[1]
|
Maghnie, M., Labarta, J.I., Koledova, E. and Rohrer, T.R. (2018) Short Stature Diagnosis and Referral. Frontiers in Endocrinology, 8, Article 374. https://doi.org/10.3389/fendo.2017.00374
|
[2]
|
Park, E., Lee, H.J., Choi, H.J., Ahn, Y.H., Han, K.H., Kim, S.H., et al. (2021) Incidence of and Risk Factors for Short Stature in Children with Chronic Kidney Disease: Results from the Know-Ped CKD. Pediatric Nephrology, 36, 2857-2864. https://doi.org/10.1007/s00467-021-05054-3
|
[3]
|
Yue, D., Miller, M.R. and Clarson, C.L. (2018) Evaluation of Referrals for Short Stature: A Retrospective Chart Review. Paediatrics & Child Health, 24, e74-e77. https://doi.org/10.1093/pch/pxy079
|
[4]
|
Allen, D.B. and Cuttler, L. (2013) Short Stature in Childhood—Challenges and Choices. New England Journal of Medicine, 368, 1220-1228. https://doi.org/10.1056/nejmcp1213178
|
[5]
|
Sommer, R., Bullinger, M., Chaplin, J., Do, J., Power, M., Pleil, A., et al. (2017) Experiencing Health‐related Quality of Life in Paediatric Short Stature—A Cross‐Cultural Analysis of Statements from Patients and Parents. Clinical Psychology & Psychotherapy, 24, 1370-1376. https://doi.org/10.1002/cpp.2105
|
[6]
|
Sandberg, D.E. and Voss, L.D. (2002) The Psychosocial Consequences of Short Stature: A Review of the Evidence. Best Practice & Research Clinical Endocrinology & Metabolism, 16, 449-463. https://doi.org/10.1053/beem.2002.0211
|
[7]
|
Valdes, A.M., Walter, J., Segal, E. and Spector, T.D. (2018) Role of the Gut Microbiota in Nutrition and Health. BMJ, 361, k2179. https://doi.org/10.1136/bmj.k2179
|
[8]
|
Lui, J.C. (2023) Gut Microbiota in Regulation of Childhood Bone Growth. Experimental Physiology, 109, 662-671. https://doi.org/10.1113/ep091620
|
[9]
|
Durda-Masny, M., Ciomborowska-Basheer, J., Makałowska, I. and Szwed, A. (2022) The Mediating Role of the Gut Microbiota in the Physical Growth of Children. Life, 12, Article 152. https://doi.org/10.3390/life12020152
|
[10]
|
Jensen, E.A., Young, J.A., Mathes, S.C., List, E.O., Carroll, R.K., Kuhn, J., et al. (2020) Crosstalk between the Growth Hormone/Insulin-Like Growth Factor-1 Axis and the Gut Microbiome: A New Frontier for Microbial Endocrinology. Growth Hormone & IGF Research, 53, Article ID: 101333. https://doi.org/10.1016/j.ghir.2020.101333
|
[11]
|
Weger, B.D., Gobet, C., Yeung, J., Martin, E., Jimenez, S., Betrisey, B., et al. (2019) The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metabolism, 29, 362-382.e8. https://doi.org/10.1016/j.cmet.2018.09.023
|
[12]
|
Yan, L., Ye, B., Yang, M., Shan, Y., Yan, D., Fang, D., et al. (2024) Gut Microbiota and Metabolic Changes in Children with Idiopathic Short Stature. BMC Pediatrics, 24, Article No. 468. https://doi.org/10.1186/s12887-024-04944-3
|
[13]
|
Li, L., Chen, L., Yang, Y., Wang, J., Guo, L., An, J., et al. (2022) Characteristics of Gut Microbiome and Its Metabolites, Short-Chain Fatty Acids, in Children with Idiopathic Short Stature. Frontiers in Endocrinology, 13, Article 890200. https://doi.org/10.3389/fendo.2022.890200
|
[14]
|
Miao, J., Lai, P., Wang, K., Fang, G., Li, X., Zhang, L., et al. (2023) Characteristics of Intestinal Microbiota in Children with Idiopathic Short Stature: A Cross-Sectional Study. European Journal of Pediatrics, 182, 4537-4546. https://doi.org/10.1007/s00431-023-05132-8
|
[15]
|
Li, L., Wang, Y., Huang, Y., Lu, Y., Wang, W., Chen, X., et al. (2024) Impact of Different Growth Hormone Levels on Gut Microbiota and Metabolism in Short Stature. Pediatric Research, 96, 115-123. https://doi.org/10.1038/s41390-024-03140-4
|
[16]
|
Lazar, L., Eshel, A., Moadi, L., Yackobovitch-Gavan, M., Bar-Maisels, M., Shtaif, B., et al. (2024) Children with Idiopathic Short Stature Have Significantly Different Gut Microbiota than Their Normal Height Siblings: A Case-Control Study. Frontiers in Endocrinology, 15, Article 1343337. https://doi.org/10.3389/fendo.2024.1343337
|
[17]
|
Huang, C., Meng, D., Li, Y., Lu, S., Yang, W., Wu, B., et al. (2023) Gut Microbiota Composition Alteration Analysis and Functional Categorization in Children with Growth Hormone Deficiency. Frontiers in Pediatrics, 11, Article 1133258. https://doi.org/10.3389/fped.2023.1133258
|
[18]
|
García Navas, P., Ruíz del Prado, M.Y., Villoslada Blanco, P., Recio Fernández, E., Ruíz del Campo, M. and Pérez Matute, P. (2024) Composition of the Microbiota in Patients with Growth Hormone Deficiency before and after Treatment with Growth Hormone. Anales de Pediatría (English Edition), 100, 404-411. https://doi.org/10.1016/j.anpede.2024.05.004
|
[19]
|
Martin, G.J. (1942) P-aminobenzoic Acid and Sulfonamides in Rat Nutrition. Experimental Biology and Medicine, 51, 56-59. https://doi.org/10.3181/00379727-51-13825
|
[20]
|
Dibner, J.J. and Richards, J.D. (2005) Antibiotic Growth Promoters in Agriculture: History and Mode of Action. Poultry Science, 84, 634-643. https://doi.org/10.1093/ps/84.4.634
|
[21]
|
Mikkelsen, K.H., Allin, K.H. and Knop, F.K. (2016) Effect of Antibiotics on Gut Microbiota, Glucose Metabolism and Body Weight Regulation: A Review of the Literature. Diabetes, Obesity and Metabolism, 18, 444-453. https://doi.org/10.1111/dom.12637
|
[22]
|
Shin, S.C., Kim, S., You, H., Kim, B., Kim, A.C., Lee, K., et al. (2011) drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling. Science, 334, 670-674. https://doi.org/10.1126/science.1212782
|
[23]
|
Storelli, G., Defaye, A., Erkosar, B., Hols, P., Royet, J. and Leulier, F. (2011) Lactobacillus Plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals through Tor-Dependent Nutrient Sensing. Cell Metabolism, 14, 403-414. https://doi.org/10.1016/j.cmet.2011.07.012
|
[24]
|
Schwarzer, M., Makki, K., Storelli, G., Machuca-Gayet, I., Srutkova, D., Hermanova, P., et al. (2016) lactobacillus Plantarum Strain Maintains Growth of Infant Mice during Chronic Undernutrition. Science, 351, 854-857. https://doi.org/10.1126/science.aad8588
|
[25]
|
Lan, R.X., Lee, S.I. and Kim, I.H. (2017) Effects of Enterococcus Faecium SLB 120 on Growth Performance, Blood Parameters, Relative Organ Weight, Breast Muscle Meat Quality, Excreta Microbiota Shedding, and Noxious Gas Emission in Broilers. Poultry Science, 96, 3246-3253. https://doi.org/10.3382/ps/pex101
|
[26]
|
Izuddin, W.I., Loh, T.C., Samsudin, A.A., Foo, H.L., Humam, A.M. and Shazali, N. (2019) Effects of Postbiotic Supplementation on Growth Performance, Ruminal Fermentation and Microbial Profile, Blood Metabolite and GHR, IGF-1 and MCT-1 Gene Expression in Post-Weaning Lambs. BMC Veterinary Research, 15, Article No. 315. https://doi.org/10.1186/s12917-019-2064-9
|
[27]
|
Farooq, M.Z., Wang, X. and Yan, X. (2023) Effects of Aeriscardovia aeriphila on Growth Performance, Antioxidant Functions, Immune Responses, and Gut Microbiota in Broiler Chickens. Journal of Zhejiang University-SCIENCE B, 24, 1014-1026. https://doi.org/10.1631/jzus.b2200621
|
[28]
|
Chen, W.W., Liu, H.X., Liu, J., Yang, L.L., Liu, M. and Ma, H.J. (2019) Etiology and Genetic Diagnosis of Short Stature in Children. Chinese Journal of Contemporary Pediatrics, 21, 381-386.
|
[29]
|
Wu, S., Liu, Q., Gu, W., Ni, S., Shi, X. and Zhu, Z. (2018) A Retrospective Analysis of Patients with Short Stature in the South of China between 2007 and 2015. BioMed Research International, 2018, Article ID: 5732694. https://doi.org/10.1155/2018/5732694
|
[30]
|
Zhang, L., Liu, C., Jiang, Q. and Yin, Y. (2021) Butyrate in Energy Metabolism: There Is Still More to Learn. Trends in Endocrinology & Metabolism, 32, 159-169. https://doi.org/10.1016/j.tem.2020.12.003
|
[31]
|
Jensen, E.A., Young, J.A., Jackson, Z., Busken, J., List, E.O., Carroll, R.K., et al. (2020) Growth Hormone Deficiency and Excess Alter the Gut Microbiome in Adult Male Mice. Endocrinology, 161, bqaa026. https://doi.org/10.1210/endocr/bqaa026
|
[32]
|
Hu, J., Yang, J., Chen, L., Meng, X., Zhang, X., Li, W., et al. (2022) Alterations of the Gut Microbiome in Patients with Pituitary Adenoma. Pathology and Oncology Research, 28, Article 1610402. https://doi.org/10.3389/pore.2022.1610402
|
[33]
|
Xu, R., Zhu, H., Zhang, C., Shen, G. and Feng, J. (2019) Metabolomic Analysis Reveals Metabolic Characteristics of Children with Short Stature Caused by Growth Hormone Deficiency. Clinical Science, 133, 777-788. https://doi.org/10.1042/cs20181005
|
[34]
|
Holscher, H.D. (2017) Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes, 8, 172-184. https://doi.org/10.1080/19490976.2017.1290756
|
[35]
|
Davila, A., Blachier, F., Gotteland, M., Andriamihaja, M., Benetti, P., Sanz, Y., et al. (2013) Intestinal Luminal Nitrogen Metabolism: Role of the Gut Microbiota and Consequences for the Host. Pharmacological Research, 68, 95-107. https://doi.org/10.1016/j.phrs.2012.11.005
|
[36]
|
Shin, S.Y., Kim, S., Choi, J.W., Kang, S., Kim, T.O., Seo, G.S., et al. (2022) The Common and Unique Pattern of Microbiome Profiles among Saliva, Tissue, and Stool Samples in Patients with Crohn’s Disease. Microorganisms, 10, Article 1467. https://doi.org/10.3390/microorganisms10071467
|
[37]
|
Tett, A., Pasolli, E., Masetti, G., Ercolini, D. and Segata, N. (2021) Prevotella Diversity, Niches and Interactions with the Human Host. Nature Reviews Microbiology, 19, 585-599. https://doi.org/10.1038/s41579-021-00559-y
|
[38]
|
Coker, M.O., Lebeaux, R.M., Hoen, A.G., Moroishi, Y., Gilbert-Diamond, D., Dade, E.F., et al. (2022) Metagenomic Analysis Reveals Associations between Salivary Microbiota and Body Composition in Early Childhood. Scientific Reports, 12, Article No. 13075. https://doi.org/10.1038/s41598-022-14668-y
|