[1]
|
高喜梅, 贾萌, 池玉梅, 等.温胆汤治疗神经系统疾病的物质基础及作用机制研究进展[J]. 中国实验方剂学杂志, 2019, 25(10): 188-196.
|
[2]
|
Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13. https://doi.org/10.1186/1758-2946-6-13
|
[3]
|
Kim, S. (2016) Getting the Most Out of Pubchem for Virtual Screening. Expert Opinion on Drug Discovery, 11, 843-855. https://doi.org/10.1080/17460441.2016.1216967
|
[4]
|
Wu, Y., Liu, X. and Li, G. (2022) Integrated Bioinformatics and Network Pharmacology to Identify the Therapeutic Target and Molecular Mechanisms of Huangqin Decoction on Ulcerative Colitis. Scientific Reports, 12, Article No. 159. https://doi.org/10.1038/s41598-021-03980-8
|
[5]
|
The UniProt Consortium (2021) UniProt: The Universal Protein Knowledge Base in 2021. Nucleic Acids Research, 49, D480-D489.
|
[6]
|
Zhang, L., Han, L., Wang, X., Wei, Y., Zheng, J., Zhao, L., et al. (2021) Exploring the Mechanisms Underlying the Therapeutic Effect of salvia Miltiorrhiza in Diabetic Nephropathy Using Network Pharmacology and Molecular Docking. Bioscience Reports, 41, BSR20203520. https://doi.org/10.1042/bsr20203520
|
[7]
|
Szklarczyk, D., Gable, A.L., Nastou, K.C., Lyon, D., Kirsch, R., Pyysalo, S., et al. (2020) The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Research, 49, D605-D612. https://doi.org/10.1093/nar/gkaa1074
|
[8]
|
纪震, 矫翠翠, 王丹丹, 等. 苦碟子注射液联合脑蛋白水解物对后循环缺血性眩晕患者的临床疗效[J]. 中成药, 2022, 44(8): 2514-2518.
|
[9]
|
何菊, 张怀亮. 后循环缺血性眩晕的中西医研究进展[J]. 中国中医基础医学杂志, 2018, 24(6): 871-874.
|
[10]
|
王靖, 可海霞, 王敏. 三七通舒胶囊联合脑蛋白水解物对后循环缺血性眩晕患者的临床疗效[J]. 中成药, 2021, 43(4): 1108-1111.
|
[11]
|
刘爱华, 韩振翔. 黄芪赤风汤合补中益气汤对气虚血瘀型后循环缺血性眩晕患者的临床疗效[J]. 中成药, 2019, 41(3): 713-716.
|
[12]
|
王鑫淼, 于骄洋, 程美佳, 等. 基于痰瘀互结理论探讨血脂异常对轻度认知障碍的影响[J]. 辽宁中医药大学学报, 2022, 24(4): 121-125.
|
[13]
|
孙琛琛, 杨惠民, 郭杨志, 等. 中医药对血脂异常的认识及进展[J]. 中医药信息, 2018, 35(1): 123-128.
|
[14]
|
李庆耀, 梁生林. 陈皮的药用研究进展[J]. 中成药, 2008(2): 246-248.
|
[15]
|
皮达(Pei-kun). 药典所载四种陈皮的比较研究[D]: [硕士学位论文]. 南昌: 江西中医药大学, 2020.
|
[16]
|
Cao, H., Jia, Q., Yan, L., Chen, C., Xing, S. and Shen, D. (2019) Quercetin Suppresses the Progression of Atherosclerosis by Regulating MST1-Mediated Autophagy in ox-LDL-Induced RAW264.7 Macrophage Foam Cells. International Journal of Molecular Sciences, 20, Article 6093. https://doi.org/10.3390/ijms20236093
|
[17]
|
林烨, 柳丽, 孙静, 等. 木犀草素防治糖尿病的作用机制研究进展[J/OL]. 中药药理与临床: 1-12. https://doi.org/10.13412/j.cnki.zyyl.20230506.003, 2024-05-22.
|
[18]
|
孙霁寒, 王兆丹, 孙桂菊, 等. 木犀草素对高血脂症SD大鼠肝脏脂肪变性及抗氧化水平的影响[J]. 食品工业科技, 2019, 40(11): 308-312+317.
|
[19]
|
张前, 杨浩, 陈博, 等. 黄芩苷防治中枢神经系统疾病的研究进展[J]. 中国药师, 2017, 20(2): 327-331.
|
[20]
|
陈忻, 董晓丹, 张楠, 等. 黄芩苷对局灶性脑缺血大鼠的保护作用[J]. 广州中医药大学学报, 2006, 23(6): 506-508.
|
[21]
|
Kang, S., Tanaka, T., Narazaki, M. and Kishimoto, T. (2019) Targeting Interleukin-6 Signaling in Clinic. Immunity, 50, 1007-1023. https://doi.org/10.1016/j.immuni.2019.03.026
|
[22]
|
Cohen, T., Nahari, D., Cerem, L.W., Neufeld, G. and Levi, B. (1996) Interleukin 6 Induces the Expression of Vascular Endothelial Growth Factor. Journal of Biological Chemistry, 271, 736-741. https://doi.org/10.1074/jbc.271.2.736
|
[23]
|
Stenlöf, K., Wernstedt, I., Fjällman, T., Wallenius, V., Wallenius, K. and Jansson, J. (2003) Interleukin-6 Levels in the Central Nervous System Are Negatively Correlated with Fat Mass in Overweight/Obese Subjects. The Journal of Clinical Endocrinology & Metabolism, 88, 4379-4383. https://doi.org/10.1210/jc.2002-021733
|
[24]
|
Timper, K., Denson, J.L., Steculorum, S.M., Heilinger, C., Engström-Ruud, L., Wunderlich, C.M., et al. (2017) IL-6 Improves Energy and Glucose Homeostasis in Obesity via Enhanced Central IL-6 Trans-Signaling. Cell Reports, 19, 267-280. https://doi.org/10.1016/j.celrep.2017.03.043
|
[25]
|
Kerkis, I., Silva, Á.P.d. and Araldi, R.P. (2024) The Impact of Interleukin-6 (IL-6) and Mesenchymal Stem Cell-Derived IL-6 on Neurological Conditions. Frontiers in Immunology, 15, Article 1400533. https://doi.org/10.3389/fimmu.2024.1400533
|
[26]
|
Matsumoto, J., Dohgu, S., Takata, F., Machida, T., Bölükbaşi Hatip, F.F., Hatip-Al-Khatib, I., et al. (2018) TNF-α-Sensitive Brain Pericytes Activate Microglia by Releasing IL-6 through Cooperation between IκB-NFκB and JAK-STAT3 Pathways. Brain Research, 1692, 34-44. https://doi.org/10.1016/j.brainres.2018.04.023
|
[27]
|
Persson, J., Nilsson, J. and Lindholm, M.W. (2008) Interleukin-1β and Tumour Necrosis Factor-α Impede Neutral Lipid Turnover in Macrophage-Derived Foam Cells. BMC Immunology, 9, Article No. 70.
|
[28]
|
王丹,王肖龙.基于网络药理学、分子对接与实验验证揭示薯蓣皂苷元治疗动脉粥样硬化的作用机制[J].中草药, 2022, 53(24):7783-7794.
|
[29]
|
Chen, Q., Lv, J., Yang, W., Xu, B., Wang, Z., Yu, Z., et al. (2019) Targeted Inhibition of STAT3 as a Potential Treatment Strategy for Atherosclerosis. Theranostics, 9, 6424-6442. https://doi.org/10.7150/thno.35528
|
[30]
|
Wang, R., Zhang, Y., Xu, L., Lin, Y., Yang, X., Bai, L., et al. (2016) Protein Inhibitor of Activated STAT3 Suppresses Oxidized LDL-Induced Cell Responses during Atherosclerosis in Apolipoprotein E-Deficient Mice. Scientific Reports, 6, Article No. 36790. https://doi.org/10.1038/srep36790
|
[31]
|
Yang, L., Song, Z., Pan, Y., Zhao, T., Shi, Y., Xing, J., et al. (2021) PM2.5 Promoted Lipid Accumulation in Macrophage via Inhibiting JAK2/STAT3 Signaling Pathways and Aggravating the Inflammatory Reaction. Ecotoxicology and Environmental Safety, 226, Article 112872. https://doi.org/10.1016/j.ecoenv.2021.112872
|
[32]
|
Song, H., Cui, Y., Zhang, L., Cao, G., Li, L., Li, G., et al. (2020) Ruxolitinib Attenuates Intimal Hyperplasia via Inhibiting JAK2/STAT3 Signaling Pathway Activation Induced by PDGF-BB in Vascular Smooth Muscle Cells. Microvascular Research, 132, Article 104060. https://doi.org/10.1016/j.mvr.2020.104060
|
[33]
|
Li, S., Geng, Q., Chen, H., Zhang, J., Cao, C., Zhang, F., et al. (2017) The Potential Inhibitory Effects of Mir‑19b on Vulnerable Plaque Formation via the Suppression of STAT3 Transcriptional Activity. International Journal of Molecular Medicine, 41, 859-867. https://doi.org/10.3892/ijmm.2017.3263
|