[1]
|
刘宗超, 李哲轩, 张阳, 等. 2020全球癌症统计报告解读[J]. 肿瘤综合治疗电子杂志, 2021, 7(2): 1-13.
|
[2]
|
郑荣寿, 陈茹, 韩冰峰, 等. 2022年中国恶性肿瘤流行情况分析[J]. 中华肿瘤杂志, 2024, 46(3): 221-231.
|
[3]
|
National Lung Screening Trial Research Team (2011) Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. New England Journal of Medicine, 365, 395-409. https://doi.org/10.1056/nejmoa1102873
|
[4]
|
Rubin, G.D., Lyo, J.K., Paik, D.S., Sherbondy, A.J., Chow, L.C., Leung, A.N., et al. (2005) Pulmonary Nodules on Multi-Detector Row CT Scans: Performance Comparison of Radiologists and Computer-Aided Detection. Radiology, 234, 274-283. https://doi.org/10.1148/radiol.2341040589
|
[5]
|
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2012) ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, Vol. 25, 1097-1105.
|
[6]
|
Shen, D., Wu, G. and Suk, H. (2017) Deep Learning in Medical Image Analysis. Annual Review of Biomedical Engineering, 19, 221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442
|
[7]
|
Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., et al. (2017) Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature, 542, 115-118. https://doi.org/10.1038/nature21056
|
[8]
|
Setio, A.A.A., Traverso, A., de Bel, T., Berens, M.S.N., Bogaard, C.v.d., Cerello, P., et al. (2017) Validation, Comparison, and Combination of Algorithms for Automatic Detection of Pulmonary Nodules in Computed Tomography Images: The LUNA16 Challenge. Medical Image Analysis, 42, 1-13. https://doi.org/10.1016/j.media.2017.06.015
|
[9]
|
Dou, Q., Chen, H., Yu, L., Qin, J. and Heng, P. (2017) Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection. IEEE Transactions on Biomedical Engineering, 64, 1558-1567. https://doi.org/10.1109/tbme.2016.2613502
|
[10]
|
Zhu, W., Liu, C., Fan, W. and Xie, X. (2018) DeepLung: Deep 3D Dual Path Nets for Automated Pulmonary Nodule Detection and Classification. 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, 12-15 March 2018, 673-681. https://doi.org/10.1109/wacv.2018.00079
|
[11]
|
Shen, W., Zhou, M., Yang, F., Yu, D., Dong, D., Yang, C., et al. (2017) Multi-Crop Convolutional Neural Networks for Lung Nodule Malignancy Suspiciousness Classification. Pattern Recognition, 61, 663-673. https://doi.org/10.1016/j.patcog.2016.05.029
|
[12]
|
Xie, Y., Xia, Y., Zhang, J., Song, Y., Feng, D., Fulham, M., et al. (2019) Knowledge-Based Collaborative Deep Learning for Benign-Malignant Lung Nodule Classification on Chest CT. IEEE Transactions on Medical Imaging, 38, 991-1004. https://doi.org/10.1109/tmi.2018.2876510
|
[13]
|
Han, G., Liu, X., Zheng, G., Wang, M. and Huang, S. (2018) Automatic Recognition of 3D GGO CT Imaging Signs through the Fusion of Hybrid Resampling and Layer-Wise Fine-Tuning CNNs. Medical & Biological Engineering & Computing, 56, 2201-2212. https://doi.org/10.1007/s11517-018-1850-z
|
[14]
|
Wang, S., Zhou, M., Gevaert, O., Tang, Z., Dong, D., Liu, Z., et al. (2017) A Multi-View Deep Convolutional Neural Networks for Lung Nodule Segmentation. 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, 11-15 July 2017, 1752-1755. https://doi.org/10.1109/embc.2017.8037182
|
[15]
|
Shen, S., Han, S.X., Aberle, D.R., Bui, A.A. and Hsu, W. (2019) An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification. Expert Systems with Applications, 128, 84-95. https://doi.org/10.1016/j.eswa.2019.01.048
|
[16]
|
Zhao, X., Liu, L., Qi, S., Teng, Y., Li, J. and Qian, W. (2018) Agile Convolutional Neural Network for Pulmonary Nodule Classification Using CT Images. International Journal of Computer Assisted Radiology and Surgery, 13, 585-595. https://doi.org/10.1007/s11548-017-1696-0
|
[17]
|
Zhang, J., Xia, Y., Cui, H. and Zhang, Y. (2018) Pulmonary Nodule Detection in Medical Images: A Survey. Biomedical Signal Processing and Control, 43, 138-147. https://doi.org/10.1016/j.bspc.2018.01.011
|
[18]
|
Huang, P., Park, S., Yan, R., Lee, J., Chu, L.C., Lin, C.T., et al. (2018) Added Value of Computer-Aided CT Image Features for Early Lung Cancer Diagnosis with Small Pulmonary Nodules: A Matched Case-Control Study. Radiology, 286, 286-295. https://doi.org/10.1148/radiol.2017162725
|
[19]
|
Gao, M., Bagci, U., Lu, L., Wu, A., Buty, M., Shin, H., et al. (2016) Holistic Classification of CT Attenuation Patterns for Interstitial Lung Diseases via Deep Convolutional Neural Networks. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 6, 1-6. https://doi.org/10.1080/21681163.2015.1124249
|
[20]
|
Cui, Z., Chen, W. and Chen, Y. (2016) Multi-Scale Convolutional Neural Networks for Time Series Classification.
|
[21]
|
Yang, Q., Liu, Y., Chen, T. and Tong, Y. (2019) Federated Machine Learning: Concept and Applications. ACM Transactions on Intelligent Systems and Technology, 10, 1-19. https://doi.org/10.1145/3298981
|
[22]
|
侍江烽, 冯宝, 陈业航, 等. 基于自适应聚合权重联邦学习的肺结节CT图像分类[J]. 激光与光电子学进展, 2023, 60(22): 86-96.
|
[23]
|
Chen, Y., Qin, X., Wang, J., Yu, C. and Gao, W. (2020) FedHealth: A Federated Transfer Learning Framework for Wearable Healthcare. IEEE Intelligent Systems, 35, 83-93. https://doi.org/10.1109/mis.2020.2988604
|
[24]
|
Zhang, Z., Cui, P. and Zhu, W. (2022) Deep Learning on Graphs: A Survey. IEEE Transactions on Knowledge and Data Engineering, 34, 249-270. https://doi.org/10.1109/tkde.2020.2981333
|