[1]
|
Patel, S.G. and Dominitz, J.A. (2024) Screening for Colorectal Cancer. Annals of Internal Medicine, 177, ITC49-ITC64. https://doi.org/10.7326/aitc202404160
|
[2]
|
Xi, Y. and Xu, P. (2021) Global Colorectal Cancer Burden in 2020 and Projections to 2040. Translational Oncology, 14, Article ID: 101174. https://doi.org/10.1016/j.tranon.2021.101174
|
[3]
|
Abedizadeh, R., Majidi, F., Khorasani, H.R., Abedi, H. and Sabour, D. (2023) Colorectal Cancer: A Comprehensive Review of Carcinogenesis, Diagnosis, and Novel Strategies for Classified Treatments. Cancer and Metastasis Reviews, 43, 729-753. https://doi.org/10.1007/s10555-023-10158-3
|
[4]
|
Keshavarzi, F., Salari, N., Jambarsang, S., Mohammad Tabatabaei, S., Shahsavari, S. and Fournier, A.J. (2024) Overall Survival with Non-Proportional Hazards in First-Line Treatment for Patients with Metastatic Colorectal Cancer: Systematic Review and Network Meta-Analysis. Heliyon, 10, e36464. https://doi.org/10.1016/j.heliyon.2024.e36464
|
[5]
|
Van Cutsem, E., Cervantes, A., Adam, R., Sobrero, A., Van Krieken, J.H., Aderka, D., et al. (2016) ESMO Consensus Guidelines for the Management of Patients with Metastatic Colorectal Cancer. Annals of Oncology, 27, 1386-1422. https://doi.org/10.1093/annonc/mdw235
|
[6]
|
Cañellas-Socias, A., Sancho, E. and Batlle, E. (2024) Mechanisms of Metastatic Colorectal Cancer. Nature Reviews Gastroenterology & Hepatology, 21, 609-625. https://doi.org/10.1038/s41575-024-00934-z
|
[7]
|
Ciardiello, D., Vitiello, P.P., Cardone, C., Martini, G., Troiani, T., Martinelli, E., et al. (2019) Immunotherapy of Colorectal Cancer: Challenges for Therapeutic Efficacy. Cancer Treatment Reviews, 76, 22-32. https://doi.org/10.1016/j.ctrv.2019.04.003
|
[8]
|
Lin, K.X., Istl, A.C., Quan, D., Skaro, A., Tang, E. and Zheng, X. (2023) PD-1 and PD-L1 Inhibitors in Cold Colorectal Cancer: Challenges and Strategies. Cancer Immunology, Immunotherapy, 72, 3875-3893. https://doi.org/10.1007/s00262-023-03520-5
|
[9]
|
唐圣. PD-1/PD-L1抑制剂在晚期结直肠癌联合治疗中的研究进展[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2021.
|
[10]
|
Chen, X., Chen, L., Peng, X., Deng, L., Wang, Y., Li, J., et al. (2024) Anti-PD-1/PD-L1 Therapy for Colorectal Cancer: Clinical Implications and Future Considerations. Translational Oncology, 40, Article ID: 101851. https://doi.org/10.1016/j.tranon.2023.101851
|
[11]
|
Zhu, Z.N., Feng, Q.X., Li, Q., Xu, W. and Liu, X. (2025) Machine Learning-Based CT Radiomics Approach for Predicting Occult Peritoneal Metastasis in Advanced Gastric Cancer Preoperatively. Clinical Radiology, 80, Article ID: 106727. https://doi.org/10.1016/j.crad.2024.10.008
|
[12]
|
Li, M., Xu, G., Cui, Y., Wang, M., Wang, H., Xu, X., et al. (2023) Ct-based Radiomics Nomogram for the Preoperative Prediction of Microsatellite Instability and Clinical Outcomes in Colorectal Cancer: A Multi-Centre Study. Clinical Radiology, 78, e741-e751. https://doi.org/10.1016/j.crad.2023.06.012
|
[13]
|
Sun, R., Limkin, E.J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S.R., et al. (2018) A Radiomics Approach to Assess Tumour-Infiltrating CD8 Cells and Response to Anti-PD-1 or Anti-PD-L1 Immunotherapy: An Imaging Biomarker, Retrospective Multicohort Study. The Lancet Oncology, 19, 1180-1191. https://doi.org/10.1016/s1470-2045(18)30413-3
|
[14]
|
Stefano, A. (2024) Challenges and Limitations in Applying Radiomics to PET Imaging: Possible Opportunities and Avenues for Research. Computers in Biology and Medicine, 179, Article ID: 108827. https://doi.org/10.1016/j.compbiomed.2024.108827
|
[15]
|
黄静, 马彦云, 武静, 等. 基于MRI瘤内联合最佳瘤周影像组学评估乳腺癌Ki-67表达状态的研究[J]. 临床放射学杂志, 2024, 43(8): 1317-1324.
|
[16]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278, 563-577. https://doi.org/10.1148/radiol.2015151169
|
[17]
|
马晓辉, 周海春, 梁佳伟, 等. 人工智能时代的放射组学及Pyradiomics工具包在放射组学中的应用[J]. 浙江医学, 2022, 44(8): 887-889, 895.
|
[18]
|
Luo, X., Deng, H., Xie, F., Wang, L., Liang, J., Zhu, X., et al. (2024) Prognostication of Colorectal Cancer Liver Metastasis by Ce-Based Radiomics and Machine Learning. Translational Oncology, 47, Article ID: 101997. https://doi.org/10.1016/j.tranon.2024.101997
|
[19]
|
Wang, N., Dai, M., Zhao, Y., Zhang, Z., Wang, J., Zhang, J., et al. (2023) Value of Pre-Treatment 18F-FDG PET/CT Radiomics in Predicting the Prognosis of Stage III-IV Colorectal Cancer. European Journal of Radiology Open, 10, Article ID: 100480. https://doi.org/10.1016/j.ejro.2023.100480
|
[20]
|
Devoto, L., Ganeshan, B., Keller, D., Groves, A.M., Endozo, R., Arulampalam, T., et al. (2022) Using Texture Analysis in the Development of a Potential Radiomic Signature for Early Identification of Hepatic Metastasis in Colorectal Cancer. European Journal of Radiology Open, 9, Article ID: 100415. https://doi.org/10.1016/j.ejro.2022.100415
|
[21]
|
Wu, X., Li, Y., Chen, X., Huang, Y., He, L., Zhao, K., et al. (2020) Deep Learning Features Improve the Performance of a Radiomics Signature for Predicting KRAS Status in Patients with Colorectal Cancer. Academic Radiology, 27, e254-e262. https://doi.org/10.1016/j.acra.2019.12.007
|
[22]
|
Wei, Z., Liu, H., Xv, Y., Liao, F., He, Q., Xie, Y., et al. (2024) Development and Validation of a CT-Based Deep Learning Radiomics Nomogram to Predict Muscle Invasion in Bladder Cancer. Heliyon, 10, e24878. https://doi.org/10.1016/j.heliyon.2024.e24878
|
[23]
|
Zhou, S., Sun, D., Mao, W., Liu, Y., Cen, W., Ye, L., et al. (2023) Deep Radiomics-Based Fusion Model for Prediction of Bevacizumab Treatment Response and Outcome in Patients with Colorectal Cancer Liver Metastases: A Multicentre Cohort Study. eClinicalMedicine, 65, Article ID: 102271. https://doi.org/10.1016/j.eclinm.2023.102271
|
[24]
|
Lucci, A., McCall, L.M., Beitsch, P.D., Whitworth, P.W., Reintgen, D.S., Blumencranz, P.W., et al. (2007) Surgical Complications Associated with Sentinel Lymph Node Dissection (SLND) Plus Axillary Lymph Node Dissection Compared with SLND Alone in the American College of Surgeons Oncology Group Trial Z0011. Journal of Clinical Oncology, 25, 3657-3663. https://doi.org/10.1200/jco.2006.07.4062
|
[25]
|
张慧, 赵楠楠, 朱芸, 等. 基于DCE-MRI影像组学列线图预测乳腺浸润性导管癌PD-L1表达状态的研究[J]. 蚌埠医学院学报, 2023, 48(8): 1090-1097.
|
[26]
|
Cai, M., Tang, H., Tan, X., Guo, W., LI, Y., Ma, Y., et al. (2020) A Radiomics Approach for Prediction of PD-L1 Expression in Cervical Cancer Patients: An Initial Result. International Journal of Radiation Oncology Biology Physics, 108, e452-e453. https://doi.org/10.1016/j.ijrobp.2020.07.2561
|
[27]
|
郭云峰. 18F-FDG PET/CT在宫颈癌诊治与预后中的临床应用价值[D]: [硕士学位论文]. 石家庄: 河北医科大学, 2016.
|
[28]
|
Buono, M., Russo, G., Nardone, V., Della Corte, C.M., Natale, G., Rubini, D., et al. (2024) New Perspectives on Inoperable Early-Stage Lung Cancer Management: Clinicians, Physicists, and Biologists Unveil Strategies and Insights. The Journal of Liquid Biopsy, 5, Article ID: 100153. https://doi.org/10.1016/j.jlb.2024.100153
|
[29]
|
徐刚, 陈鹏, 纪伟, 等. 基于CT影像组学列线图预测实性非小细胞肺癌组织PD-L1蛋白表达状态[J]. 现代肿瘤医学, 2024, 32(5): 913-920.
|
[30]
|
Xie, P.Y., Zeng, Z.M., Li, Z.H., Niu, K., Xia, T., Ma, D., et al. (2024) MRI-Based Radiomics for Stratifying Recurrence Risk of Early-Onset Rectal Cancer: A Multicenter Study. ESMO Open, 9, Article ID: 103735. https://doi.org/10.1016/j.esmoop.2024.103735
|
[31]
|
Li, M., Xu, G., Chen, Q., Xue, T., Peng, H., Wang, Y., et al. (2023) Computed Tomography-Based Radiomics Nomogram for the Preoperative Prediction of Tumor Deposits and Clinical Outcomes in Colon Cancer: A Multicenter Study. Academic Radiology, 30, 1572-1583. https://doi.org/10.1016/j.acra.2022.11.005
|
[32]
|
赵娜, 张宁, 时高峰, 等. CT影像组学及临床病理特征与胃腺癌患者PD-L1表达的关系[J]. 河北医药, 2023, 45(17): 2603-2606, 2611.
|