|
[1]
|
Albasri, A.M. (2020) Nasopharyngeal Carcinoma Metastasis to the Breast. Saudi Medical Journal, 41, 1130-1134. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Guan, S., Wei, J., Huang, L. and Wu, L. (2020) Chemotherapy and Chemo-Resistance in Nasopharyngeal Carcinoma. European Journal of Medicinal Chemistry, 207, Article 112758. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Huang, H., Yao, Y., Deng, X., Huang, Z., Chen, Y., Wang, Z., et al. (2023) Immunotherapy for Nasopharyngeal Carcinoma: Current Status and Prospects (Review). International Journal of Oncology, 63, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zeybek, N.D., Baysal, E., Bozdemir, O. and Buber, E. (2021) Hippo Signaling: A Stress Response Pathway in Stem Cells. Current Stem Cell Research & Therapy, 16, 824-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Messina, B., Lo Sardo, F., Scalera, S., Memeo, L., Colarossi, C., Mare, M., et al. (2023) Hippo Pathway Dysregulation in Gastric Cancer: From Helicobacter Pylori Infection to Tumor Promotion and Progression. Cell Death & Disease, 14, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Liang, H., Xu, Y., Zhao, J., Chen, M. and Wang, M. (2024) Hippo Pathway in Non-Small Cell Lung Cancer: Mechanisms, Potential Targets, and Biomarkers. Cancer Gene Therapy, 31, 652-666. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gupta, S.R.R., Nagar, G., Mittal, P., Rana, S., Singh, H., Singh, R., et al. (2023) Breast Cancer Therapeutics and Hippo Signaling Pathway: Novel MicroRNA-Gene-Protein Interaction Networks. OMICS: A Journal of Integrative Biology, 27, 273-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fu, M., Hu, Y., Lan, T., Guan, K., Luo, T. and Luo, M. (2022) The Hippo Signalling Pathway and Its Implications in Human Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 376. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, H., Zhang, C., Zhou, Y., Deng, Y., Zheng, X. and Xue, X. (2023) Neurovascular Protection of Alisol A on Cerebral Ischemia Mice through Activating the AKT/GSK3β Pathway. Aging, 15, 11639-11653. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shi, Y., Wang, M., Wang, P., Zhang, T., Yu, J., Shi, L., et al. (2020) Alisol A Is Potentially Therapeutic in Human Breast Cancer Cells. Oncology Reports, 44, 1266-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Agu, P.C., Afiukwa, C.A., Orji, O.U., Ezeh, E.M., Ofoke, I.H., Ogbu, C.O., et al. (2023) Molecular Docking as a Tool for the Discovery of Molecular Targets of Nutraceuticals in Diseases Management. Scientific Reports, 13, Article No. 13398. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sule, R., Rivera, G. and Gomes, A.V. (2023) Western Blotting (Immunoblotting): History, Theory, Uses, Protocol and Problems. BioTechniques, 75, 99-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cantù, G. (2023) Nasopharyngeal Carcinoma. a “Different” Head and Neck Tumour. Part B: Treatment, Prognostic Factors, and Outcomes. Acta Otorhinolaryngologica Italica, 43, 155-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, J., Zeng, Z., Wang, D. and Qin, G. (2022) Minimally Invasive Surgery for Early-Stage Nasopharyngeal Carcinoma. Journal of Craniofacial Surgery, 33, e834-e837. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Juarez-Vignon Whaley, J.J., Afkhami, M., Sampath, S., Amini, A., Bell, D. and Villaflor, V.M. (2023) Early Stage and Locally Advanced Nasopharyngeal Carcinoma Treatment from Present to Future: Where Are We and Where Are We Going? Current Treatment Options in Oncology, 24, 845-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shen, R., Cheng, K., Li, G., Pan, Z., Qiaolongbatu, X., Wang, Y., et al. (2024) Alisol A, the Eye-Entering Ingredient of Alisma orientale, Relieves Macular Edema through TNF-α as Revealed by UPLC-Triple-TOF/MS, Network Pharmacology, and Zebrafish Verification. Drug Design, Development and Therapy, 18, 3361-3382. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lou, C., Xu, X., Chen, Y. and Zhao, H. (2019) Alisol A Suppresses Proliferation, Migration, and Invasion in Human Breast Cancer MDA-MB-231 Cells. Molecules, 24, Article 3651. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rausch, V. and Hansen, C.G. (2020) The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends in Cell Biology, 30, 32-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Deng, F., Wu, Z., Zou, F., Wang, S. and Wang, X. (2022) The Hippo-YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration after Injury. Frontiers in Cell and Developmental Biology, 10, Article 894737. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Piccolo, S., Panciera, T., Contessotto, P. and Cordenonsi, M. (2022) YAP/TAZ as Master Regulators in Cancer: Modulation, Function and Therapeutic Approaches. Nature Cancer, 4, 9-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Moon, S., Yeon Park, S. and Woo Park, H. (2018) Regulation of the Hippo Pathway in Cancer Biology. Cellular and Molecular Life Sciences, 75, 2303-2319. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Ahmed, A.A., Mohamed, A.D., Gener, M., Li, W. and Taboada, E. (2017) YAP and the Hippo Pathway in Pediatric Cancer. Molecular & Cellular Oncology, 4, e1295127. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Geromichalos, G.D. (2007) Importance of Molecular Computer Modeling in Anticancer Drug Development. Journal of BUON, 12, S101-S118.
|
|
[24]
|
Plouffe, S.W., Hong, A.W. and Guan, K. (2015) Disease Implications of the Hippo/Yap Pathway. Trends in Molecular Medicine, 21, 212-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Gao, L., Cheng, X. and Cao, H. (2018) LncRNA THOR Attenuates Cisplatin Sensitivity of Nasopharyngeal Carcinoma Cells via Enhancing Cells Stemness. Biochimie, 152, 63-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Harvey, K. and Tapon, N. (2007) The Salvador-Warts-Hippo Pathway—An Emerging Tumour-Suppressor Network. Nature Reviews Cancer, 7, 182-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, S., Wu, Z., Ke, Y., Shu, P., Chen, C., Lin, R., et al. (2019) Wogonoside Inhibits Tumor Growth and Metastasis in Endometrial Cancer via ER Stress-Hippo Signaling Axis. Acta Biochimica et Biophysica Sinica, 51, 1096-1105. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Jia, M., Xiong, Y., Li, M. and Mao, Q. (2020) Corosolic Acid Inhibits Cancer Progress through Inactivating YAP in Hepatocellular Carcinoma. Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 28, 371-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, Y., Lu, J., Chen, Q., Han, S., Shao, H., Chen, P., et al. (2019) Artemisinin Suppresses Hepatocellular Carcinoma Cell Growth, Migration and Invasion by Targeting Cellular Bioenergetics and Hippo-Yap Signaling. Archives of Toxicology, 93, 3367-3383. [Google Scholar] [CrossRef] [PubMed]
|