脐带血NK细胞治疗肝癌的临床应用
Clinical Application of Umbilical Cord Blood NK Cells in the Treatment of Liver Cancer
DOI: 10.12677/jcpm.2024.34324, PDF, HTML, XML,   
作者: 吴春涛*, 吴 庆, 詹琪琪, 许雅贤, 张 祎:华北理工大学附属医院甲状腺外科二科,河北 唐山
关键词: 肝癌自然杀伤细胞脐带血免疫疗法Liver Cancer Natural Killer Cells Umbilical Cord Blood Immunotherapy
摘要: 肝癌是全球癌症相关死亡的主要原因之一,尤其在中国,其高发病率和死亡率对公共卫生构成了巨大挑战。随着免疫疗法在恶性肿瘤治疗领域的不断发展,自然杀伤细胞(Natural Killer Cell, NK细胞)因其独特的非MHC依赖性抗肿瘤机制,成为研究的热点。其中,脐带血(Umbilical Cord Blood, UCB)来源的NK细胞(UCB-NK细胞)以其高增殖潜力、低移植物抗宿主病风险和便捷的来源,展现出独特优势。本文综述了肝癌的流行病学特点及NK细胞在免疫治疗中的作用机制,重点探讨了UCB-NK细胞的生物学特性及其在肝癌治疗中的研究进展。研究表明,通过适当的体内外刺激,UCB-NK细胞可显著增强抗肿瘤活性,并在与传统治疗方法如化疗、局部消融术和不可逆电穿孔术联合应用中展现出协同效应。多项临床试验显示,UCB-NK细胞疗法在安全性和疗效方面均具备广阔的应用前景。本文旨在为未来基于UCB-NK细胞的肝癌免疫治疗研究提供理论依据和新思路。
Abstract: Liver cancer is one of the leading causes of cancer-related mortality worldwide, particularly in China, where its high incidence and mortality rates pose significant public health challenges. With the ongoing advancements in immunotherapy for malignant tumors, natural killer (NK) cells have gained considerable attention due to their unique non-MHC-dependent antitumor mechanisms. Among them, umbilical cord blood (UCB)-derived NK cells (UCB-NK cells) have demonstrated distinctive advantages, including high proliferation potential, low risk of graft-versus-host disease, and convenient availability. This review summarizes the epidemiological characteristics of liver cancer and the mechanisms of NK cells in immunotherapy, with a focus on the biological properties of UCB-NK cells and their therapeutic progress in liver cancer. Studies have shown that appropriately stimulated UCB-NK cells, both in vitro and in vivo, significantly enhance antitumor activity and exhibit synergistic effects when combined with traditional treatments such as chemotherapy, local ablation, and irreversible electroporation. Multiple clinical trials have revealed the promising safety and efficacy of UCB-NK cell therapy, highlighting its broad potential for clinical application. This review aims to provide a theoretical basis and novel insights for future research on UCB-NK cell-based immunotherapy for liver cancer.
文章引用:吴春涛, 吴庆, 詹琪琪, 许雅贤, 张祎. 脐带血NK细胞治疗肝癌的临床应用[J]. 临床个性化医学, 2024, 3(4): 2277-2283. https://doi.org/10.12677/jcpm.2024.34324

1. 引言

肝癌是全球癌症死亡的第3大原因[1]。在过去的十年中,肝癌的流行病学变化十分显著,甚至颠覆了传统观念。据预测,到2040年,全球每年的肝癌诊断和死亡人数将增加55%以上,而中国的肝癌病例将超过591,000例,比2018年增加50.5% [2]。男性比女性更容易患肝癌,40~60岁的人群中肝癌的发病率最高。病毒感染、肝病史、饮酒等不健康生活方式是我国肝癌发病率高的主要原因。肝癌作为一种严重的全球性疾病,其发病率和死亡率都呈上升趋势。由于肝癌在早期往往症状较轻,未及时进行临床干预则进展迅速,导致许多患者确诊是已经是晚期,错过了最佳治疗时机。对于晚期肝癌,现有的治疗方法,如手术、介入治疗、化疗、放疗及靶向治疗等,适应症有很多局限,且可能伴有严重的副作用。NK细胞免疫疗法可能为传统治疗无效或不能耐受传统治疗的晚期肝癌患者提供新的治疗选择。

随着肿瘤治疗领域的不断深入,免疫疗法在恶性肿瘤的治疗方面被广泛应用。NK细胞作为对抗肿瘤细胞生长、侵袭和扩散的关键屏障,逐渐被视为肿瘤免疫治疗的新的研究焦点。NK细胞免疫疗法是一种有前景的癌症治疗方法,许多临床试验已证明其安全性和有效性[3] [4]。基于NK细胞的免疫疗法已在临床中用于治疗恶性肿瘤[3] [5] [6]。NK细胞能够响应肿瘤微环境所释放出来的细胞因子和趋化因子并迁徙至肿瘤部位,不仅能直接杀伤肿瘤细胞,还能通过强化适应性免疫应答产生抗肿瘤作用。NK细胞的抗肿瘤作用在一定程度上会受肿瘤内在微环境的抑制,选择NK细胞来源并增强NK细胞在体内的功能尤为重要[7]。一项长达11年的患者随访研究表明,NK细胞毒性水平低与癌症风险增加有关[8]。在结直肠癌、胃癌和肺鳞状细胞癌患者中,肿瘤浸润NK细胞处于高水平的患者往往预后较好[9],这表明肿瘤组织中的NK细胞水平与预后息息相关。

脐带血是NK细胞的丰富来源,含有大量可用于免疫治疗的NK细胞[10] [11],与外周血(PB)不同,UCB-NK细胞不易发生移植物抗宿主病(GvHD),使其成为同种异体细胞免疫治疗的更安全选择[12] [13],且无需从患者自身提取NK细胞源,因此被认为是NK细胞的理想来源。2017年3月,Glycostem公司发布了世界上第一个UCB-NK细胞治疗产品oNKord的一期临床研究结果,这项研究主要针对急性髓性白血病(AML)患者,结果显示,oNKord在治疗过程中未出现显著副作用,接受oNKord治疗的患者在五年内的生存率达到了50%。UCB-NK细胞因其较高的安全性和有效性,为肝癌的治疗提供了新的方向。

2. 肝癌的流行病学

肝癌是中国的重大公共卫生问题,它在中国造成的疾病负担比西方国家更高。世界卫生组织国际癌症研究机构(IARC)发布的2022年全球最新癌症负担数据显示,2022年中国约有36.77万例肝癌新发病例(男性26.79万例,女性9.98万例),发病率约为26.0/10万,约有31.65万例肝癌死亡病例,男性和女性因此死亡的人数分别为22.98万人和8.68万人,粗死亡率为22.4/10万。根据2023年发表的一项研究,2016年中国有超过252,046例病例和212,704例死亡可归因于可改变风险因素,男性人群的归因危险度约为女性的1.5倍,男性的前三位风险因素是乙型肝炎病毒(HBV)、吸烟和饮酒,而女性的前三位风险因素是HBV、体重超标和丙型肝炎病毒(HCV) [14]。肝癌相关死亡率在中国西部地区最高[15]。与美国相比,在我国饮酒者和无癌症家族史者罹患III~IV期癌症的风险更高[16],许多患者确诊肝癌时就已是晚期,治疗难度极大,治疗效果也远未达到预期[17]

3. NK细胞的特性及来源

NK细胞是主要在骨髓中产生的一种特化的免疫效应细胞,在针对异常细胞的免疫激活中发挥着关键作用[3],是先天免疫系统的关键组成部分[18]

NK细胞的表面装备有多种受体,通过与其表面受体相互作用可以识别并攻击癌细胞。这些受体包括识别肿瘤细胞特定标记的激活受体和识别正常细胞标记的抑制受体。NK细胞通过依赖一系列激活和抑制受体,如NKp30、NKp46和CD16的独特机制识别肿瘤细胞[10]。这些受体的信号平衡决定了它们的激活状态,当激活受体的信号超过抑制受体的信号时,NK细胞将被激活,一旦激活,NK细胞可以通过释放包含蛋白质如颗粒酶和穿孔素的细胞毒性颗粒,攻击并杀死肿瘤细胞。NK细胞免疫疗法的机制包括:抗体依赖性细胞毒性(ADCC):涉及CD16分子的CD56dim NK细胞的最重要的杀伤机制之一,无需事先激活[19]。细胞因子:如白细胞介素-2 (IL-2)、IL-15和IL-21可以在体内外激活和体外扩增NK细胞。NK细胞结合分子:如TriKEs、ROCK结合分子、NKCEs和TriNKETs可以增强NK细胞对肿瘤细胞的细胞毒性[7]。免疫检查点抑制剂:如程序性细胞死亡蛋白1 (PD-1)和细胞毒性T淋巴细胞相关蛋白4 (CTLA-4)可以阻断抑制NK细胞活性的抑制信号。由于其识别和杀死肿瘤的独特机制,NK细胞可用于免疫疗法。这些机制可以增强NK细胞的细胞毒性和细胞因子产生,并增加它们杀死肿瘤细胞的能力[7]

与T细胞和B细胞不同,NK细胞不需要特定的抗原识别和激活。通过内在的受体系统,NK细胞可以迅速识别并攻击体内被感染的细胞和癌细胞,而无需事先免疫或MHC限制,这种快速反应能力使NK细胞成为基于抗体的癌症治疗的重要参与者[20]。与细胞毒性T细胞不同,NK细胞不显示克隆分布特异性,不受限于目标细胞表面的MHC产物,也没有免疫记忆[21]。NK细胞可以分泌趋化因子和细胞因子,如RANTES、干扰素-γ (IFN-γ)和肿瘤坏死因子-α (TNF-α),这些因子具有免疫调节功能并影响其他免疫细胞的功能。NK细胞在识别和消除肿瘤细胞中起到关键作用,特别是那些减少MHC I类分子以躲避T细胞识别的细胞。它们在对抗病毒感染中也起到关键作用。

NK细胞主要分布在血液、脾脏、肝脏、肺和骨髓中,少量存在于淋巴结中[22],占循环淋巴细胞的5%~15%。它们起源于骨髓中的共同淋巴系祖细胞(CLP),具有与CD8+ T细胞相似的细胞毒性,但缺乏CD3和T细胞受体(TCR) [23]。NK细胞经历一个成熟过程,从而获得效应功能,并从骨髓通过血液迁移到各个器官。NK细胞的器官特异性受到多种因素的影响,包括器官内独特的细胞微环境和可溶性因子。NK细胞可通过多种来源获得,包括UCB、PB、干细胞和NK细胞系,每种来源都各有其优缺点[5] (详见表1)。

Table 1. Comparison of NK cells from different sources

1. 不同来源NK细胞对比

NK细胞来源

优点

缺点

外周血(PB)

成熟表型,细胞毒性强(CD56dimCD16+)。来源方便,取材简单,易体外扩增。

需要从供体或患者提取,易受年龄、健康状况等限制。

脐带血(UCB)

来源广泛,非侵入性采集。更高的体外扩增潜力和细胞存活率。较低GvHD风险。

天然细胞毒性较弱,需要进一步激活。受限于脐带血库和保存技术。

诱导多能干细胞(iPSC)

扩增潜力强,免疫排斥风险低,具有高均一性和纯度。可通过基因编辑提高抗肿瘤能力。

成本高,制备过程复杂。

NK细胞系

稳定易扩增,可工业化制备。无需供体,随取随用。

治疗前需进行辐照阻断增殖,疗效有限。

4. UCB-NK细胞的独特生物学特性

从分娩后的脐带和胎盘血中提取的UCB-NK细胞比PB中的NK细胞有更高的体外扩增潜力和更长的体内持续时间[24],可能更适合免疫治疗[25]。由于UCB-NK细胞的天然不成熟表型(以CD56和CD16+群体为代表),相比于PB来源的NK细胞,对肿瘤细胞的细胞毒能力相对较弱。但UCB-NK细胞表达较低水平的活化受体和粘附分子(如CD16、CD2和CD11a)以及较高水平的抑制受体NKG2A。利用这一特点,只要进行充分的体内外刺激,促进UCB-NK细胞达到更成熟的状态,便可增强其细胞毒性和持久性[26]。在同种异体移植的背景下,它们呈现出较低的GvHD风险。来自各种来源的NK细胞都具有治疗潜力,但UCB-NK细胞在可用性、扩增潜力和同种异体应用方面提供了独特的优势。UCB已被证明是各种免疫细胞的丰富来源,NK细胞占UCB淋巴细胞的30% [26]。经过体外刺激的UCB-NK细胞与PB-NK细胞可展现出相似的细胞毒性产生水平,但CD56bright NK细胞的比例更高,能分泌大量细胞因子,如干扰素-γ (IFN-γ)、肿瘤坏死因子-β (TNF-β)和粒细胞–巨噬细胞集落刺激因子(GM-CSF) [12]。NK细胞可以通过体外扩增达到临床规模用于免疫治疗。同种异体NK细胞已经在血液系统恶性肿瘤中作为效应细胞使用,它们在增强移植物对白血病(GVL)的作用时并不会诱导移植物抗宿主病(GvHD) [11]。除了UCB中含有较高比例的NK细胞外,UCB的低温保存能力和收集UCB单位的便利性为NK细胞免疫疗法提供了独特的临床优势,使UCB成为现成的NK细胞来源。此外,有报道称脐带血移植后NK细胞的恢复速度比PB造血干细胞移植更快[27]。恢复更快的原因可能是UCB中含有不同的NK细胞祖细胞群,这些细胞群具有分化成NK细胞的能力,而PB中通常没有这种细胞群。虽然UCB-NK细胞表现出较低的IL-2受体亚基表达和较低的STAT5磷酸化[28],但PB和UCB-NK细胞在不同刺激下产生的IFN-γ和TNF-α数量相似,且能在IL-2或IL-15等细胞因子作用下增殖。此外,IL-15激活的UCB NK细胞对UCB造血干细胞的移植有积极影响,能增强造血干细胞的迁移和克隆生成能力,并能增强人源化动物模型的移植[29]。与其他来源的NK细胞相比,来源于UCB的NK细胞具有独特的生物学特性,如更高的增殖速率,更低的细胞毒性、更高的抗癌活性和更高的活化受体表达,使其更适合用于免疫治疗[13] [30] [31],也为UCB来源的免疫疗法和UCB库的使用提供了依据[10]

5. NK细胞免疫疗法的研究与临床应用

在近二十年的研究中,已有大量的临床前与临床实践证明,NK细胞对于恶性肿瘤[32]-[34]具有治疗潜力。由于实体瘤的肿瘤微环境会产生不同的可溶性和表面抑制剂来降低NK细胞的功能,从而降低NK细胞的活化、成熟、增殖和效应功能[35],NK细胞在实体瘤疗效会受一定限制。通过使用基于细胞因子的药物、NK细胞介导分子和免疫检查点抑制剂等,可以增强NK细胞的细胞毒性和寿命。传统治疗方法联合NK细胞治疗往往也能带来不错的疗效。一项I期临床研究[36]评估了局部应用高剂量自体NK细胞疗法联合肝动脉灌注化疗对标准治疗难治的晚期肝癌患者的安全性和可行性。结果显示,对于标准治疗难治的晚期肝癌患者,局部应用高剂量自体NK细胞疗法联合肝动脉灌注化疗是一种安全有效的治疗方法。另一项研究[37]表明,磁操控NK细胞可以增强其对肝癌的疗效。结果显示,磁性操控的NK细胞可以有效渗透肿瘤部位并诱导肿瘤细胞死亡,增强治疗效果。还有研究将不可逆电穿孔(IRE)与NK细胞免疫疗法联合治疗不可切除原发性肝癌,结果显示,IRE消融术后进行NK细胞免疫治疗可以产生协同效应,显著减少肿瘤细胞数量,并改善患者的免疫功能。联合治疗组的患者在治疗后三个月肿瘤最大直径小于IRE组,且联合治疗组的疾病控制率(90%)也高于IRE组(75%,P < 0.01)。此外,接受联合疗法的患者的无进展生存期和总生存期也有明显改善[38]

目前正在临床测试的治疗性NK细胞来源有很多,其中UCB是造血干细胞的丰富来源,可以作为体外分化具有理想特性的治疗性NK细胞的底物[7]。目前探索了多种UCB NK细胞的扩增方法,如大规模扩增、饲养细胞为基础的扩增和细胞因子为基础的扩增,以增加NK细胞的数量和活性[12]。多项临床试验[39]-[42]显示体外扩增的同种异体NK细胞的肿瘤过继疗法安全、有效,具有良好的应用前景。UCB-NK细胞已经被用于研究抗肿瘤治疗,目前正在进行一些临床试验,如UCB来源的CAR NK细胞应用于胃癌和胰腺癌、UCB-NK细胞治疗神经母细胞瘤等,来评估UCB-NK细胞在治疗恶性肿瘤中的安全性和可行性。

NOTES

*通讯作者。

参考文献

[1] Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[2] Cao, M.D., Wang, H., Shi, J.F., et al. (2020) Disease Burden of Liver Cancer in China: An Updated and Integrated Analysis on Multi-Data Source Evidence. Chinese Journal of Epidemiology, 41, 1848-1858.
[3] Liu, S., Galat, V., Galat4, Y., Lee, Y.K.A., Wainwright, D. and Wu, J. (2021) NK Cell-Based Cancer Immunotherapy: From Basic Biology to Clinical Development. Journal of Hematology & Oncology, 14, Article No. 7.
https://doi.org/10.1186/s13045-020-01014-w
[4] Laskowski, T.J., Biederstädt, A. and Rezvani, K. (2022) Natural Killer Cells in Antitumour Adoptive Cell Immunotherapy. Nature Reviews Cancer, 22, 557-575.
https://doi.org/10.1038/s41568-022-00491-0
[5] Chu, J., Gao, F., Yan, M., Zhao, S., Yan, Z., Shi, B., et al. (2022) Natural Killer Cells: A Promising Immunotherapy for Cancer. Journal of Translational Medicine, 20, Article No. 240.
https://doi.org/10.1186/s12967-022-03437-0
[6] Shin, M.H., Kim, J., Lim, S.A., Kim, J., Kim, S. and Lee, K. (2020) NK Cell-Based Immunotherapies in Cancer. Immune Network, 20, e14.
https://doi.org/10.4110/in.2020.20.e14
[7] Myers, J.A. and Miller, J.S. (2020) Exploring the NK Cell Platform for Cancer Immunotherapy. Nature Reviews Clinical Oncology, 18, 85-100.
https://doi.org/10.1038/s41571-020-0426-7
[8] Imai, K., Matsuyama, S., Miyake, S., Suga, K. and Nakachi, K. (2000) Natural Cytotoxic Activity of Peripheral-Blood Lymphocytes and Cancer Incidence: An 11-Year Follow-Up Study of a General Population. The Lancet, 356, 1795-1799.
https://doi.org/10.1016/s0140-6736(00)03231-1
[9] Cheng, M., Chen, Y., Xiao, W., Sun, R. and Tian, Z. (2013) NK Cell-Based Immunotherapy for Malignant Diseases. Cellular & Molecular Immunology, 10, 230-252.
https://doi.org/10.1038/cmi.2013.10
[10] Zhao, X., Cai, L., Hu, Y. and Wang, H. (2020) Cord-Blood Natural Killer Cell-Based Immunotherapy for Cancer. Frontiers in Immunology, 11, Article 584099.
https://doi.org/10.3389/fimmu.2020.584099
[11] Herrera, L., Santos, S., Vesga, M.A., Anguita, J., Martin-Ruiz, I., Carrascosa, T., et al. (2019) Adult Peripheral Blood and Umbilical Cord Blood NK Cells Are Good Sources for Effective CAR Therapy against CD19 Positive Leukemic Cells. Scientific Reports, 9, Article No. 18729.
https://doi.org/10.1038/s41598-019-55239-y
[12] Sarvaria, A., Jawdat, D., Madrigal, J.A. and Saudemont, A. (2017) Umbilical Cord Blood Natural Killer Cells, Their Characteristics, and Potential Clinical Applications. Frontiers in Immunology, 8, Article 329.
https://doi.org/10.3389/fimmu.2017.00329
[13] Dalle, J., Menezes, J., Wagner, É., Blagdon, M., Champagne, J., Champagne, M.A., et al. (2005) Characterization of Cord Blood Natural Killer Cells: Implications for Transplantation and Neonatal Infections. Pediatric Research, 57, 649-655.
https://doi.org/10.1203/01.pdr.0000156501.55431.20
[14] Lin, Y., Zheng, L., Fang, K., Zheng, Y., Wu, J. and Zheng, M. (2023) Proportion of Liver Cancer Cases and Deaths Attributable to Potentially Modifiable Risk Factors in China. International Journal of Epidemiology, 52, 1805-1814.
https://doi.org/10.1093/ije/dyad100
[15] Wei, Q., Zhou, H., Hou, X., Liu, X., Chen, S., Huang, X., et al. (2022) Current Status of and Barriers to the Treatment of Advanced-Stage Liver Cancer in China: A Questionnaire-Based Study from the Perspective of Doctors. BMC Gastroenterology, 22, Article No. 351.
https://doi.org/10.1186/s12876-022-02425-4
[16] Shan, T., Ran, X., Li, H., Feng, G., Zhang, S., Zhang, X., et al. (2023) Disparities in Stage at Diagnosis for Liver Cancer in China. Journal of the National Cancer Center, 3, 7-13.
https://doi.org/10.1016/j.jncc.2022.12.002
[17] Albinger, N., Hartmann, J. and Ullrich, E. (2021) Current Status and Perspective of CAR-T and CAR-NK Cell Therapy Trials in Germany. Gene Therapy, 28, 513-527.
https://doi.org/10.1038/s41434-021-00246-w
[18] Abel, A.M., Yang, C., Thakar, M.S. and Malarkannan, S. (2018) Natural Killer Cells: Development, Maturation, and Clinical Utilization. Frontiers in Immunology, 9, Article 1869.
https://doi.org/10.3389/fimmu.2018.01869
[19] Damele, L., Spaggiari, G.M., Parodi, M., Mingari, M.C., Vitale, M. and Vitale, C. (2022) Cord Blood-Derived Natural Killer Cell Exploitation in Immunotherapy Protocols: More than a Promise? Cancers, 14, Article 4439.
https://doi.org/10.3390/cancers14184439
[20] Chan, I.S. and Ewald, A.J. (2022) The Changing Role of Natural Killer Cells in Cancer Metastasis. Journal of Clinical Investigation, 132, e143762.
https://doi.org/10.1172/jci143762
[21] Trinchieri, G. (1989) Biology of Natural Killer Cells. Advances in Immunology, 47, 187-376.
https://doi.org/10.1016/s0065-2776(08)60664-1
[22] Campbell, K.S. and Hasegawa, J. (2013) Natural Killer Cell Biology: An Update and Future Directions. Journal of Allergy and Clinical Immunology, 132, 536-544.
https://doi.org/10.1016/j.jaci.2013.07.006
[23] Wu, S., Fu, T., Jiang, Y. and Shao, Z. (2020) Natural Killer Cells in Cancer Biology and Therapy. Molecular Cancer, 19, Article No. 120.
https://doi.org/10.1186/s12943-020-01238-x
[24] Montaldo, E., Vitale, C., Cottalasso, F., Conte, R., Glatzer, T., Ambrosini, P., et al. (2012) Human NK Cells at Early Stages of Differentiation Produce CXCL8 and Express CD161 Molecule That Functions as an Activating Receptor. Blood, 119, 3987-3996.
https://doi.org/10.1182/blood-2011-09-379693
[25] Shokouhifar, A., Anani Sarab, G., Yazdanifar, M., Fereidouni, M., Nouri, M. and Ebrahimi, M. (2021) Overcoming the UCB HSCs—Derived NK Cells Dysfunction through Harnessing RAS/MAPK, IGF-1R and TGF-β Signaling Pathways. Cancer Cell International, 21, Article No. 298.
https://doi.org/10.1186/s12935-021-01983-z
[26] Zhang, Y., Zhou, W., Yang, J., Yang, J. and Wang, W. (2023) Chimeric Antigen Receptor Engineered Natural Killer Cells for Cancer Therapy. Experimental Hematology & Oncology, 12, Article No. 70.
https://doi.org/10.1186/s40164-023-00431-0
[27] Nguyen, S., Kuentz, M., Vernant, J., Dhedin, N., Bories, D., Debré, P., et al. (2007) Involvement of Mature Donor T Cells in the NK Cell Reconstitution after Haploidentical Hematopoietic Stem-Cell Transplantation. Leukemia, 22, 344-352.
https://doi.org/10.1038/sj.leu.2405041
[28] Alnabhan, R., Madrigal, A. and Saudemont, A. (2015) Differential Activation of Cord Blood and Peripheral Blood Natural Killer Cells by Cytokines. Cytotherapy, 17, 73-85.
https://doi.org/10.1016/j.jcyt.2014.08.003
[29] Escobedo-Cousin, M., Jackson, N., Laza-Briviesca, R., Ariza-McNaughton, L., Luevano, M., Derniame, S., et al. (2015) Natural Killer Cells Improve Hematopoietic Stem Cell Engraftment by Increasing Stem Cell Clonogenicity in vitro and in a Humanized Mouse Model. PLOS ONE, 10, e0138623.
https://doi.org/10.1371/journal.pone.0138623
[30] Mehta, R.S., Shpall, E.J. and Rezvani, K. (2016) Cord Blood as a Source of Natural Killer Cells. Frontiers in Medicine, 2, Article 93.
https://doi.org/10.3389/fmed.2015.00093
[31] Goldenson, B.H., Zhu, H., Wang, Y.M., Heragu, N., Bernareggi, D., Ruiz-Cisneros, A., et al. (2020) Umbilical Cord Blood and IPSC-Derived Natural Killer Cells Demonstrate Key Differences in Cytotoxic Activity and KIR Profiles. Frontiers in Immunology, 11, Article 561553.
https://doi.org/10.3389/fimmu.2020.561553
[32] Szmania, S., Lapteva, N., Garg, T., Greenway, A., Lingo, J., Nair, B., et al. (2015) Ex vivo—Expanded Natural Killer Cells Demonstrate Robust Proliferation in Vivo in High-Risk Relapsed Multiple Myeloma Patients. Journal of Immunotherapy, 38, 24-36.
https://doi.org/10.1097/cji.0000000000000059
[33] Romee, R., Rosario, M., Berrien-Elliott, M.M., Wagner, J.A., Jewell, B.A., Schappe, T., et al. (2016) Cytokine-Induced Memory-Like Natural Killer Cells Exhibit Enhanced Responses against Myeloid Leukemia. Science Translational Medicine, 8, 357ra123.
https://doi.org/10.1126/scitranslmed.aaf2341
[34] Grzywacz, B., Moench, L., McKenna, D., Tessier, K.M., Bachanova, V., Cooley, S., et al. (2019) Natural Killer Cell Homing and Persistence in the Bone Marrow after Adoptive Immunotherapy Correlates with Better Leukemia Control. Journal of Immunotherapy, 42, 65-72.
https://doi.org/10.1097/cji.0000000000000250
[35] Velichinskii, R.A., Streltsova, M.A., Kust, S.A., Sapozhnikov, A.M. and Kovalenko, E.I. (2021) The Biological Role and Therapeutic Potential of NK Cells in Hematological and Solid Tumors. International Journal of Molecular Sciences, 22, Article 11385.
https://doi.org/10.3390/ijms222111385
[36] Bae, W.K., Lee, B.C., Kim, H., Lee, J., Chung, I., Cho, S.B., et al. (2022) A Phase I Study of Locoregional High-Dose Autologous Natural Killer Cell Therapy with Hepatic Arterial Infusion Chemotherapy in Patients with Locally Advanced Hepatocellular Carcinoma. Frontiers in Immunology, 13, Article 879452.
https://doi.org/10.3389/fimmu.2022.879452
[37] Yang, Y., Qin, Z., Du, D., Wu, Y., Qiu, S., Mu, F., et al. (2018) Safety and Short-Term Efficacy of Irreversible Electroporation and Allogenic Natural Killer Cell Immunotherapy Combination in the Treatment of Patients with Unresectable Primary Liver Cancer. CardioVascular and Interventional Radiology, 42, 48-59.
https://doi.org/10.1007/s00270-018-2069-y
[38] Alnaggar, M., Lin, M., Mesmar, A., Liang, S., Qaid, A., Xu, K., et al. (2018) Allogenic Natural Killer Cell Immunotherapy Combined with Irreversible Electroporation for Stage IV Hepatocellular Carcinoma: Survival Outcome. Cellular Physiology and Biochemistry, 48, 1882-1893.
https://doi.org/10.1159/000492509
[39] Iliopoulou, E.G., Kountourakis, P., Karamouzis, M.V., Doufexis, D., Ardavanis, A., Baxevanis, C.N., et al. (2010) A Phase I Trial of Adoptive Transfer of Allogeneic Natural Killer Cells in Patients with Advanced Non-Small Cell Lung Cancer. Cancer Immunology, Immunotherapy, 59, 1781-1789.
https://doi.org/10.1007/s00262-010-0904-3
[40] Geller, M.A., Cooley, S., Judson, P.L., Ghebre, R., Carson, L.F., Argenta, P.A., et al. (2011) A Phase II Study of Allogeneic Natural Killer Cell Therapy to Treat Patients with Recurrent Ovarian and Breast Cancer. Cytotherapy, 13, 98-107.
https://doi.org/10.3109/14653249.2010.515582
[41] Ruggeri, L., Mancusi, A., Capanni, M., Urbani, E., Carotti, A., Aloisi, T., et al. (2007) Donor Natural Killer Cell Allorecognition of Missing Self in Haploidentical Hematopoietic Transplantation for Acute Myeloid Leukemia: Challenging Its Predictive Value. Blood, 110, 433-440.
https://doi.org/10.1182/blood-2006-07-038687
[42] Miller, J.S., Soignier, Y., Panoskaltsis-Mortari, A., McNearney, S.A., Yun, G.H., Fautsch, S.K., et al. (2005) Successful Adoptive Transfer and in vivo Expansion of Human Haploidentical NK Cells in Patients with Cancer. Blood, 105, 3051-3057.
https://doi.org/10.1182/blood-2004-07-2974