638-654.e9.
https://doi.org/10.1016/j.immuni.2019.08.017
[23] Cai, J., Hu, M., Chen, Z. and Ling, Z. (2021) The Roles and Mechanisms of Hypoxia in Liver Fibrosis. Journal of Translational Medicine, 19, Article No. 186.
https://doi.org/10.1186/s12967-021-02854-x
[24] Zhang, G., Sun, H., Zheng, L., Guo, J. and Zhang, X. (2017) In Vivo Hepatic Differentiation Potential of Human Umbilical Cord-Derived Mesenchymal Stem Cells: Therapeutic Effect on Liver Fibrosis/cirrhosis. World Journal of Gastroenterology, 23, 8152-8168.
https://doi.org/10.3748/wjg.v23.i46.8152
[25] Wu, M. and Meng, Q. (2021) Current Understanding of Mesenchymal Stem Cells in Liver Diseases. World Journal of Stem Cells, 13, 1349-1359.
https://doi.org/10.4252/wjsc.v13.i9.1349
[26] Lee, Y. and Seki, E. (2023) In Vivo and in Vitro Models to Study Liver Fibrosis: Mechanisms and Limitations. Cellular and Molecular Gastroenterology and Hepatology, 16, 355-367.
https://doi.org/10.1016/j.jcmgh.2023.05.010
[27] Li, Z., Zhou, X., Han, L., Shi, M., Xiao, H., Lin, M., et al. (2023) Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation for Patients with Decompensated Liver Cirrhosis. Journal of Gastrointestinal Surgery, 27, 926-931.
https://doi.org/10.1007/s11605-022-05528-1
[28] Álvarez-Mercado, A.I., Sáez-Lara, M.J., García-Mediavilla, M.V., Sánchez-Campos, S., Abadía, F., Cabello-Donayre, M., et al. (2008) Xenotransplantation of Human Umbilical Cord Blood Mononuclear Cells to Rats with D-Galactosamine-Induced Hepatitis. Cell Transplantation, 17, 845-857.
https://doi.org/10.3727/096368908786516837
[29] Hoblos, R. and Kefalakes, H. (2022) Immunology of Hepatitis D Virus Infection: General Concepts and Present Evidence. Liver International, 43, 47-59.
https://doi.org/10.1111/liv.15424
[30] Ma, H., Yan, Q., Ma, J., Li, D. and Yang, J. (2024) Overview of the Immunological Mechanisms in Hepatitis B Virus Reactivation: Implications for Disease Progression and Management Strategies. World Journal of Gastroenterology, 30, 1295-1312.
https://doi.org/10.3748/wjg.v30.i10.1295
[31] Abbaszadeh, H., Ghorbani, F., Derakhshani, M., Movassaghpour, A. and Yousefi, M. (2019) Human Umbilical Cord Mesenchymal Stem Cell‐Derived Extracellular Vesicles: A Novel Therapeutic Paradigm. Journal of Cellular Physiology, 235, 706-717.
https://doi.org/10.1002/jcp.29004
[32] Zhang, Z., Lin, H., Shi, M., Xu, R., Fu, J., Lv, J., et al. (2012) Human Umbilical Cord Mesenchymal Stem Cells Improve Liver Function and Ascites in Decompensated Liver Cirrhosis Patients. Journal of Gastroenterology and Hepatology, 27, 112-120.
https://doi.org/10.1111/j.1440-1746.2011.07024.x
[33] Um, S., Ha, J., Choi, S.J., Oh, W. and Jin, H.J. (2020) Prospects for the Therapeutic Development of Umbilical Cord Blood-Derived Mesenchymal Stem Cells. World Journal of Stem Cells, 12, 1511-1528.
https://doi.org/10.4252/wjsc.v12.i12.1511
[34] Marengo, A., Rosso, C. and Bugianesi, E. (2016) Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annual Review of Medicine, 67, 103-117.
https://doi.org/10.1146/annurev-med-090514-013832
[35] Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362.
https://doi.org/10.1016/s0140-6736(22)01200-4
[36] Zumwalde, N.A. and Gumperz, J.E. (2018) Modeling Human Antitumor Responses in Vivo Using Umbilical Cord Blood-Engrafted Mice. Frontiers in Immunology, 9, Article No. 54.
https://doi.org/10.3389/fimmu.2018.00054
[37] Elmahdy, N.A., Sokar, S.S., Salem, M.L., Sarhan, N.I. and Abou-Elela, S.H. (2017) Anti-Fibrotic Potential of Human Umbilical Cord Mononuclear Cells and Mouse Bone Marrow Cells in CCl4-Induced Liver Fibrosis in Mice. Biomedicine & Pharmacotherapy, 89, 1378-1386.
https://doi.org/10.1016/j.biopha.2017.03.007
[38] Yin, F., Wang, W. and Jiang, W. (2019) Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Liver Fibrosis in Vitro and in Vivo: From Biological Characteristics to Therapeutic Mechanisms. World Journal of Stem Cells, 11, 548-564.
https://doi.org/10.4252/wjsc.v11.i8.548