基于人因可靠性分析技术的医疗保健系统安全性提升与人为错误减少研究
Research on Enhancing Healthcare System Safety and Reducing Human Errors Based on Human Reliability Analysis Techniques
DOI: 10.12677/orf.2025.151023, PDF, HTML, XML,    科研立项经费支持
作者: 周明玥:上海理工大学康复工程与技术研究所,上海;王多琎*:上海理工大学康复工程与技术研究所,上海;上海康复器械工程技术研究中心,上海
关键词: 医疗保健人因可靠性分析安全人为因素人为错误Healthcare Human Reliability Analysis Safety Human Factors Human Errors
摘要: 患者安全是医疗保健中的关键问题。人因可靠性分析(HRA)是一种结构化的风险评估方法,已广泛应用于医疗系统中,以提高患者安全性。尽管在这一领域已有大量研究,但至今尚未进行系统的文献综述或详细的分类研究。本综述旨在分析2000年至2023年5月期间HRA在医疗保健中的应用情况。具体而言,我们分析了Web of Science (WOS),PubMed和Scopus数据库中的相关出版物,探讨了研究成果的出版趋势、合作网络及关键词共现模式。此外,我们根据HRA在不同不良事件中的研究方法对文献进行了分类,重点讨论了HRA中的绩效影响因素(PIFs)。基于这些发现,我们识别并讨论了若干有前景的研究方向,以便更好地理解HRA在提升医疗保健系统中的作用。
Abstract: Patient safety is a critical concern in healthcare. Human Reliability Analysis (HRA) is a structured risk assessment methodology that has been widely implemented in healthcare systems to enhance patient safety. Although substantial research has been conducted on this topic, a comprehensive literature review and detailed categorization of studies have yet to be undertaken. This review aims to examine the application of HRA in healthcare from 2000 to May 2023. Specifically, we analyzed publications from the Web of Science (WOS), PubMed and Scopus databases to explore trends in research output, collaborative networks, and keyword co-occurrence patterns. Additionally, the literature was categorized based on the various research methodologies used in HRA for different adverse events, with a particular focus on the performance influencing factors (PIFs) in HRA. From these findings, we identify and discuss several promising research directions to better understand the role of HRA in improving healthcare systems.
文章引用:周明玥, 王多琎. 基于人因可靠性分析技术的医疗保健系统安全性提升与人为错误减少研究[J]. 运筹与模糊学, 2025, 15(1): 234-253. https://doi.org/10.12677/orf.2025.151023

1. 引言

人类错误的初步探索始于20世纪40年代[1]。到20世纪60年代,学者们开始对人类错误进行大量研究,这促使与人类错误相关的理论迅速发展并广泛应用,特别是在核能和航空等高风险行业中[2]。不同的学者从不同角度定义了人类错误的概念。

从心理学角度来看,Reason将人类视为系统中至关重要的信息处理组件。他将人类错误定义为一个人在执行计划时,心理和生理活动未能成功实现预期目标的失败[3]。从工程学的角度,Swain和Guttmann将人类错误定义为所有超出系统既定标准或允许限度的异常人类行为[4]。总之,尽管学者们由于不同的视角对人类错误的描述略有不同,但人类错误的本质在于人类行为与该操作环境中预期或期望的行为的偏差。

人类错误分类是人类错误研究中的一种定性研究方法。通过定性方法对人类错误进行分类,可以提出更有针对性的措施。Swain和Guttmann根据人类行为的可观察外部特征及错误行为的后果,将人类错误分为三大类——遗漏错误、执行错误和无关错误[4]。Reason的“瑞士奶酪”模型通过将潜在失败和主动失败表示为不同系统层次中的“孔洞”,生动地说明了由于风险因素,系统容易发生故障的特点[5]

人为错误驱动分类的机制,与人类错误相关的研究为人因可靠性研究提供了基础和前提,而人因可靠性研究则在此基础上进行扩展和深化,最终目标是确保人类的可靠性。随着学者们研究的深入,三代人因可靠性分析(Human reliability analysis, HRA)方法应运而生。

第一代方法以人类错误率预测(Human error rate prediction, THERP)、成功概率指数法(Success likelihood index method, SLIM)等技术为代表,这些方法主要集中于定量分析人类错误的发生率,并基于这些错误的可能性来评估系统的整体可靠性[6]。人类错误评估与减少技术(Human error assessment and reduction technique, HEART) [7]认为人因可靠性由任务决定,并受到环境的影响。这些方法主要集中于任务,考虑到环境因素作为任务执行的影响因素。

第二代HRA方法认为,可靠性仅依赖于可用的任务时间,旨在获取在特定系统条件下未响应或错误响应的概率。与第一代方法相比,第二代方法整合了认知心理学、行为科学和可靠性工程的理论,建立了基础的认知模型,同时解释了情境背景如何影响人类行为。典型的研究方法包括认知可靠性与错误分析方法(Cognitive reliability and error analysis method, CREAM)人类事件分析技术(A technique for human event analysis, ATHEANA) [8] [9],标准化工厂分析风险–人因可靠性分析(standardized plant analysis risk–human reliability analysis, SPAR-H) [10],人因可靠性联结主义评估(Connectionism assessment of human reliability, CAHR) [11]和误诊树分析(Misdiagnosis tree analysis, MDTA) [12]

第三代HRA研究方法与第一代和第二代方法不同。它基于动态建模和仿真,通过虚拟场景模拟真实工作条件和人类行为。第三代的代表性方法包括认知环境仿真(Cognitive environment simulation, CES)、认知仿真模型(Cognitive simulation model, COSIMO)和机组环境中的信息、决策与行动(Information, decision, and action in crew context, IDAC)。这些方法通过模拟和分析复杂环境中的人类行为,提高了HRA的实用性和准确性,使其更加适应复杂系统中的人因可靠性评估。

总体而言,HRA方法已经发展,涵盖了更广泛的影响因素,除了传统的任务和环境因素外,还融入了认知和情境元素,从而增强了我们对人类错误的理解,以及预测和减少人类错误的能力。

许多研究人员已经进行了文献综述,以深入了解HRA研究领域。例如,最近的系统性文献综述研究了海事和离岸行业中的人因可靠性[13],而另一项研究则对过去20年铁路工程领域中的相关主题进行了文献计量分析[14]

HRA在医疗保健中的应用也变得越来越重要,旨在识别、评估和减轻与人为错误相关的风险,以提高患者安全和医疗服务质量。美国国家科学院出版社于2000年发布的《To Err Is Human: Building a Safer Health System》一书标志着医疗保健领域关于人因可靠性的讨论的真正开始,揭示了可避免的医疗错误对患者安全构成的严重威胁,并强调了应对和管理人为错误的迫切需要,以建立一个安全可靠的医疗保健系统。

医疗保健强调临床和专业自主性,要求严格的科学证据,并在组织层面上明确责任。医疗保健系统高度多样化,要求频繁地跨组织边界互动,并具有较高的容忍不确定性的能力[15]。因此,来自其他行业的HRA技术在应用于医疗保健时,必须进行仔细的调整和适应,以确保它们能够满足该领域的独特需求。

跨学科的HRA方法必须从其原始行业目的、理论基础和局限性进行理解。忽视这些前提条件不仅可能无法实现医疗保健中的预期改进,甚至可能增加患者的风险。根据Lyons M和Adams S的研究[16],这一领域可以被视为一个相对较新的研究领域。一些HRA技术已被修改和调整,以适应医疗保健的正确应用,另一些则声称是类似HRA的新方法,专门为医疗保健应用而构思[17]。Wang扩展了HEART方法,并将其应用于机器人辅助康复过程中,考虑了HEART建议的“错误促进条件(Error promoting conditions, EPCs)”[18],他们开发了一种模型,全面识别人类错误并重新定义相关的EPCs。Chenani则通过为性能塑造因素(Performance shaping factors, PSF)提供更具情境特定定义,调整SPAR-H技术,以便在外科手术环境中应用[19]

此外,针对医疗保健的特定HRA技术,如临床观察型人因可靠性分析(Observational clinical human reliability analysis, OCHRA)也已被开发出来。Alijani等人概述了OCHRA的关键特征:检测技术错误及其潜在机制,识别错误频率最高的操作阶段,以及确定对患者后果严重的错误阶段[20]。Tang和Cuschieri使用OCHRA在719次临床手术中识别了7869个具有重大影响的错误,同时识别了“危险区”和外科医生实习生的技能提升曲线[21]。这些研究展示了HRA在医疗保健中的应用潜力。

然而,关于这一主题的完整概述仍然缺乏,且尚未对医疗保健中的HRA进行详细总结或分类研究。本文的目的是填补这些空白。本综述的目标如下:

1) 医疗保健中的HRA研究概述

本文旨在系统地分析2000年至2023年间关于医疗保健中HRA的相关文献。通过仔细审查出版物数量,揭示该研究领域的演变和发展趋势,帮助研究人员识别重要的研究阶段和关键的转折点。

2) 关键研究热点和趋势的识别

本文旨在运用文献计量分析方法,识别医疗保健领域内HRA的关键研究热点和新兴主题。

3) HRA研究方法与应用场景分析

基于文献的关键词共现分析,本节采用双重分类框架,将不良事件与绩效影响因素(Performance influencing factors, PIF)以及不良事件与研究方法论相结合,系统地对检索到的文章进行分类。此分类旨在探讨在医疗环境中应用HRA的独特需求和局限性,评估各种研究方法在不同医疗场景中的适用性和优化潜力。此外,本节还将详细分析各种医疗环境中的PIF,为未来研究提供实践参考,并增强HRA在实际应用中的有效性和可操作性。

我们对2000年至2023年间在Web of Science (WOS),PubMed和Scopus数据库中检索到的相关论文进行了文献可视化分析和统计分类。具体来说,分析结果包括以下几个方面:首先,分析了出版趋势。接着,使用VOSviewer工具研究了关键词共现情况。此外,论文还根据不良事件、研究方法论和PIF进行了分类。

本文的结构安排如下:第二部分描述了文献检索方法,包括检索查询和排除标准;第三部分报告了分析结果;第四部分对结果进行了批判性分析;最后,第五部分总结了本文内容。

2. 材料与方法

本研究所使用的科学文献来自WOS,PubMed和Scopus数据库。这三个数据库是权威、全面且具备引文索引功能的文献检索数据库,广泛应用于文献综述并为常见的文献计量学软件提供可导出的书目元数据。根据研究主题,通过以下检索式对过去23年(2000年1月1日至2023年5月1日)间在论文标题、关键词和摘要中发布的文献进行了初步检索,获得了842篇文献:

(“human reliability” OR “human failure operator error*” OR “human performance factor*” OR “performance influencing factor*” OR “human error* analysis” OR “human error* probability” OR “probabilistic risk assessment” OR “human factor* analysis” OR “dependence* assessment*” OR “human unreliability” OR “human failure event*” OR “performance shaping factor*”) AND (medicine OR medical OR healthcare OR “health care” OR patient* OR clinical)

这些关键词的选择旨在涵盖与HRA相关的多个关键概念和领域,包括具体的人为操作失败或错误事件、影响人类表现的各种因素,以及与人为错误相关的风险量化与分析,紧密关联于我们的研究领域。

在阅读了标题和摘要后,排除了752篇符合以下一种或多种描述的文献:论文类型为综述、会议论文、临床试验、专利、报告、摘要或未指定;出版语言非英语;主要主题与HRA无关;研究领域非医疗保健。

在阅读完整篇文献后,共有90篇文献被纳入研究。详细的筛选过程见图1

3. 结果

3.1. 发表趋势

图2展示了根据出版年份对选定的90篇文章的频率分布。可以看出,大多数文章是在最近几年发表的,而在21世纪初,每年的文章数不到10篇。这可能是由于COVID-19疫情引起了更多人对医疗保健

Figure 1. PRISMA flowchart schematic illustrating the screening process

1. PRISMA流程图示意图,展示了文献筛选过程

Figure 2. Trend of published papers of HRA in healthcare considering the last 22 years

2. 过去22年中,医疗保健领域HRA相关论文的发表趋势

领域的关注,导致更多研究者选择在这一领域进行研究。尽管随着COVID-19疫情的缓解,文章数量有所下降,但根据拟合曲线,领域内的研究热度仍在增加。

3.2. 关键词共现分析

图3展示了通过VOSviewer工具分析的关键词随时间变化的图表。该图为关键词共现网络添加了

注:HFACS指的是人因分析与分类系统(Human Factor Analysis and Classification System)。

Figure 3. Keyword co-occurrence overlay time of publications

3. 关键词共现时间叠加图

时间维度。节点的大小代表关键词的频率;节点之间的连接反映关键词之间的关系;连接线的粗细表示关系的强度;节点的颜色则反映了时间因素。通过分析该图,我们发现“patient safety”是一个热门的研究主题。从与该主题相关的其他关键词来看,“adverse events”和“human error”与其最为紧密相关,这强调了大多数研究的目标是改善患者安全。为实现这一目标,采取了防止和消除不良事件的措施。“human error”可能是许多不良事件的原因,例如医生在药物管理中的错误、手术中的错误等。该图还显示了对“人为因素”的关注,这表明我们可以考虑在本文中纳入最相关的PIF。

基于对文献内容的关键词共现分析,我们采用了由不良事件与PIF的组合、不良事件与研究方法的组合构成的双重分类法,对90篇文章进行了分类。图4展示了审阅文献在所有类别中的分布情况。

3.2.1. 不良事件

医疗保健中的不良事件仍然是患者安全的威胁[22]。不同的不良事件发生在不同的情境中。根据医疗机构对不良事件的管理类别以及文献中的应用场景,文献被分为以下10个类别:

1) 医学诊断或治疗:在医生诊断或治疗过程中发生的不良事件,导致患者安全问题,包括误诊、麻醉、手术、导管或介入事故等。这是文献中最常见的不良事件类别,共有31篇相关文献[17] [19] [23]-[51].

2) 药品:在药物管理和分发过程中发生的不良事件和严重不良药物反应。共有16篇相关文献[52]-[67]

3) 护理:涉及患者住院期间发生的不良事件,包括但不限于跌倒、烧伤、压疮、误吸、吞咽错误、运输事故和输液不良反应[68]。共有八篇文章[69]-[76]

4) 医学检查技术:指涉及放射性物质或设备用于诊断或治疗疾病时所产生的不良事件,包括但不限于放疗和放射诊断。该类别的文献全部集中在放疗中的HRA,共有6篇文章[77]-[82]

Figure 4. Taxonomic overview of the reviewed studies. The size of the grey dot represents the number of reviewed studies

4. 所有回顾性研究的分类概览。灰色圆点的大小表示回顾研究的数量

5) 输血:针对输血过程中出现的严重不良输血反应。这类文献相对较少,只有2篇论文[83] [84]

6) 医疗器械:如何在医疗设备的设计和生产过程中有效提高人的可靠性。我们发现了4篇文章[85]-[88]

7) 安全管理与意外伤害:与临床护理活动和医院运营有关的管理不善事件。我们发现10篇文章[89]-[98]

8) 医院感染:关于在临床治疗活动和医院运营过程中发生的感染。只有一篇论文[99]

9) 院外康复:针对患者在医院外接受康复治疗期间发生的不良事件。只有一篇论文[100]

10) 其他:医疗保健领域没有精确的应用场景。这些研究广泛关注整个医疗保健领域,共有11篇论文[101]-[111]

3.2.2. HRA研究方法

根据文章内容,可以将其分为三种主要方法。这三种方法是可靠性工程的重要组成部分,且彼此密切相关。“PIF分析”允许识别可能导致人类错误的相关因素。“人类错误分析(Human error analysis, HEA)”侧重于在安全关键任务中定位人类错误的发生位置和概率。PIF和人类错误分析的结合有助于进行“故障模式风险评估”。

1) PIF分析:PIF是指可以影响人类行为的各种因素。通常,PIF分析包括识别和排名PIF的重要性,或者开发一个特定的PIF分类法。本研究涵盖了41篇文献,涉及七种不同的不良事件。

2) HEA:HEA指评估人类错误对系统可靠性的影响,并进行任务分析,识别错误并分析其发生频率或严重性。该分析涵盖了八种不同的不良事件,涉及28篇文献。

3) 故障模式风险评估:故障模式是指在特定条件下发生的系统故障,可能是由于人类、机器或过程的意外或错误行为。其目的是评估过程中的故障和危害风险,并识别需要改进的关键领域。该类别有19篇文献,涉及10种不同的不良事件。

图4显示,医学诊断与治疗中的PIF分析在不良事件与研究方法的双重分类中涉及的文献最多。相关文献的具体技术和结果列在表1中,以便捕捉研究热点。

Table 1. Research articles on the analysis of PIF in medical treatment

1. 医学诊断与治疗中PIF分析的研究文章

文献

背景

HRA技术

结果

[37]

重症监护病房

根本原因和人为因素分析

暴露了文化和组织问题

[51]

外科手术

模拟仿真

可以研究那些对研究具有挑战性的影响绩效的因素

[50]

外科手术

HFACS

认知和团队因素管理减少错误

[24]

门诊手术中心

社会技术概率风险评估(Socio-Technical Probabilistic Risk Assessment, ST-PRA)

提出了故障的所有主要组成部分

[17]

外科手术

影响因素临时分类法(Influencing Factors, IFs)

量化每个IF的影响

[47]

外科手术

HFACS-Healthcare

结果发现了726个因果变量

[32]

急诊科

HFACS, AHP和模糊TOPSIS

确定了重要的人为错误因素

[45]

情景创伤模拟

基于Windows的视频叠加跟踪工具

该工具对系统要素进行了人为因素分析

[23]

机器人手术

HEART的修改版

与团队相关的因素影响最大

[44]

外科手术

OCHRA

循序渐进的视频学习准备可减少负担和错误

[49]

外科手术

病人安全修改系统工程倡议(Systems Engineering Initiative for Patient Safety, SEIPS)

对安全威胁进行了分析

[28]

外科手术

PSFs

影响因子最高的PSF

[31]

外科手术

SPAR-H

根据SPAR-H的分类法,提出了九个PSF

[46]

阴道异物

HFACS

确定了75个促成因素

[19]

外科手术

SPAR-H

针对具体情况的PSF定义提高了可靠性

[39]

围手术期环境

一个安全法案(One Safe Act, OSA)

引起OSA活动

3.2.3. 绩效影响因素

在HRA的定性和定量阶段,许多技术使用了PIFs [17]。基于[112]提出的完整PIF集以及本文总结的研究,我们将PIFs分为11个类别。图5显示了其具体阐述和相互关系。

Figure 5. The PIF taxonomy

5. PIF分类法

1) 认知特征:我们发现有47篇文章提到这一点[17] [23] [24] [28] [29] [32] [37] [39] [46] [47] [49]-[52] [54] [55] [58]-[60] [62] [63] [65]-[67] [69] [71] [73]-[75] [77]-[79] [81]-[83] [85] [87] [90] [92] [95] [97]-[100] [107] [108] [110]

2) 身体和心理特征:我们发现有43篇文章提到这些特征[17] [19] [23] [28] [29] [31] [32] [37] [46] [47] [49]-[55] [58]-[62][64] [64]-[67] [71] [73]-[75] [78] [81] [82] [85] [90] [95]-[98] [100] [107] [108] [110]

3) 个人和社会特征:我们发现有22篇文章提到这些特征[17] [23] [39] [46] [49] [51] [52] [58] [60] [65] [67] [71] [73] [77] [90] [95] [97] [98] [100] [107] [108] [110]

4) 程序:我们找到的25篇文献中提到了这一点[17] [19] [31] [46] [49]-[51] [53] [55] [58]-[60] [62] [63] [67] [71] [75] [77] [79] [87] [90] [95] [97] [98] [100]

5) 任务特征:共有28篇文献涉及了这一类别[17] [19] [24] [31] [32] [46] [51] [53] [54] [58]-[62] [64] [67] [69] [71] [77]-[80] [85] [90] [95] [99] [100] [107]

6) 人机界面:我们找到的文献中提到这一点的有21篇[17] [19] [28] [31] [46] [51] [52] [54] [58]-[60] [63] [71] [78] [79] [87] [90] [95] [97] [98] [100]

7) 系统状态:我们能够识别的20篇文献中提到了这一点[17] [29] [45] [46] [51]-[53] [58] [60] [71] [78] [80] [82] [90] [92] [95] [97] [98] [100] [107]

8) 现象学特征:共有9篇文献涉及这一类别[17] [46] [51] [58] [71] [87] [90] [95] [100]

9) 物理工作条件:共有43篇文献讨论了这一点[17] [19] [23] [28] [29] [31] [32] [39] [45]-[47] [49]-[52] [55] [58] [59] [61]-[67] [71] [73]-[75] [77] [80]-[82] [87] [90] [95] [97]-[100] [107] [108] [110]

10) 团队和组织因素:共有46篇文献涉及这一类别[17] [19] [23] [28] [29] [31] [32] [37] [39] [45]-[47] [49]-[54] [56] [58]-[63] [65]-[67] [69] [71] [73]-[75] [77] [81] [82] [87] [90] [95] [97]-[100] [107] [108] [110]

11) 未定义:该类别指的是文章中未出现具体的PIF。共有33篇文献涵盖了这一类别[25]-[27] [30] [33]-[36] [38] [40]-[44] [48] [57] [70] [72] [76] [84] [86] [88] [89] [91] [93] [94] [101]-[106] [109]

4. 讨论

近年来,研究数量的增加是显著的。首先,这使我们对医疗领域中的HRA有了更全面的了解和认识。此外,更多的信息得到了提供,为后续的研究方法改进和结果验证开辟了可能性,例如Onofrio和Trucco (2020)提出的基于其2018年研究[23]提出的基于其2018年研究[17]修改版HEART模型。同时,由于随机性的结果不确定性也得到了减少。研究人员在跨学科和国际间的合作,极大地促进了研究的可靠性,因为可以从不同的角度分析结果,从而进一步增强了研究结果的可信度。通过持续的研究、合作和跨学科的工作,已做出不懈的努力来改进HRA技术,确保其在医疗保健环境中的稳健性和可靠性。这个过程涵盖了使用验证方法,如真实数据分析、专家评估、模拟研究、可用性测试和与既定标准的基准对比。这种综合方法不仅使HRA技术与医疗保健系统的动态特性相适应,而且确保了人因在患者安全中的不断理解和跟进。

4.1. 不良事件

本次文献综述中的大多数论文都集中于医疗诊断治疗中的HRA。根据表1结果,手术室是不良事件发生的主要场所之一,尤其是在内窥镜腹腔镜手术和白内障手术中。这可能是因为约39%到65%的住院患者事件是由手术错误引起的[113] [114],而65%的手术错误已被证明与人因因素有关[113]。手术过程中,尤其是复杂手术中,操作错误和认知失误可能导致严重的不良事件。通过使用CES,分析外科医生和手术团队的认知过程、决策路径以及潜在的操作错误,能够识别出可能的风险点。另外,故障树(Fault tree analysis, FTA)可以用来追溯错误的潜在原因,识别导致手术失败或并发症的具体因素。在药物治疗过程中,由于医务人员的错误使用或患者未能正确服药,可能导致药物不良反应或剂量错误。HEART方法可以评估药物治疗中可能的人为错误,并提出减少错误的策略。而FMEA可以帮助识别药物管理系统中潜在的失败模式,如药物配发错误、患者错误服药等,采取措施进行改进。医疗设备的操作复杂且具有一定风险,错误操作可能导致设备故障或患者伤害。SHERPA方法通过系统地分析人机交互过程,评估操作员在设备使用过程中可能出现的错误类型和错误的严重性,并设计出有效的错误预防和修正措施。急诊科和重症监护中的工作环境高度复杂,时间紧迫且压力大。使用MDTA方法可以识别事故发生的根本原因并分析控制措施,确保急诊处理过程中尽量减少不良事件发生。护理过程中,由于操作不当或沟通失误,可能会出现药物错误、护理操作错误等不良事件。CREAM方法可用于收集和分析临床护理过程中的关键事件,识别潜在风险,并为预防措施的改进提供依据。与医院外的康复和院内感染事件相关的研究较少,只有两篇文章涉及这方面。然而,随着医院住院时间的缩短,通过在家中提供更多医疗护理[100]以及院内感染的严重性,预计未来这两个方面的研究将增多。

这种不良事件的分类可以与HRA技术结合使用,通过结合近期事件提高医疗实践者的可靠性,并防止他们在发生严重事件之前暴露于潜在的危险条件中[14]。一个有趣的研究方向是将这种结合方式融入后续的研究数据库中,为信息提供支持。然而,未来的医疗场景将更加复杂,可能涉及多个不良事件。研究人员已提出,基于模拟的HRA技术可以提供一个基于虚拟任务环境甚至虚拟操作员的动态建模系统[115],在这一方向上将取得进一步进展。

4.2. 研究方法

在研究方法类别中,PIF分析的研究数量超过其他方法。这是因为PIF在HRA的各个环节中起着重要作用,包括识别潜在人为错误、将这些错误建模为整体的概率风险评估、量化错误以及防止错误的发生[116]。一些HRA技术已经开发出应用程序,提供了一种建模方法和参数,用于评估背景因素对人类行为或决策可靠性的影响。例如,HFACS是一种2003年发布的事故分析与调查方法,最初用于航空电子学应用[117],通过使用因果因素分类来分类和分析与医院报告的事件相关的人为因素[47]。另一个例子是SPAR-H,描述于[31],它在现有PIFs分类法的基础上,加入了量化权重和负面影响率。

在医疗保健领域,存在许多类型的人为错误,如诊断错误、用药错误、手术错误等。因此,需要开展各种研究以分析和控制这些错误。最广泛使用的技术之一是OCHRA,它将细化的技术性术中错误作为一个概念框架进行分类[34]。与PIF分析相比,人为错误分析的研究较少,这可能是因为前者更多地侧重于识别和分类具体类型的错误,以收集统计数据并监控趋势,而后者则更关注深入探讨错误的根本原因。因此,许多文章在分析人为错误时不能脱离PIF分析。

失败模式风险评估的研究较少,可能是由于其复杂性,受到时间和财务限制的制约。医疗系统涉及人类、系统组件和环境之间的多种互动,因此HRA仅作为失败模式风险评估的一部分。涉及的技术不多。最典型的技术是FMEA,这是一种基于主观的、特定领域固定量表进行的系统静态风险评估方法[48]。近年来,诸如动态概率风险评估(DPRA)等技术通过动态风险场景分析来提供相关的见解,探索和评估系统开发生命周期中的现象[92]

一些HRA方法,如FTA和FMEA,尽管可以有效评估传统的操作错误,但在处理动态环境、复杂交互和多变的医疗场景时可能显得过于刚性。研究人员需要基于机器学习算法(例如强化学习),根据医疗环境中的反馈信息不断优化评估模型,使其能够适应不同的临床环境和突发情况。一些方法多侧重于技术性和操作性错误,但对于医疗人员的心理和认知因素的评估较为薄弱,需要通过更加详细的认知任务分析,结合认知负荷理论深入分析医疗人员在不同任务中的认知负担。评估任务复杂度、信息处理和决策过程对错误发生的影响。另外方法大多侧重于个体操作,缺乏对团队协作和沟通的深入分析,而这些因素在医疗环境中扮演着重要角色,需要引入社交网络分析(Social Network Analysis, SNA)更好地评估团队成员之间的沟通模式、信息流动、协作效率等对医疗错误的影响。

研究方法各有其特点。以往的研究没有充分对比不同的HRA技术。预计未来将有更多详细的研究出台,帮助医疗从业人员选择适当的研究方法。鉴于医疗保健领域中数据来源的庞大,如电子病历、医疗设备、患者满意度调查等,将研究方法与人工智能的结合也将成为一种趋势。

4.3. 绩效影响因素

为了使PIF的研究更具实用性,我们可以通过引用实证研究、探索多个因素之间的相互作用,并提供具体的应用实例来提升其价值。这种方法能够在广泛的因素框架内进行更为详细和有针对性的讨论。

1) 认知特征:缺乏知识、技能和经验是增加人为错误概率的主要原因[118]。Namiki等人进行的一项研究关注了创伤性脑损伤中,初级医生在评估格拉斯哥昏迷评分时的错误和判断不准确问题[119]。该研究发现,在所检查的患者中,有26%未能提供正确的意识水平资料。初级医生的工作习惯使他们更容易犯医疗错误。缺乏经验使他们在处理复杂病例时容易做出错误判断;高认知负荷(需要在短时间内处理大量信息)导致注意力分散和决策困难。认知特征还与其他PIF (如身体和心理特征)相互作用。Davis等人对新西兰工作模式的研究显示,分析了不同工作因素与疲劳相关结果的关系,发现42%的初级医生回忆称在六个月内因疲劳而犯了临床错误[120]。他们常常在高压环境下工作,尤其是在轮班和夜班时,导致疲劳增加。疲劳显著损害认知功能,如记忆和判断能力,从而增加了错误发生的风险。然而,随着临床经验和认知技能的提升,这些错误通常会随着时间的推移减少。值得注意的是,频繁或始终得到适当监督的工作环境相比于较少或没有监督,显著降低了因疲劳引起的错误风险

2) 身体和心理特征:在医疗领域,关于PIF的研究主要集中在疲劳、压力和衰老上,揭示了这些因素与临床表现之间复杂且依赖于情境的关系。关于睡眠剥夺的研究凸显了这一复杂性。Uchal等人发现,在24小时内仅睡1小时的外科医生在模拟腹腔镜手术中的表现优于睡了6.5小时的医生[121]。与此相反,Taffinder等人观察到,睡眠剥夺后,外科医生的手工灵活性显著下降。对于麻醉学住院医生,睡眠剥夺增加了嗜睡感,情绪下降,并且降低了在心理运动任务中的表现[122]。类似地,压力研究的结果不一,而衰老研究则表明,老年医护人员在某些临床实践中可能出现潜在的障碍。疲劳和压力对医生的混合影响可以这样解释:当医生感到疲劳时,他们可能会更加依赖团队,主动寻求同事的帮助和支持。这可以增强团队合作,改善整体医疗结果。适度的压力也可以提高医生的警觉性和专注力,帮助他们更仔细地处理患者需求和临床细节。然而,疲劳会损害认知功能,增加临床错误的可能性。长期的高压环境可能导致慢性压力,加剧疲劳,进一步影响决策能力。随着医生年龄的增长,他们的认知能力和身体耐力可能会下降,使得他们从疲劳和压力中恢复的能力变得更差,从而增加了错误的风险。尽管如此,年龄带来的丰富经验可以帮助抵消一些认知衰退。然而,如果疲劳和压力没有得到有效管理,随着时间的推移,衰老的负面效应可能会被放大,进一步降低医生的表现。为了减少这些因素的负面影响,医生需要合理的工作安排、充足的休息时间、适当的压力管理以及持续的专业培训和支持。这些措施有助于维持医生的工作效率,减少错误的发生。

3) 物理工作条件:一些研究者认为,工作条件PIF指的是手术室中工作环境的物理因素,如噪音、干扰、光照的质量与数量以及温度条件[19]。一项医疗行业的研究发现,干扰因素导致了43%的用药错误[123]。另一项调查发现,69.7%的护士同意环境因素,如噪音(导致干扰),是药物错误的重要原因[124]。此外,研究表明,热应激可能会影响准确性、注意力和整体人类表现[125]。由于医疗环境的不确定性、不可预测性和突发的中断,诊断和治疗过程容易受到干扰。此外,缺乏分级医疗系统常导致医疗设施过度拥挤,造成医生经常在信息不完整的情况下做出诊断,并在过度拥挤的环境中难以为每个患者提供最佳护理[126]。在这样的环境中,医疗人员可能面临在短时间内做出诊断时,在速度和准确性之间的取舍,这增加了误诊的可能性。因此,在具有挑战性的医疗环境中,医疗人员之间的有效协作显得尤为重要。通过增强沟通和团队合作,他们可以更好地应对身体和心理上的压力,减少错误,并提高诊断和治疗的质量。

4) 团队和组织因素:团队合作被认为是提高社会技术系统中人类表现的非技术技能的关键要素。针对外科手术背景的研究表明,在各种PIF中,粗鲁的语言和不尊重的行为——这是沟通与团队合作类别中的关键元素——对手术室工作人员的技术表现产生了最有害的影响[17]。沟通作为团队合作的关键指标,是重症监护室中人类错误的主要原因之一[127]。管理系统也是一个需要关注的重要领域。例如,某地方医院全天候运营,每天处理大约300到400名患者。该医院采用三班轮班制度,工作人员配置根据患者流量进行调整。例如,夜班的医务人员通常比白班少。然而,即使进行班次调整,在高峰患者流量期间,医疗人员的配置仍然不足,尤其是在患者人数突然增加时,医疗人员的增加比例并未跟上。在这种情况下,科室经理的监督作用显得尤为重要。研究表明,尤其是当管理者未能及时提供指导时,监督不足会对医疗质量产生负面影响。有效的监督不仅帮助管理者对患者状况提供洞察并确保医疗程序的规范性,而且能够将现场事件转化为学习和经验共享的机会,从而进一步提升整个团队的能力和患者护理质量。

其他尚未广泛考虑的PIF可能表明人们对这些因素的理解不够深入,但这并不意味着这些因素在没有彻底评估的情况下对人的可靠性没有影响。为了提高HRA的有效性,建议扩展研究范围,并采用综合评估方法。这将有助于更准确地识别和减轻关键的人为错误因素。我们还发现,许多文章没有包括PIF,可能是因为缺乏基础信息,比如医务人员的工作记录。有文献建议使用更多的监控设备、摄像头和传感器来获取数据[44]。此外,专家访谈和问卷也被用来收集专业信息。在这一过程中,必须考虑专家意见的模糊性。模糊集或云模型理论可以作为解决方案,提出一种可追溯且有力的方式来表征专家的经验和知识[100]。未来的研究预计会设计出符合不同需求的PIF分类法。我们的综述可以作为PIF选择的参考。

总之,我们的研究可以讨论用于评估HRA干预措施在减少人为错误和提高患者安全性方面效果的指标和结果。然而,仍然存在一些局限性。在PIF分类中,一些文章只是笼统地提到了类型,我们将这些也归类为其子类型。例如,对于一篇只提到“任务”的文章,我们假设它涵盖了程序和任务特征。这些局限性应在未来的研究中得到解决。

5. 结论

这篇论文对过去23年在医疗领域的HRA进行了全面回顾。我们使用VOSviewer工具可视化了关键词共现网络,从而帮助识别HRA研究的热点和趋势。研究结果表明,近年来HRA研究显著增加,这不仅增强了对该领域的整体理解,还促进了研究方法的改进。通过分析关键研究热点和趋势,我们识别出了关键研究领域和新兴主题。值得注意的是,“患者安全”成为一个核心研究主题,且与“不良事件”和“人为错误”紧密相关。这表明,许多研究的目标是通过预防和处理不良事件(如药物错误和外科手术失误)来提高患者安全。HRA在理解医疗环境中的人为错误方面发挥着至关重要的作用,为提升患者安全提供了宝贵的见解。

在审视HRA研究的主要方法和应用场景时,我们应用了一个双重分类框架,结合了不良事件和潜在PIF以及研究方法。这一分类揭示了不同类型的不良事件与相关PIF之间的重要关联,为识别特定事件的潜在原因提供了清晰的框架。同时,这也帮助我们为不同医疗环境匹配了合适的研究方法,以确保所选择的研究方法能够有效应对特定的挑战和需求。

在未来HRA研究有效性的提升方向方面,我们发现,尽管研究方法多样,但对PIF的深入分析仍然缺乏。许多研究侧重于识别特定类型的人为错误,而没有探索其根本原因。因此,我们建议在不同医疗环境中增加PIF的实际应用价值。未来的研究应结合实证研究,开发多种模型来探讨多种因素之间的相互作用,并提供具体的应用示例,这将有助于全面评估关键的人为错误因素。

最后,关于挑战与局限性,医疗领域中故障模式风险评估的复杂性以及时间和财务限制,限制了HRA技术的广泛应用。未来的研究应利用先进的监控技术和专家意见填补数据空白,增强对PIF的理解,最终支持建立一个稳健的分类体系,指导后续的HRA研究。

基金项目

国家重点研发计划(编号2023YFC3604800)。

NOTES

*通讯作者。

参考文献

[1] Fitts, P.M., Jones, R.E. and Aero Medical, L. (1947) Analysis of Factors Contributing to 460 “Pilot-Error” Experiences in Operating Aircraft Controls. Army Air Forces Headquarters, Air Material Command, Engineering Division.
[2] Payne, D., Altman, J.W. and Smith, R.W. (1962) An Index of Electronic Equipment Operability: Instruction Manual. Defense Technical Information Center.
[3] Reason, J. (1990) Human Error. Cambridge University Press.
https://doi.org/10.1017/cbo9781139062367
[4] Swain, A.D. and Guttmann, H.E. (1983) Handbook of Human-Reliability Analysis with Emphasis on Nuclear Power Plant Applications. Final Report. US Nuclear Regulatory Commission.
[5] Reason, J., Broadbent, D.E., Baddeley, A.D. and Reason, J. (1997) The Contribution of Latent Human Failures to the Breakdown of Complex Systems. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 327, 475-484.
[6] Vestrucci, P. (1988) The Logistic Model for Assessing Human Error Probabilities Using the SLIM Method. Reliability Engineering & System Safety, 21, 189-196.
https://doi.org/10.1016/0951-8320(88)90120-2
[7] Williams, J.C. (1988) A Data-Based Method for Assessing and Reducing Human Error to Improve Operational Performance. Conference Record for 1988 IEEE Fourth Conference on Human Factors and Power Plants, Monterey, 5-9 June 1988, 436-450.
https://doi.org/10.1109/hfpp.1988.27540
[8] Thompson, C.M., Cooper, S.E., Kolaczkowski, A.M., Bley, D.C., Forester, J.A. and Wreathall, J. (1997) The Application of ATHEANA: A Technique for Human Error Analysis. Proceedings of the 1997 IEEE Sixth Conference on Human Factors and Power Plants, 1997. ‘Global Perspectives of Human Factors in Power Generation’, Orlando, 8-13 June 1997, 9/13-9/17.
https://doi.org/10.1109/hfpp.1997.624860
[9] Hollnagel, E. (1998) Cognitive Reliability and Error Analysis Method (CREAM). Elsevier Science.
[10] Gertman, D., Blackman, H., Marble, J., Smith, C. and Boring, R. (2004) The SPAR-H Human Reliability Analysis Method. U.S. Nuclear Regulatory Commission.
[11] Al-Ghamdi, S.H. and Straeter, O. (2011) Assessing Organizational Aspects of Human Reliability in Air Traffic Control Using Systems Theory. Safety and Reliability, 31, 35-67.
https://doi.org/10.1080/09617353.2011.11690929
[12] Kim, J., Jung, W. and Park, J. (2004) The Misdiagnosis Tree Analysis (MDTA) Technique for Analysing Diagnosis Failure. Proceedings of Cognitive Systems Engineering in Process Control (CSEPC), Sendai, 2004, 37-42.
[13] Kandemir, C. and Celik, M. (2022) A Systematic Literature Review and Future Insights on Maritime and Offshore Human Reliability Analysis. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 237, 3-19.
https://doi.org/10.1177/14750902221098308
[14] Ciani, L., Guidi, G. and Patrizi, G. (2022) Human Reliability in Railway Engineering: Literature Review and Bibliometric Analysis of the Last Two Decades. Safety Science, 151, Article ID: 105755.
https://doi.org/10.1016/j.ssci.2022.105755
[15] Sujan, M.A., Embrey, D. and Huang, H. (2020) On the Application of Human Reliability Analysis in Healthcare: Opportunities and Challenges. Reliability Engineering & System Safety, 194, Article ID: 106189.
https://doi.org/10.1016/j.ress.2018.06.017
[16] Lyons, M., Adams, S., Woloshynowych, M. and Vincent, C. (2004) Human Reliability Analysis in Healthcare: A Review of Techniques. International Journal of Risk & Safety in Medicine, 16, 223-237.
https://doi.org/10.3233/jrs-2004-321
[17] Onofrio, R. and Trucco, P. (2018) Human Reliability Analysis (HRA) in Surgery: Identification and Assessment of Influencing Factors. Safety Science, 110, 110-123.
https://doi.org/10.1016/j.ssci.2018.08.004
[18] Wang, D., Liu, J. and Yu, H. (2024) Extending a Human Error Identification and Assessment Method Considering the Uncertainty Information for Human Reliability Analysis of Robot-Assisted Rehabilitation. Engineering Applications of Artificial Intelligence, 133, Article ID: 108091.
https://doi.org/10.1016/j.engappai.2024.108091
[19] Chenani, K.T., Nodoushan, R.J., Jahangiri, M., Madadizadeh, F. and Fallah, H. (2022) Adaptation of the Standardized Plant Analysis-Risk Human Reliability Analysis Technique for the Surgical Setting: Expert Judgment Approach. International Journal of Occupational Safety and Ergonomics, 29, 17-24.
https://doi.org/10.1080/10803548.2021.2018856
[20] Alijani, A., Hanna, G.B. and Cuschieri, A. (2004) Abdominal Wall Lift versus Positive-Pressure Capnoperitoneum for Laparoscopic Cholecystectomy: Randomized Controlled Trial. Annals of Surgery, 239, 388-394.
https://doi.org/10.1097/01.sla.0000114226.31773.e3
[21] Tang, B. and Cuschieri, A. (2020) Objective Assessment of Surgical Operative Performance by Observational Clinical Human Reliability Analysis (OCHRA): A Systematic Review. Surgical Endoscopy, 34, 1492-1508.
https://doi.org/10.1007/s00464-019-07365-x
[22] Brunsveld-Reinders, A.H., Arbous, M.S., De Vos, R. and De Jonge, E. (2015) Incident and Error Reporting Systems in Intensive Care: A Systematic Review of the Literature. International Journal for Quality in Health Care, 28, 2-13.
https://doi.org/10.1093/intqhc/mzv100
[23] Onofrio, R. and Trucco, P. (2020) A Methodology for Dynamic Human Reliability Analysis in Robotic Surgery. Applied Ergonomics, 88, Article ID: 103150.
https://doi.org/10.1016/j.apergo.2020.103150
[24] Bish, E.K., Azadeh-Fard, N., Steighner, L.A., Hall, K.K. and Slonim, A.D. (2017) Proactive Risk Assessment of Surgical Site Infections in Ambulatory Surgery Centers. Journal of Patient Safety, 13, 69-75.
https://doi.org/10.1097/pts.0000000000000119
[25] Reddy, K., Byrne, D., Breen, D., Lydon, S. and O’Connor, P. (2020) The Application of Human Reliability Analysis to Three Critical Care Procedures. Reliability Engineering & System Safety, 203, Article ID: 107116.
https://doi.org/10.1016/j.ress.2020.107116
[26] McCrory, B., LaGrange, C.A. and Hallbeck, M.S. (2014) Quality and Safety of Minimally Invasive Surgery: Past, Present, and Future. Biomedical Engineering and Computational Biology, 6, BECB.S10967.
https://doi.org/10.4137/becb.s10967
[27] Montague, M., Lee, M.S.W. and Hussain, S.S.M. (2004) Human Error Identification: An Analysis of Myringotomy and Ventilation Tube Insertion. Archives of OtolaryngologyHead & Neck Surgery, 130, 1153-1157.
https://doi.org/10.1001/archotol.130.10.1153
[28] Frazão, D. and Sobral, J. (2022) The Impact of Human Error on Medical Procedures. International Journal of Risk & Safety in Medicine, 33, 287-298.
https://doi.org/10.3233/jrs-210019
[29] Bas, E. (2018) An Integrated OSH Risk Management Approach to Surgical Flow Disruptions in Operating Rooms. Safety Science, 109, 281-293.
https://doi.org/10.1016/j.ssci.2018.06.010
[30] Muthukumarasamy, G., Zino, S., Tang, B. and Patil, P. (2022) Development of Surgical Error Reduction System (SERS) for Laparoscopic Appendectomy by Using Observational Human Reliability Analysis (OCHRA) Model and to Analyse Its Impact on Patient Outcomes. International Journal of Surgery Protocols, 26, 81-87.
https://doi.org/10.29337/ijsp.181
[31] Jafari Nodoushan, R., Taherzadeh Chenani, K., Jahangiri, M., Madadizadeh, F. and Fallah, H. (2022) Quantification of the Impact of Factors Affecting the Technical Performance of Operating Room Personnel: Expert Judgment Approach. Journal of Healthcare Risk Management, 41, 9-16.
https://doi.org/10.1002/jhrm.21497
[32] https://doi.org/10.1016/j.ergon.2018.05.004
[33] Gauba, V. (2008) Human Reliability Analysis of Cataract Surgery. Archives of Ophthalmology, 126, 173-177.
https://doi.org/10.1001/archophthalmol.2007.47
[34] Kanjilal, D., Mahmud, F. and Sutkin, G. (2020) Constructivist Grounded Theory to Establish the Relationship between Technical Error and Adverse Patient Outcome: Modeling Technical Error and Adverse Outcomes. The American Surgeon, 87, 753-759.
https://doi.org/10.1177/0003134820952837
[35] Lavelle, A., White, M., Griffiths, M.J.D., Byrne, D. and O’Connor, P. (2020) Human Reliability Analysis of Bronchoscope-Assisted Percutaneous Dilatational Tracheostomy: Implications for Simulation-Based Education. Advances in Simulation, 5, Article No. 30.
https://doi.org/10.1186/s41077-020-00149-7
[36] Malik, R., White, P.S. and Macewen, C.J. (2003) Using Human Reliability Analysis to Detect Surgical Error in Endoscopic DCR Surgery. Clinical Otolaryngology and Allied Sciences, 28, 456-460.
https://doi.org/10.1046/j.1365-2273.2003.00745.x
[37] Batty, L. (2003) Investigation of Eye Splash and Needlestick Incidents from an HIV-Positive Donor on an Intensive Care Unit Using Root Cause Analysis. Occupational Medicine, 53, 147-150.
https://doi.org/10.1093/occmed/kqg032
[38] Ahmed, A.R., Miskovic, D., Vijayaseelan, T., O’Malley, W. and Hanna, G.B. (2012) Root Cause Analysis of Internal Hernia and Roux Limb Compression after Laparoscopic Roux-En-Y Gastric Bypass Using Observational Clinical Human Reliability Assessment. Surgery for Obesity and Related Diseases, 8, 158-163.
https://doi.org/10.1016/j.soard.2010.12.009
[39] Duffy, C., Menon, N., Horak, D., Bass, G.D., Talwar, R., Lorenzi, C., et al. (2023) Clinicians’ Perspectives on Proactive Patient Safety Behaviors in the Perioperative Environment. JAMA Network Open, 6, e237621.
https://doi.org/10.1001/jamanetworkopen.2023.7621
[40] Corbett, M., O’Connor, P., Byrne, D., Thornton, M. and Keogh, I. (2018) Identifying and Reducing Risks in Functional Endoscopic Sinus Surgery through a Hierarchical Task Analysis. Laryngoscope Investigative Otolaryngology, 4, 5-12.
https://doi.org/10.1002/lio2.220
[41] Mendez, A., Seikaly, H., Ansari, K., Murphy, R. and Cote, D. (2014) High Definition Video Teaching Module for Learning Neck Dissection. Journal of OtolaryngologyHead & Neck Surgery, 43, 1-7.
https://doi.org/10.1186/1916-0216-43-7
[42] Yiasemidou, M., Mushtaq, F., Basheer, M., Galli, R., Panagiotou, D., Stock, S., et al. (2020) Patient-specific Mental Rehearsal with Three-Dimensional Models before Low Anterior Resection: Randomized Clinical Trial. BJS Open, 5, zraa004.
https://doi.org/10.1093/bjsopen/zraa004
[43] Tang, B., Hanna, G.B., Bax, N.M.A. and Cuschieri, A. (2004) Analysis of Technical Surgical Errors during Initial Experience of Laparoscopic Pyloromyotomy by a Group of Dutch Pediatric Surgeons. Surgical Endoscopy, 18, 1716-1720.
https://doi.org/10.1007/s00464-004-8100-1
[44] Nazari, T., van de Graaf, F.W., Dankbaar, M.E.W., Lange, J.F., van Merriënboer, J.J.G. and Wiggers, T. (2020) One Step at a Time: Step by Step versus Continuous Video-Based Learning to Prepare Medical Students for Performing Surgical Procedures. Journal of Surgical Education, 77, 779-787.
https://doi.org/10.1016/j.jsurg.2020.02.020
[45] Petrosoniak, A., Almeida, R., Pozzobon, L.D., Hicks, C., Fan, M., White, K., et al. (2018) Tracking Workflow during High-Stakes Resuscitation: The Application of a Novel Clinician Movement Tracing Tool during in Situ Trauma Simulation. BMJ Simulation and Technology Enhanced Learning, 5, 78-84.
https://doi.org/10.1136/bmjstel-2017-000300
[46] Cohen, T.N., Kanji, F.F., Souders, C., Dubinskaya, A., Eilber, K.S., Sax, H., et al. (2022) A Human Factors Approach to Vaginal Retained Foreign Objects. Journal of Minimally Invasive Gynecology, 29, 626-632.
https://doi.org/10.1016/j.jmig.2021.12.018
[47] Cohen, T.N., Francis, S.E., Wiegmann, D.A., Shappell, S.A. and Gewertz, B.L. (2018) Using HFACS-Healthcare to Identify Systemic Vulnerabilities during Surgery. American Journal of Medical Quality, 33, 614-622.
https://doi.org/10.1177/1062860618764316
[48] Funk, K.H., Bauer, J.D., Doolen, T.L., Telasha, D., Nicolalde, R.J., Reeber, M., et al. (2010) Use of Modeling to Identify Vulnerabilities to Human Error in Laparoscopy. Journal of Minimally Invasive Gynecology, 17, 311-320.
https://doi.org/10.1016/j.jmig.2010.01.012
[49] Adams-McGavin, R.C., Jung, J.J., van Dalen, A.S.H.M., Grantcharov, T.P. and Schijven, M.P. (2019) System Factors Affecting Patient Safety in the OR. Annals of Surgery, 274, 114-119.
https://doi.org/10.1097/sla.0000000000003616
[50] Thiels, C.A., Lal, T.M., Nienow, J.M., Pasupathy, K.S., Blocker, R.C., Aho, J.M., et al. (2015) Surgical Never Events and Contributing Human Factors. Surgery, 158, 515-521.
https://doi.org/10.1016/j.surg.2015.03.053
[51] LeBlanc, V.R., Manser, T., Weinger, M.B., Musson, D., Kutzin, J. and Howard, S.K. (2011) The Study of Factors Affecting Human and Systems Performance in Healthcare Using Simulation. Simulation in Healthcare: The Journal of the Society for Simulation in Healthcare, 6, S24-S29.
https://doi.org/10.1097/sih.0b013e318229f5c8
[52] Coombes, I.D., Stowasser, D.A., Coombes, J.A. and Mitchell, C. (2008) Why Do Interns Make Prescribing Errors? A Qualitative Study. Medical Journal of Australia, 188, 89-94.
https://doi.org/10.5694/j.1326-5377.2008.tb01529.x
[53] Hussain, A., Stewart, L.M., Rivers, P.A. and Munchus, G. (2015) Managerial Process Improvement: A Lean Approach to Eliminating Medication Delivery. International Journal of Health Care Quality Assurance, 28, 55-63.
https://doi.org/10.1108/ijhcqa-08-2013-0102
[54] Figueiroa Filho, C.L.S., Frias Suarez, D.G., De Assis, E.M., Lima, G.A.D.C. and Magalhaes, R.D.S. (2020) The Effect of Psychotropic Drugs as a Performance Influencing Factor on Human Reliability Assessment. IEEE Access, 8, 80654-80672.
https://doi.org/10.1109/access.2020.2982404
[55] Beirouti, M., Kamalinia, M., Daneshmandi, H., Soltani, A., Dehghani, P., Fararooei, M., et al. (2022) Application of the HEART Method to Enhance Patient Safety in the Intensive Care Unit. Work, 72, 1087-1097.
https://doi.org/10.3233/wor-205338
[56] Naybour, M., Remenyte-Prescott, R. and Boyd, M.J. (2019) Reliability and Efficiency Evaluation of a Community Pharmacy Dispensing Process Using a Coloured Petri-Net Approach. Reliability Engineering & System Safety, 182, 258-268.
https://doi.org/10.1016/j.ress.2018.09.022
[57] Schmidt, K., Taylor, A. and Pearson, A. (2017) Reduction of Medication Errors: A Unique Approach. Journal of Nursing Care Quality, 32, 150-156.
https://doi.org/10.1097/ncq.0000000000000217
[58] Cagliano, A.C., Grimaldi, S. and Rafele, C. (2011) A Systemic Methodology for Risk Management in Healthcare Sector. Safety Science, 49, 695-708.
https://doi.org/10.1016/j.ssci.2011.01.006
[59] Zheng, X., Bolton, M.L., Daly, C. and Biltekoff, E. (2020) The Development of a Next-Generation Human Reliability Analysis: Systems Analysis for Formal Pharmaceutical Human Reliability (SAFPH). Reliability Engineering & System Safety, 202, Article ID: 106927.
https://doi.org/10.1016/j.ress.2020.106927
[60] Hsieh, M., Chiang, P., Lee, Y., Wang, E.M., Kung, W., Hu, Y., et al. (2021) An Investigation of Human Errors in Medication Adverse Event Improvement Priority Using a Hybrid Approach. Healthcare, 9, Article 442.
https://doi.org/10.3390/healthcare9040442
[61] Ajemigbitse, A., Omole, M., Osi-Ogbu, O. and Erhun, W. (2013) A Qualitative Study of Causes of Prescribing Errors among Junior Medical Doctors in a Nigeria In-Patient Setting. Annals of African Medicine, 12, 223-231.
https://doi.org/10.4103/1596-3519.122691
[62] https://doi.org/10.1002/hfm.20791
[63] Zheng, X., Bolton, M.L. and Daly, C. (2020) Extended SAFPH℞ (Systems Analysis for Formal Pharmaceutical Human Reliability): Two Approaches Based on Extended CREAM and a Comparative Analysis. Safety Science, 132, Article ID: 104944.
https://doi.org/10.1016/j.ssci.2020.104944
[64] Widyanti, A. and Reyhannisa, A. (2020) Human Factor Analysis and Classification System (HFACS) in the Evaluation of Outpatient Medication Errors. International Journal of Technology, 11, 167-179.
https://doi.org/10.14716/ijtech.v11i1.2278
[65] Elsayed, E., Al-Kamil, A., England, E.L. and Shelton, C.L. (2021) Erroneous Neuraxial Administration of Neuromuscular Blocking Drugs: Case Reports and ‘the Absence of Evidence’. European Journal of Anaesthesiology, 38, 1303-1304.
https://doi.org/10.1097/eja.0000000000001460
[66] Cohen, T.N., Berdahl, C.T., Coleman, B.L., Seferian, E.G., Henreid, A.J., Leang, D.W., et al. (2023) Medication Safety Event Reporting: Factors That Contribute to Safety Events During Times of Organizational Stress. Journal of Nursing Care Quality, 39, 51-57.
https://doi.org/10.1097/ncq.0000000000000720
[67] Mickelson, R.S. and Holden, R.J. (2017) Medication Adherence: Staying within the Boundaries of Safety. Ergonomics, 61, 82-103.
https://doi.org/10.1080/00140139.2017.1301574
[68] Li, H., Kong, X., Sun, L., Zhu, Y. and Li, B. (2021) Major Educational Factors Associated with Nursing Adverse Events by Nursing Students Undergoing Clinical Practice: A Descriptive Study. Nurse Education Today, 98, Article ID: 104738.
https://doi.org/10.1016/j.nedt.2020.104738
[69] Inoue, K. and Koizumi, A. (2004) Application of Human Reliability Analysis to Nursing Errors in Hospitals. Risk Analysis, 24, 1459-1473.
https://doi.org/10.1111/j.0272-4332.2004.00542.x
[70] Inoue, K., Hirosawa, I., Yatsuduka, M., Yoshinaga, T. and Koizumi, A. (2002) Utilization of a Voluntary Reporting System in Quantitative Risk Assessment for Medical Tasks in a Hospital Setting‐with Special Reference to Tasks Done by Nurses. Journal of Occupational Health, 44, 360-372.
https://doi.org/10.1539/joh.44.360
[71] Norris, B., Currie, L. and Lecko, C. (2012) The Importance of Applying Human Factors to Nursing Practice. Nursing Standard, 26, 36-40.
https://doi.org/10.7748/ns.26.32.36.s46
[72] Koseoglu, S.C., Delice, E.K. and Erdebilli, B. (2023) Nurse-task Matching Decision Support System Based on FSPC-HEART Method to Prevent Human Errors for Sustainable Healthcare. International Journal of Computational Intelligence Systems, 16, Article No. 53.
https://doi.org/10.1007/s44196-023-00224-7
[73] Cohen, T.N., Cabrera, J.S., Litzinger, T.L., Captain, K.A., Fabian, M.A., Miles, S.G., et al. (2018) Proactive Safety Management in Trauma Care: Applying the Human Factors Analysis and Classification System. Journal for Healthcare Quality, 40, 89-96.
https://doi.org/10.1097/jhq.0000000000000094
[74] Peerally, M.F., Carr, S., Waring, J., Martin, G. and Dixon-Woods, M. (2022) A Content Analysis of Contributory Factors Reported in Serious Incident Investigation Reports in Hospital Care. Clinical Medicine, 22, 423-433.
https://doi.org/10.7861/clinmed.2022-0042
[75] Akbari, H., Ghasemi, F., Akbari, H. and Adibzadeh, A. (2018) Predicting Needlestick and Sharps Injuries and Determining Preventive Strategies Using a Bayesian Network Approach in Tehran, Iran. Epidemiology and Health, 40, e2018042.
https://doi.org/10.4178/epih.e2018042
[76] Katz, M.J., Osei, P.M., Vignesh, A., Montalvo, A., Oresanwo, I. and Gurses, A.P. (2020) Respiratory Practices in the Long-Term Care Setting: A Human Factors-Based Risk Analysis. Journal of the American Medical Directors Association, 21, 1134-1140.
https://doi.org/10.1016/j.jamda.2019.10.015
[77] Pandya, D., Podofillini, L., Emert, F., Lomax, A.J. and Dang, V.N. (2017) Developing the Foundations of a Cognition-Based Human Reliability Analysis Model via Mapping Task Types and Performance-Influencing Factors: Application to Radiotherapy. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 232, 3-37.
https://doi.org/10.1177/1748006x17731903
[78] Holland, K., Sun, S., Gackle, M., Goldring, C. and Osmar, K. (2019) A Qualitative Analysis of Human Error during the DIBH Procedure. Journal of Medical Imaging and Radiation Sciences, 50, 369-377.e1.
https://doi.org/10.1016/j.jmir.2019.06.048
[79] Castiglia, F., Giardina, M. and Tomarchio, E. (2010) Risk Analysis Using Fuzzy Set Theory of the Accidental Exposure of Medical Staff during Brachytherapy Procedures. Journal of Radiological Protection, 30, 49-62.
https://doi.org/10.1088/0952-4746/30/1/004
[80] Chadwick, L. and Fallon, E.F. (2012) Human Reliability Assessment of a Critical Nursing Task in a Radiotherapy Treatment Process. Applied Ergonomics, 43, 89-97.
https://doi.org/10.1016/j.apergo.2011.03.011
[81] Portaluri, M., Fucilli, F.I.M., Gianicolo, E.A.L., Tramacere, F., Francavilla, M.C., De Tommaso, C., et al. (2010) Collection and Evaluation of Incidents in a Radiotherapy Department. Strahlentherapie und Onkologie, 186, 693-699.
https://doi.org/10.1007/s00066-010-2141-2
[82] Weintraub, S.M., Salter, B.J., Chevalier, C.L. and Ransdell, S. (2021) Human Factor Associations with Safety Events in Radiation Therapy. Journal of Applied Clinical Medical Physics, 22, 288-294.
https://doi.org/10.1002/acm2.13420
[83] Liu, H., Li, Z., Zhang, J. and You, X. (2018) A Large Group Decision Making Approach for Dependence Assessment in Human Reliability Analysis. Reliability Engineering & System Safety, 176, 135-144.
https://doi.org/10.1016/j.ress.2018.04.008
[84] Slonim, A.D., Bish, E.K. and Xie, R.S. (2011) Red Blood Cell Transfusion Safety: Probabilistic Risk Assessment and Cost/Benefits of Risk Reduction Strategies. Annals of Operations Research, 221, 377-406.
https://doi.org/10.1007/s10479-011-0925-0
[85] Bligård, L. and Osvalder, A. (2014) Predictive Use Error Analysis—Development of AEA, SHERPA and PHEA to Better Predict, Identify and Present Use Errors. International Journal of Industrial Ergonomics, 44, 153-170.
https://doi.org/10.1016/j.ergon.2013.11.006
[86] Lin, Q., Wang, D., Lin, W. and Liu, H. (2014) Human Reliability Assessment for Medical Devices Based on Failure Mode and Effects Analysis and Fuzzy Linguistic Theory. Safety Science, 62, 248-256.
https://doi.org/10.1016/j.ssci.2013.08.022
[87] Zheng, Q., Liu, X., Wang, W., Wu, Q., Deveci, M. and Pamucar, D. (2023) The Integrated Prospect Theory with Consensus Model for Risk Analysis of Human Error Factors in the Clinical Use of Medical Devices. Expert Systems with Applications, 217, Article ID: 119507.
https://doi.org/10.1016/j.eswa.2023.119507
[88] Jiang, M., Feng, Q., Gao, J., Zhang, Q., Liu, S. and Su, M. (2017) [Study of Human Error Analysis in Medical Devices Clinical Application]. Chinese Journal of Medical Instrumentation, 41, 298-301.
[89] Tamim, S., Adeel, S.S., Trevan, T., Ikram, A., Jadoon, N., Zaman, A., et al. (2022) Implementing High-Reliability Organization Principles at Biological Diagnostic Laboratories: Case Study at National Institute of Health, Islamabad. Applied Biosafety, 27, 33-41.
https://doi.org/10.1089/apb.2021.0011
[90] Evans, M., He, Y., Luo, C., Yevseyeva, I., Janicke, H. and Maglaras, L.A. (2019) Employee Perspective on Information Security Related Human Error in Healthcare: Proactive Use of IS-CHEC in Questionnaire Form. IEEE Access, 7, 102087-102101.
https://doi.org/10.1109/access.2019.2927195
[91] Verbano, C. and Turra, F. (2010) A Human Factors and Reliability Approach to Clinical Risk Management: Evidence from Italian Cases. Safety Science, 48, 625-639.
https://doi.org/10.1016/j.ssci.2010.01.014
[92] Coronato, A. and Cuzzocrea, A. (2022) An Innovative Risk Assessment Methodology for Medical Information Systems. IEEE Transactions on Knowledge and Data Engineering, 34, 3095-110.
[93] Zaitseva, E. and Rusin, M. (2012) Healthcare System Representation and Estimation Based on Viewpoint of Reliability Analysis. Journal of Medical Imaging and Health Informatics, 2, 80-86.
https://doi.org/10.1166/jmihi.2012.1067
[94] Amir Farzam, S., Sahraei, Z., Khodabandehloo, E., Sadeghi Rad, H., Reza Modabber, M. and Khazaei Monfared, Y. (2019) Evaluation of Human Errors Using Standardized Plan Analysis Risk among Health Provider in Clinical and Pathology Laboratories in Hospitals of Qazvin Province. Helix, 9, 5084-5089.
https://doi.org/10.29042/2019-5084-5089
[95] Moddaber, M.R., Ahmadi, B. and Mosadeghrad, A.M. (2019) Evaluation of Human Errors Using Standardized Plant Analysis Risk among Health Provider Personnel in a Hospital in Qazvin Province in 2016-2017. Bali Medical Journal, 8, 233-240.
https://doi.org/10.15562/bmj.v8i1.1414
[96] Fera, M., De Padova, V., Di Pasquale, V., Caputo, F., Caterino, M. and Macchiaroli, R. (2020) Workers’ Aging Management—Human Fatigue at Work: An Experimental Offices Study. Applied Sciences, 10, Article 7693.
https://doi.org/10.3390/app10217693
[97] Bickley, S.J. and Torgler, B. (2021) A Systematic Approach to Public Health—Novel Application of the Human Factors Analysis and Classification System to Public Health and Covid-19. Safety Science, 140, Article ID: 105312.
https://doi.org/10.1016/j.ssci.2021.105312
[98] Mazur, L.M., Khasawneh, A., Fenison, C., Buchanan, S., Kratzke, I.M., Adapa, K., et al. (2022) A Novel Theory-Based Virtual Reality Training to Improve Patient Safety Culture in the Department of Surgery of a Large Academic Medical Center: Protocol for a Mixed Methods Study. JMIR Research Protocols, 11, e40445.
https://doi.org/10.2196/40445
[99] Kazemi, R., Mosleh, A. and Dierks, M. (2017) A Hybrid Methodology for Modeling Risk of Adverse Events in Complex Health‐care Settings. Risk Analysis, 37, 421-440.
https://doi.org/10.1111/risa.12702
[100] Wang, D., Wei, Y., Zhan, J., Xu, L. and Lin, Q. (2021) Human Reliability Assessment of Home-Based Rehabilitation. IEEE Transactions on Reliability, 70, 1310-1320.
https://doi.org/10.1109/tr.2020.3001923
[101] Wreathall, J. (2004) Assessing Risk: The Role of Probabilistic Risk Assessment (PRA) in Patient Safety Improvement. Quality and Safety in Health Care, 13, 206-212.
https://doi.org/10.1136/qshc.2003.006056
[102] Marx, D.A. (2003) Assessing Patient Safety Risk before the Injury Occurs: An Introduction to Sociotechnical Probabilistic Risk Modelling in Health Care. Quality and Safety in Health Care, 12, ii33-ii38.
https://doi.org/10.1136/qhc.12.suppl_2.ii33
[103] Leeftink, A.G., Visser, J., de Laat, J.M., van der Meij, N.T.M., Vos, J.B.H. and Valk, G.D. (2021) Reducing Failures in Daily Medical Practice: Healthcare Failure Mode and Effect Analysis Combined with Computer Simulation. Ergonomics, 64, 1322-1332.
https://doi.org/10.1080/00140139.2021.1910734
[104] Zaitseva, E., Levashenko, V., Rabcan, J. and Krsak, E. (2020) Application of the Structure Function in the Evaluation of the Human Factor in Healthcare. Symmetry, 12, Article 93.
https://doi.org/10.3390/sym12010093
[105] Cuschieri, A. (2003) Medical errors, incidents, accidents and violations. Minimally Invasive Therapy & Allied Technologies, 12, 111-120.
https://doi.org/10.1080/13645700310007698
[106] Battles, J.B. (2003) Organizing Patient Safety Research to Identify Risks and Hazards. Quality and Safety in Health Care, 12, ii2-ii7.
https://doi.org/10.1136/qhc.12.suppl_2.ii2
[107] McKay, J., Pickup, L., Atkinson, S., McNab, D. and Bowie, P. (2016) Human Factors in General Practice—Early Thoughts on the Educational Focus for Specialty Training and Beyond. Education for Primary Care, 27, 162-171.
https://doi.org/10.1080/14739879.2016.1181533
[108] Wiegmann, D.A., Wood, L.J., Solomon, D.B. and Shappell, S.A. (2020) Implementing a Human Factors Approach to RCA2: Tools, Processes and Strategies. Journal of Healthcare Risk Management, 41, 31-46.
https://doi.org/10.1002/jhrm.21454
[109] Molloy, G.J. and O’Boyle, C.A. (2005) The SHEL Model: A Useful Tool for Analyzing and Teaching the Contribution of Human Factors to Medical Error. Academic Medicine, 80, 152-155.
https://doi.org/10.1097/00001888-200502000-00009
[110] Diller, T., Helmrich, G., Dunning, S., Cox, S., Buchanan, A. and Shappell, S. (2013) The Human Factors Analysis Classification System (HFACS) Applied to Health Care. American Journal of Medical Quality, 29, 181-190.
https://doi.org/10.1177/1062860613491623
[111] Dumitru, V. and Cherciu, M. (2015) Application of the FMEA Concept to Medical Robotic System. Advanced Engineering Forum, 13, 324-331.
https://doi.org/10.4028/www.scientific.net/aef.13.324
[112] Kim, J.W. and Jung, W. (2003) A Taxonomy of Performance Influencing Factors for Human Reliability Analysis of Emergency Tasks. Journal of Loss Prevention in the Process Industries, 16, 479-495.
https://doi.org/10.1016/s0950-4230(03)00075-5
[113] Zegers, M., de Bruijne, M.C., de Keizer, B., Merten, H., Groenewegen, P.P., van der Wal, G., et al. (2011) The Incidence, Root-Causes, and Outcomes of Adverse Events in Surgical Units: Implication for Potential Prevention Strategies. Patient Safety in Surgery, 5, Article No. 13.
https://doi.org/10.1186/1754-9493-5-13
[114] de Vries, E.N., Ramrattan, M.A., Smorenburg, S.M., Gouma, D.J. and Boermeester, M.A. (2008) The Incidence and Nature of In-Hospital Adverse Events: A Systematic Review. Quality and Safety in Health Care, 17, 216-223.
https://doi.org/10.1136/qshc.2007.023622
[115] Wu, Z., Pan, X., Zhao, X. and Jiang, Y. (2019) The Task Demands‐resources Method: A New Approach to Human Reliability Analysis from a Psychological Perspective. Quality and Reliability Engineering International, 35, 1200-1218.
https://doi.org/10.1002/qre.2453
[116] Boring, R. (2010) How Many Performance Shaping Factors are Necessary for Human Reliability Analysis? 10th Inter-national Conference on Probabilistic Safety Assessment and Management 2010, Seattle, 7-11 June 2010, 2.
[117] Wiegmann, D.A. and Shappell, S.A. (2003) A Human Error Approach to Aviation Accident Analysis: The Human Factors Analysis and Classification System. Ashgate Publishing Company Ltd., 71-98.
[118] Yeow, J.A., Ng, P.K., Tan, K.S., Chin, T.S. and Lim, W.Y. (2014) Effects of Stress, Repetition, Fatigue and Work Environment on Human Error in Manufacturing Industries. Journal of Applied Sciences, 14, 3464-3471.
https://doi.org/10.3923/jas.2014.3464.3471
[119] Tevlin, R., Doherty, E. and Traynor, O. (2013) Improving Disclosure and Management of Medical Error—An Opportunity to Transform the Surgeons of Tomorrow. The Surgeon, 11, 338-343.
https://doi.org/10.1016/j.surge.2013.07.008
[120] Davis, P., Lay-Yee, R., Briant, R., Ali, W., Scott, A. and Schug, S. (2002) Adverse Events in New Zealand Public Hospitals I: Occurrence and Impact. The New Zealand Medical Journal, 115, U271.
[121] Uchal, M., Tjugum, J., Martinsen, E., Qiu, X. and Bergamaschi, R. (2005) The Impact of Sleep Deprivation on Product Quality and Procedure Effectiveness in a Laparoscopic Physical Simulator: A Randomized Controlled Trial. The American Journal of Surgery, 189, 753-757.
https://doi.org/10.1016/j.amjsurg.2005.03.021
[122] Taffinder, N., McManus, I., Gul, Y., Russell, R. and Darzi, A. (1998) Effect of Sleep Deprivation on Surgeons’ Dexterity on Laparoscopy Simulator. The Lancet, 352, 1191.
https://doi.org/10.1016/s0140-6736(98)00034-8
[123] Santell, J.P., Hicks, R.W., McMeekin, J. and Cousins, D.D. (2003) Medication Errors: Experience of the United States Pharmacopeia (USP) MEDMARX Reporting System. The Journal of Clinical Pharmacology, 43, 760-767.
https://doi.org/10.1177/0091270003254831
[124] Gorgich, E.A.C., Barfroshan, S., Ghoreishi, G. and Yaghoobi, M. (2015) Investigating the Causes of Medication Errors and Strategies to Prevention of Them from Nurses and Nursing Student Viewpoint. Global Journal of Health Science, 8, 220-227.
https://doi.org/10.5539/gjhs.v8n8p220
[125] Chase, B., Karwowski, W., Benedict, M.E. and Queseda, P.M. (2005) Effects of Thermal Stress on Dual Task Performance and Attention Allocation. Journal of Human Performance in Extreme Environments, 8, Article 1.
https://doi.org/10.7771/2327-2937.1039
[126] Fordyce, J., Blank, F.S.J., Pekow, P., Smithline, H.A., Ritter, G., Gehlbach, S., et al. (2003) Errors in a Busy Emergency Department. Annals of Emergency Medicine, 42, 324-333.
https://doi.org/10.1016/s0196-0644(03)00398-6
[127] Donchin, Y., Gopher, D., Olin, M., Badihi, Y., Biesky, M.R., Sprung, C.L., et al. (1995) A Look into the Nature and Causes of Human Errors in the Intensive Care Unit. Critical Care Medicine, 23, 294-300.
https://doi.org/10.1097/00003246-199502000-00015