[1]
|
Wang, G., Lu, Z., Li, Y., Li, L., Ji, H., Feteira, A., et al. (2021) Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives. Chemical Reviews, 121, 6124-6172. https://doi.org/10.1021/acs.chemrev.0c01264
|
[2]
|
Sun, J., Luo, B. and Li, H. (2022) A Review on the Conventional Capacitors, Supercapacitors, and Emerging Hybrid Ion Capacitors: Past, Present, and Future. Advanced Energy and Sustainability Research, 3, Article 2100191. https://doi.org/10.1002/aesr.202100191
|
[3]
|
Stoller, M.D., Park, S., Zhu, Y., An, J. and Ruoff, R.S. (2008) Graphene-Based Ultracapacitors. Nano Letters, 8, 3498-3502. https://doi.org/10.1021/nl802558y
|
[4]
|
Bonaccorso, F., Colombo, L., Yu, G., Stoller, M., Tozzini, V., Ferrari, A.C., et al. (2015) Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage. Science, 347, Article 1246501. https://doi.org/10.1126/science.1246501
|
[5]
|
Sharma, P. and Bhatti, T.S. (2010) A Review on Electrochemical Double-Layer Capacitors. Energy Conversion and Management, 51, 2901-2912. https://doi.org/10.1016/j.enconman.2010.06.031
|
[6]
|
Feng, L., Zhu, Y., Ding, H. and Ni, C. (2014) Recent Progress in Nickel Based Materials for High Performance Pseudocapacitor Electrodes. Journal of Power Sources, 267, 430-444. https://doi.org/10.1016/j.jpowsour.2014.05.092
|
[7]
|
Hepel, M. (2022) Advances in Micro‐Supercapacitors (MSCs) with High Energy Density and Fast Charge‐Discharge Capabilities for Flexible Bioelectronic Devices—A Review. Electrochemical Science Advances, 3, e2100222. https://doi.org/10.1002/elsa.202100222
|
[8]
|
Naeem, S., Patil, A.V., Shaikh, A.V., Shinde, U.P., Husain, D., Alam, M.T., et al. (2023) A Review of Cobalt-Based Metal Hydroxide Electrode for Applications in Supercapacitors. Advances in Materials Science and Engineering, 2023, Article 1133559. https://doi.org/10.1155/2023/1133559
|
[9]
|
Lang, J., Kong, L., Wu, W., Liu, M., Luo, Y. and Kang, L. (2008) A Facile Approach to the Preparation of Loose-Packed Ni(OH)2 Nanoflake Materials for Electrochemical Capacitors. Journal of Solid State Electrochemistry, 13, 333-340. https://doi.org/10.1007/s10008-008-0560-0
|
[10]
|
李静, 王文成, 王洁雯, 等. 三维石墨烯/氢氧化镍纳米复合材料的制备及电容性能研究[J]. 海南师范大学学报: 自然科学版, 2016, 29(1): 44-49.
|
[11]
|
黄振楠, 寇生中, 金东东, 等. 氢氧化镍/还原氧化石墨烯复合物的超级电容性能[J]. 功能材料, 2015, 46(5): 5084-5088.
|
[12]
|
蔡敏. 超级电容器复合电极材料Ni(OH)2/GO的制备及其电化学性能研究[J]. 化工技术与开发, 2015, 44(7): 31-32.
|
[13]
|
任晓霞, 高君华, 郑瑞伦. 氢氧化镍超级电容器电极材料电流变化规律研究[J]. 人工晶体学报, 2016, 45(8): 2141-2146.
|
[14]
|
韩丹丹, 陈野, 张密林, 等. 纳米NiO的制备及其性能研究[J]. 电池, 2006, 36(4): 283-285.
|
[15]
|
Du, F. (2013) Hierarchically Structured Carbon Nanotubes for Energy Conversion and Storage. University of Dayton.
|
[16]
|
Pognon, G., Brousse, T. and Bélanger, D. (2011) Effect of Molecular Grafting on the Pore Size Distribution and the Double Layer Capacitance of Activated Carbon for Electrochemical Double Layer Capacitors. Carbon, 49, 1340-1348. https://doi.org/10.1016/j.carbon.2010.11.055
|
[17]
|
Tseng, R. (2006) Mesopore Control of High Surface Area Naoh-Activated Carbon. Journal of Colloid and Interface Science, 303, 494-502. https://doi.org/10.1016/j.jcis.2006.08.024
|
[18]
|
Ding, S., Zhu, T., Chen, J.S., Wang, Z., Yuan, C. and (David) Lou, X.W. (2011) Controlled Synthesis of Hierarchical NiO Nanosheet Hollow Spheres with Enhanced Supercapacitive Performance. Journal of Materials Chemistry, 21, 6602-6606. https://doi.org/10.1039/c1jm00017a
|
[19]
|
Gopi, C.V.V.M., Reddy, A.E., Bak, J., Cho, I. and Kim, H. (2018) One-Pot Hydrothermal Synthesis of Tungsten Diselenide/Reduced Graphene Oxide Composite as Advanced Electrode Materials for Supercapacitors. Materials Letters, 223, 57-60. https://doi.org/10.1016/j.matlet.2018.04.023
|
[20]
|
Zang, X., Sun, C., Dai, Z., Yang, J. and Dong, X. (2017) Nickel Hydroxide Nanosheets Supported on Reduced Graphene Oxide for High-Performance Supercapacitors. Journal of Alloys and Compounds, 691, 144-150. https://doi.org/10.1016/j.jallcom.2016.08.233
|
[21]
|
Cao, Y., Jiao, Q., Zhao, Y., et al. (2010) Synthesis of Nitrogen-Doped Carbon Nanotubes with Layered Double Hydroxides Containing Iron, Cobalt or Nickel as Catalyst Precursors. South African Journal of Chemistry, 63, 58-61.
|
[22]
|
张宏丽, 陈丽佳. 我国新能源产业及核心技术发展探析[J]. 能源研究与信息, 2013, 29(4): 187-191.
|
[23]
|
赵秀霞. 新能源汽车的发展现状与对策[J]. 能源研究与信息, 2014, 30(1): 12-17.
|
[24]
|
Fathi, M., Saghafi, M., Mahboubi, F. and Mohajerzadeh, S. (2014) Synthesis and Electrochemical Investigation of Polyaniline/Unzipped Carbon Nanotube Composites as Electrode Material in Supercapacitors. Synthetic Metals, 198, 345-356. https://doi.org/10.1016/j.synthmet.2014.10.033
|
[25]
|
Ye, T., Kuang, Y., Xie, C., Huang, Z., Zhang, C., Shan, D., et al. (2013) Enhanced Performance by Polyaniline/Tailored Carbon Nanotubes Composite as Supercapacitor Electrode Material. Journal of Applied Polymer Science, 131, Article 39971. https://doi.org/10.1002/app.39971
|
[26]
|
刘姝睿, 王隆肇, 冯苗. 分层纳米结构的钴酸镍/四氧化三钴复合电极的制备及其电化学性能研究[J]. 中国陶瓷, 2017, 53(10): 19-25.
|
[27]
|
Ruan, J., Huo, Y. and Hu, B. (2016) Three-Dimensional Ni(OH)2/Cu2O/CuO Porous Cluster Grown on Nickel Foam for High Performance Supercapacitor. Electrochimica Acta, 215, 108-113. https://doi.org/10.1016/j.electacta.2016.08.064
|
[28]
|
Bai, C., Sun, S., Xu, Y., Yu, R. and Li, H. (2016) Facile One-Step Synthesis of Nanocomposite Based on Carbon Nanotubes and Nickel-Aluminum Layered Double Hydroxides with High Cycling Stability for Supercapacitors. Journal of Colloid and Interface Science, 480, 57-62. https://doi.org/10.1016/j.jcis.2016.07.001
|
[29]
|
Li, M., Liu, F., Cheng, J.P., Ying, J. and Zhang, X.B. (2015) Enhanced Performance of Nickel-Aluminum Layered Double Hydroxide Nanosheets/Carbon Nanotubes Composite for Supercapacitor and Asymmetric Capacitor. Journal of Alloys and Compounds, 635, 225-232. https://doi.org/10.1016/j.jallcom.2015.02.130
|