静脉血栓栓塞症溶栓治疗药物的研究进展
Advances in the Study of Drugs for Thrombolytic Therapy of Venous Thromboembolism
DOI: 10.12677/jcpm.2024.34359, PDF, HTML, XML,   
作者: 孔玉虎:济宁医学院临床医学院,山东 济宁;孙自强*:济宁医学院附属医院血管外科,山东 济宁
关键词: 溶栓药物静脉血栓栓塞症药物治疗深静脉血栓Thrombolytic Drugs Venous Thromboembolism Drug Therapy Deep Vein Thrombosis
摘要: 由于生活方式的改变和人口老龄化,静脉血栓栓塞症(VTE)的发病率逐年上升。作为一种严重的血管疾病,静脉血栓栓塞症对健康构成了极大的威胁。溶栓疗法在治疗VTE方面起着至关重要的作用;它能有效地再通血管,减少血栓负荷,并改善患者预后。近年来,治疗VTE的溶栓药物研发取得了重大进展。本文结合临床实践和循证医学的研究结果,对这些溶栓药物进行了探讨,为VTE的临床应用和科学研究提供了参考。
Abstract: The incidence of venous thromboembolism (VTE) is increasing annually due to changing lifestyles and an aging population. As a serious vascular disease, VTE poses significant health risks. Thrombolytic therapy plays a crucial role in treating VTE; it effectively recanalizes blood vessels, reduces thrombus load, and improves patient prognosis. Recent years have seen significant advancements in the development of thrombolytic drugs for VTE. This paper combines findings from clinical practice and evidence-based medicine to discuss these thrombolytic drugs, providing valuable insights for both clinical applications and scientific research on VTE.
文章引用:孔玉虎, 孙自强. 静脉血栓栓塞症溶栓治疗药物的研究进展[J]. 临床个性化医学, 2024, 3(4): 2519-2524. https://doi.org/10.12677/jcpm.2024.34359

1. 引言

静脉血栓栓塞性疾病(venous thromboembolism, VTE)是指血液在静脉系统异常凝固导致的回流障碍,包括深静脉血栓形成(deep vein thrombosis,DVT)和肺动脉栓塞(pulmonary embolism, PE)。VTE是世界上的主要健康问题之一[1] [2],是一种高发且发病年龄、风险因素都很广泛并且可能致命的疾病[3] [4]。在过去10年中,中国VTE的诊断和住院管理呈上升趋势,分别增加了3.8倍和4.8倍[5]最近的一项欧洲的研究报告称,在瑞典VTE的每千人发病率估计为男性1.54和女性1.22 [6]。近年来随着人们对VTE的重视程度增加,以及超声、CT等影像学检查手段的常规应用,临床医生越来越频繁地遇到VTE患者,导致VTE在日常临床实践中的重要性日益增加[7] [8]

2. 各世代溶栓药物

抗凝(Anticoagulants)和溶栓(Fibrinolytic Agents)药物治疗作为主要的治疗方法可以有效地预防VTE的发生、抑制血栓的发展、减少VTE的复发和血栓后综合征(postthrombotic syndrome, PTS)的发生,可以说药物治疗是VTE治疗的基石[9] [10]。在VTE的治疗中,抗凝药或抗血小板药虽可以阻止或延缓血栓的形成和进展,但不能作用于已形成的血栓[11]。而溶栓药物则可以对已形成的血栓直接发挥作用[12]。溶栓治疗可迅速溶解静脉血管中的新鲜血栓,减轻血栓负荷,部分或完全恢复组织和器官的血流回流,最大程度降低组织及器官的静脉高压,对于缓解患者症状、保护瓣膜功能及改善患者预后有着重要意义[13] [14]。近年VTE的药物治疗研究已经取得了长足的进展,多项研究和RCT实验补充既往研究的不足,更多溶栓药物有望进入临床[15]。以及因为在一些问题上,目前国内外尚未达成共识。本文结合临床实践和循证医学结果就VTE的溶栓治疗药物做一论述,为VTE临床和科研提供参考。

溶栓药物按出现时间可分为三代,最早被发现的溶栓剂是通过激活系统性纤溶酶原来发挥作用,通过将纤溶酶原转化为纤溶酶来降解纤维蛋白、促进溶栓。但这导致体内广泛地溶栓,并增加了纤维蛋白降解产物的产生。而后一代药物是特异性激活血栓表面的纤溶酶原(即纤维蛋白特异性),因此对循环纤溶酶原的影响较小。近年来,研究者们开始开发新型靶向溶栓药物,如纳米药物和生物工程药物。这些药物通过靶向血栓组织,能更为有效地促进溶栓,降低全身性副作用[16]。近年来,溶栓药物的研发和改进使得药物选择更加多样化,并且表现出更强的溶栓效果和更低的溶栓后出血率。

2.1. 第一代纤溶酶原激活剂

第一代纤溶酶原激活剂主要包括链激酶(streptokinase, SK)和尿激酶(urokinase, UK)。纤溶酶原激活剂将循环纤溶酶原转化为活性纤溶酶原,活性纤溶酶原再裂解纤维蛋白以及其他蛋白质,如凝血因子、纤维蛋白原等[17] [18]。因此,第一代溶栓剂不是纤维蛋白特异性的,并导致全身出血。其主要缺点就在于它的纤维蛋白特异性较低,易引起出血并发症[19]

链激酶是世界上最早发现的纤维蛋白溶酶原激活剂,也是最早作为临床药品治疗血栓性疾病的溶栓酶。Charles Dotter于1974年首次用于治疗外周动脉疾病[20]。SK的临床缺点主要有因半衰期短而需长期用药、抗原性强易引起变态反应等。此外SK诱导产生的低血压在临床上较为常见,其潜在机制主要在于总外周阻力的降低。由于链激酶存在副作用过大和禁忌症过多等弊病缺陷,故其连续用药不可超过7天。尽管SK存在诸多缺点,但由于其低廉的成本及出色的溶栓效应作用,至今仍然是很多发展中国家在临床上应用广泛的溶栓药,并能取得较为满意的效果[21]

尿激酶是从人尿或肾细胞组织培养液中提取出的一种丝蛋白酶,至今在临床上仍较常用。UK通过直接激活纤溶酶原转化为纤溶酶而溶解血栓。UK具有激酶活性,不仅可直接激活纤溶酶原使之转化为纤溶酶,还能提高血管ADP酶活性,抑制ADP诱导的血小板聚集[22]。其特点与链激酶相比是无抗原性,缺点是选择性差,治疗的同时会降解纤维蛋白原,诱发全身性纤溶状态。由于其作用机制,出血风险相对较高,尤其是对某些高风险患者。

2.2. 第二代纤溶酶原激活剂

第一代溶栓剂主要副反应来自于其纤维蛋白特异性较低,出于克服出血并发症等副作用的目的,需要开发纤维蛋白特异性较高的溶栓药物,即特异性溶栓药物。第二代溶栓药物就是为了这一目的而开发的,主要是阿替普酶及其衍生物,但它们依然存在半衰期短等缺点[23]

阿替普酶又称重组组织型纤溶酶原激活剂(recombinant tissue-type plasminogen activator, rtPA)通过直接激活纤溶酶原转变为纤溶酶发挥溶栓效能。其具有更强的选择性和更高的溶栓效率。生理条件下内皮细胞产生t-PA,rt-PA与t-PA有相同的分子结构和特性,故少有过敏反应报道。rt-PA主要在肝脏代谢,半衰期4~5 min,用药20 min后血浆中的含量可以减少到低于最初值的10%。目前临床上常用剂量有20 mg和50 mg两种,通过腔内导管定位溶栓是目前流行的治疗方式。对于急性肺栓塞患者,溶栓剂疗效优于单独使用抗凝剂,因为其死亡率降低且出血风险不增加。并且有研究认为阿替普酶可能是更好的选择,因为它不仅可以降低死亡率,还可以降低PE复发率[24]。目前,一些旨在证明其有效性和安全性的临床试验正在进行[25]

2.3. 第三代纤溶酶原激活剂

为了克服现有溶栓剂的不足,研究者们用各种方法对现有的溶栓药物进行改造。近年来,研究者们开始开发新型靶向溶栓药物,如纳米药物[26]和生物工程药物。这些药物通过靶向血栓组织,能更为有效地促进溶栓,降低全身性副作用[27]。包括重组人尿激酶原(rhPro-UK)、阿昔单抗(Tenecteplase)、瑞替普酶(Reteplase)、去氨普酶(Bat PA),以及正在研发的其他新型纤溶酶原激活剂[28]、嵌合溶栓剂等。其中具有代表性的有重组人尿激酶原(rhPro-UK)、瑞替普酶、替萘普酶。这类药物具纤维蛋白特异性增加,对纤维蛋白原消耗较少、给药更安全、半衰期延长等特点。它们的清除率提高,更适合于静脉给药。目前其中大部分药物的获批适应症中尚无VTE,但相关临床研究正在开展。

重组人尿激酶原(rhPro-UK)是尿激酶(UK)前体,是首个单链尿型纤溶酶原激活剂。rhPro-UK是通过基因工程方法构建的中国仓鼠卵巢细胞(CHO细胞)表达获得。rhPro-UK不同于UK,它对纤溶酶原的激活具有纤维蛋白选择性,可以特异性地溶解体内血栓因而,作为溶栓制剂具有较低的出血倾向,同时又具有溶栓作用强,再通率高等优点。静脉给予该药物,在循环系统中rhPro-UK表现相对非活性状态,对血浆内源性纤溶酶原影响很小,只有在血栓表面,被激肽酶或纤溶酶激活,部分变成双链UK,后者激活结合在血栓表面构型有所改变的纤溶酶原变成纤溶酶,使血栓纤维蛋白部分溶解。当血栓纤维蛋白暴露出E-片段,rhPro-UK能直接激活结合在该片段C-端两个赖氨酸残基上的纤溶酶原,使其活性增加500倍,产生大量纤溶酶使血栓纤维蛋白迅速降解,血栓溶解。药效学试验结果显示,rhPro-UK对实验动物的冠脉血栓和肺血栓有明显的溶栓作用,而对其体内的纤溶系统无明显影响[29]。目前注射[链接]荆志成教授团队ERUPTE研究结果全球重磅发布:普佑克溶栓治疗急性肺栓塞取得突破性进展用重组人尿激酶原其适应症为急性ST段抬高性心肌梗死的溶栓治疗,并表现出较强的有效性和安全性[30] [31]。但由于其溶栓作用强、出血风险小、再通率高等优点,临床工作中也将其应用到了下肢深静脉血栓形成和下肢动脉硬化性闭塞的治疗。但尚缺乏强力证据证明其安全性及有效性。目前,相关临床研究正在开展,一项名为“ERUPTE”的注射用重组人尿激酶原(rhPro-UK)溶栓治疗中高危急性肺栓塞(APE)的随机、多中心、阳性药对照临床试验正在进行,其初步研究成果显示,rhPro-UK有较好的溶栓治疗效果和更高的安全性。

瑞替普酶是阿替普酶的突变体。它的半衰期比其母体分子长,并且在急性心肌梗死中显示出更好的血管通畅率。[32]目前该药已应用到VTE的治疗中,并有着令人满意的效果。瑞替普酶联合肝素可有效治疗高危和中危PE,并且有着较小的出血风险[33]

替萘普酶(TNK)是一种基因修饰形式的人组织纤溶酶原激活剂(tPA),其在三个方面优于rt-PA:第一,更高的纤维蛋白特异性;第二对纤溶酶原激活物抑制剂-1的耐药性更强,可能在血栓溶解中具有更高的疗效;第三,血清半衰期更长,可以单次给药。目前该药的应用和研究尚局限在新发心肌梗死和脑卒中,[34] [35]鉴于其优秀的药理特征及在其他疾病治疗中展示出的安全性和有效性,其在VTE溶栓治疗的应用中可能具有较大空间。

3. 结语

VTE作为一种致死性的疾病,逐渐成为全球疾病负担的主要部分之一。虽然治疗VTE的溶栓药物近年来不断有改善,但在VTE溶栓治疗领域仍有许多悬而未决的问题。溶栓治疗在VTE管理中的重要性不断增强,新的药物和治疗策略为临床提供了更多选择。未来的药物选择应进一步关注安全性与有效性的平衡,并探索个性化治疗的可能性,以提高患者的预后。

NOTES

*通讯作者。

参考文献

[1] Khan, F., Tritschler, T., Kahn, S.R. and Rodger, M.A. (2021) Venous Thromboembolism. The Lancet, 398, 64-77.
https://doi.org/10.1016/s0140-6736(20)32658-1
[2] Lutsey, P.L. and Zakai, N.A. (2022) Epidemiology and Prevention of Venous Thromboembolism. Nature Reviews Cardiology, 20, 248-262.
https://doi.org/10.1038/s41569-022-00787-6
[3] Agnelli, G., Anderson, F., Arcelus, J., Bergqvist, D., Brecht, J., Greer, I., et al. (2007) Venous Thromboembolism (VTE) in Europe. The Number of VTE Events and Associated Morbidity and Mortality. Thrombosis and Haemostasis, 98, 756-764.
https://doi.org/10.1160/th07-03-0212
[4] Yamashita, Y., Morimoto, T., Amano, H., Takase, T., Hiramori, S., Kim, K., et al. (2018) Anticoagulation Therapy for Venous Thromboembolism in the Real World—From the COMMAND VTE Registry. Circulation Journal, 82, 1262-1270.
https://doi.org/10.1253/circj.cj-17-1128
[5] Zhang, F., Gu, J. and Li, H.L. (2023) Diagnosis and Treatment of Venous Thromboembolism and Clinical Application of Inferior Vena Cava Filter in China. Journal of Vascular Surgery: Venous and Lymphatic Disorders, 11, 1149-1156.
[6] Lind, M.M., Johansson, M., Själander, A. and Johansson, L. (2022) Incidence and Risk Factors of Venous Thromboembolism in Men and Women. Thrombosis Research, 214, 82-86.
https://doi.org/10.1016/j.thromres.2022.04.014
[7] Kumano, O., Akatsuchi, K. and Amiral, J. (2021) Updates on Anticoagulation and Laboratory Tools for Therapy Monitoring of Heparin, Vitamin K Antagonists and Direct Oral Anticoagulants. Biomedicines, 9, Article No. 264.
https://doi.org/10.3390/biomedicines9030264
[8] Yamashita, Y., Morimoto, T. and Kimura, T. (2022) Venous Thromboembolism: Recent Advancement and Future Perspective. Journal of Cardiology, 79, 79-89.
https://doi.org/10.1016/j.jjcc.2021.08.026
[9] Stevens, S.M., Woller, S.C., Kreuziger, L.B., Bounameaux, H., Doerschug, K., Geersing, G., et al. (2021) Antithrombotic Therapy for VTE Disease: Second Update of the CHEST Guideline and Expert Panel Report. Chest, 160, e545-e608.
https://doi.org/10.1016/j.chest.2021.07.055
[10] Duffett, L. (2022) Deep Venous Thrombosis. Annals of Internal Medicine, 175, ITC129-ITC144.
https://doi.org/10.7326/aitc202209200
[11] Girardi, L., Wang, T., Ageno, W. and Carrier, M. (2023) Updates in the Incidence, Pathogenesis, and Management of Cancer and Venous Thromboembolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 43, 824-831.
https://doi.org/10.1161/atvbaha.123.318779
[12] Undas, A. (2021) Fibrinolysis in Venous Thromboembolism. Seminars in Thrombosis and Hemostasis, 47, 480-489.
https://doi.org/10.1055/s-0041-1725094
[13] Paul, J.D. and Cifu, A.S. (2020) Management of Acute Pulmonary Embolism. JAMA, 324, 597-598.
https://doi.org/10.1001/jama.2020.3905
[14] Stevens, S.M., Woller, S.C., Baumann Kreuziger, L., Doerschug, K., Geersing, G., Klok, F.A., et al. (2024) Antithrombotic Therapy for VTE Disease: Compendium and Review of CHEST Guidelines 2012-2021. Chest, 166, 388-404.
https://doi.org/10.1016/j.chest.2024.03.003
[15] Xie, C., Zheng, N., Li, M., Zhang, Z., Huang, D., Xiao, M., et al. (2024) Comparative Analysis of Therapeutic Efficacy and Adverse Reactions among Various Thrombolytic Agents. Toxics, 12, Article No. 458.
https://doi.org/10.3390/toxics12070458
[16] Zia, M.A. (2020) Streptokinase: An Efficient Enzyme in Cardiac Medicine. Protein & Peptide Letters, 27, 111-119.
https://doi.org/10.2174/0929866526666191014150408
[17] Rengaswamy, D. and Abdul Rahim, P. (2022) Fibrinolytic Enzyme—An Overview. Current Pharmaceutical Biotechnology, 23, 1336-1345.
https://doi.org/10.2174/1389201023666220104143113
[18] Weng, C., Wang, X., Huang, L., Lin, X. and Liu, Q. (2021) Low-Dose Urokinase Thrombolytic Therapy for Patients with Acute Intermediate-High-Risk Pulmonary Embolism: A Retrospective Cohort Study. PLOS ONE, 16, e0248603.
https://doi.org/10.1371/journal.pone.0248603
[19] Dotter, C.T., Rösch, J. and Seaman, A.J. (1974) Selective Clot Lysis with Low-Dose Streptokinase. Radiology, 111, 31-37.
https://doi.org/10.1148/111.1.31
[20] Khalid, K., Elina Ahmad, R., Y.H. Tong, A., Yee Lui, S. and Zainol Abidin, I.Z. (2021) Pathophysiology of Streptokinase-Induced Hypotension in Acute Myocardial Infarction: A Systematic Review of Clinical Evidence. Archives of Medical ScienceAtherosclerotic Diseases, 6, e85-e94.
https://doi.org/10.5114/amsad.2021.105410
[21] Caballero López, A., Herrera Cartaya, C., Chávez González, E., González Reinoso, D., Caballero Font, J.A., Sánchez Vera, N., et al. (2020) Pulmonary Thrombosis in COVID-19 Treated by Thrombolysis: A Small Case Series Using Streptokinase. Seminars in Thrombosis and Hemostasis, 47, 431-435.
https://doi.org/10.1055/s-0040-1716872
[22] Sugioka, K., Nishida, T., Kodama-Takahashi, A., Murakami, J., Fukuda, M., Matsuo, O., et al. (2023) Urokinase-Type Plasminogen Activator Promotes Corneal Epithelial Migration and Nerve Regeneration. Experimental Eye Research, 233, Article ID: 109559.
https://doi.org/10.1016/j.exer.2023.109559
[23] Gurewich, V. (2019) Fibrinolysis: A Misunderstood Natural Defense Whose Therapeutic Potential Is Unknown. Cardiovascular Drugs and Therapy, 33, 749-753.
https://doi.org/10.1007/s10557-019-06923-8
[24] Li, H., Wang, Y., Ren, X., Wang, J., Wang, H. and Jin, Y. (2023) Comparative Efficacy and Safety of Thrombolytic Agents for Pulmonary Embolism: A Bayesian Network Meta-Analysis. Pharmacology, 108, 111-126.
https://doi.org/10.1159/000527668
[25] Sanchez, O., Charles-Nelson, A., Ageno, W., Barco, S., Binder, H., Chatellier, G., et al. (2021) Reduced-Dose Intravenous Thrombolysis for Acute Intermediate—High-Risk Pulmonary Embolism: Rationale and Design of the Pulmonary Embolism International Thrombolysis (PEITHO)-3 Trial. Thrombosis and Haemostasis, 122, 857-866.
https://doi.org/10.1055/a-1653-4699
[26] Ren, T., Mi, Y., Wei, J., Han, X., Zhang, X., Zhu, Q., et al. (2024) Advances in Nano-Functional Materials in Targeted Thrombolytic Drug Delivery. Molecules, 29, Article No. 2325.
https://doi.org/10.3390/molecules29102325
[27] Shen, M., Wang, Y., Hu, F., Lv, L., Chen, K. and Xing, G. (2021) Thrombolytic Agents: Nanocarriers in Targeted Release. Molecules, 26, Article No. 6776.
https://doi.org/10.3390/molecules26226776
[28] Nedaeinia, R., Faraji, H., Javanmard, S.H., Ferns, G.A., Ghayour-Mobarhan, M., Goli, M., et al. (2019) Bacterial Staphylokinase as a Promising Third-Generation Drug in the Treatment for Vascular Occlusion. Molecular Biology Reports, 47, 819-841.
https://doi.org/10.1007/s11033-019-05167-x
[29] Hao, C., Ding, W., Sun, Q., Li, X., Wang, W., Zhao, Z., et al. (2019) Thrombolysis with rhPro-UK 3 to 6 Hours after Embolic Stroke in Rat. Neurological Research, 41, 1034-1042.
https://doi.org/10.1080/01616412.2019.1672388
[30] Fan, G., Wu, X., Jiao, W., Zhang, H. and Guo, D. (2022) Safety and Efficacy of Intracoronary Recombinant Human Prourokinase Administration in Patients with Acute Myocardial Infarction and ST-Segment Elevation: A Meta-Analysis of Randomized Controlled Trials. Experimental and Therapeutic Medicine, 25, Article No. 40.
https://doi.org/10.3892/etm.2022.11739
[31] Li, S., Gu, H., Feng, B., Dong, Q., Fan, D., Xu, Y., et al. (2024) rhPro-UK in Acute Ischemic Stroke within 4.5 h of Stroke Onset Trial-2 (the PROST-2 Study): Rationale and Design of a Multicenter, Prospective, Randomized, Open-Label, Blinded-Endpoint, Controlled Phase 3 Non-Inferiority Trial. International Journal of Stroke, 19, 1182-1187.
https://doi.org/10.1177/17474930241265654
[32] Mai, H., Chen, T. and Chen, F. (2022) Intra-Arterial Alteplase vs Placebo after Successful Thrombectomy and Functional Outcomes in Patients with Large Vessel Occlusion Acute Ischemic Stroke. JAMA, 327, 2455-2456.
https://doi.org/10.1001/jama.2022.7427
[33] Nishanth, K.R., Math, R.S., Shankar, M., Ravindranath, K.S. and Manjunath, C.N. (2019) Thrombolysis with Reteplase in Acute Pulmonary Embolism. Indian Heart Journal, 71, 464-467.
https://doi.org/10.1016/j.ihj.2019.09.011
[34] Li, S., Pan, Y., Wang, Z., Liang, Z., Chen, H., Wang, D., et al. (2021) Safety and Efficacy of Tenecteplase versus Alteplase in Patients with Acute Ischaemic Stroke (TRACE): A Multicentre, Randomised, Open Label, Blinded-Endpoint (PROBE) Controlled Phase II Study. Stroke and Vascular Neurology, 7, 47-53.
https://doi.org/10.1136/svn-2021-000978
[35] Warach, S.J., Dula, A.N. and Milling, T.J. (2020) Tenecteplase Thrombolysis for Acute Ischemic Stroke. Stroke, 51, 3440-3451.
https://doi.org/10.1161/strokeaha.120.029749