一类II型偶长Z-互补序列对的构造
Construction of Even-Length Type II Z-Complementary Pairs
摘要: 文章以二进制互补对的核为基础,利用Turyn构造法得到一种长度为 N= 2 α 10 β 26 γ ( α,β,γ 为非负整数)的Golay互补对(Golay Complementary Pair, GCP),在此基础上利用级联和删除函数得到长度为II型 2N2 的偶长Z-互补对,并且它们非周期相关函数和在零相关区外的幅值为4,丰富了II型偶长Z-互补序列对的数量。与已知传统的序列构造方法相比,文章提出了一种新的构造方法。
Abstract: Based on the kernel of binary complementary pairs, a Golay Complementary Pair (GCP) with a sequence length of N= 2 α 10 β 26 γ (and α,β,γ are non-negative integers) was constructed by using Turyn Construction. On this basis, the Deletion Function and Cascading were used to obtain the Type II EB-ZCP with a length of 2N2 , and their aperiodic correlation functions and amplitudes outside the zero-correlation region were 4, which enriches the number of Type II EB-ZCP. Compared with the known traditional sequence construction methods, a new construction method is proposed.
文章引用:何颖. 一类II型偶长Z-互补序列对的构造[J]. 应用数学进展, 2025, 14(2): 62-68. https://doi.org/10.12677/aam.2025.142052

1. 引言

零相关区互补序列在通信系统[1] [2]、雷达[3]、信道估计[4]等领域有着重要应用。特别地,II型Z-互补对(Z-Complementary Pair, ZCP)在宽带无线通信系统中可解决最小干扰信号延迟的抑制问题。互补对又称格雷互补对[5] (Golay Complementary Pair, GCP),在序列设计中已经被广泛应用。因此,ZCPs对于无线通信系统的研究具有十分重要的意义。

2007年,Fan [6]等人首次提出了Z-互补对(Z-Complementary Pairs, ZCPs)的概念。2021年,Gu等人[7]通过Turyn构造了长度为3N和14N的Z-最优II型偶长ZCP。同年,文献[7]通过迭代法还构造了一类有新长度的II型偶长ZCP,其参数为 ( 2 k N+ 2 k1 , 2 k N+ 2 k1 N( NZ,k2 ) ) 2 k N+ 2 k1 N( NZ,k2 ) 。2021年,Kumar等人[8]通过多变量函数,构造了一类II型偶长ZCP,其长度为 ( 2 m P, 2 m P+1P( m,P1 ) ) ,此构造可以满足任意II型偶长ZCP的长度。2022年,Peng等人[9]基于布尔函数,构建了长度为 ( 2 m +3+ 2 m +2+ 2 m +1, 2 m +3+ 2 m +2 ) 的II型偶长ZCP,其相关区比率6/7。2023年,Zeng等人[10]通过映射和交织的方法得到一类长度为 2× 2 α 10 β 26 γ 的Z-最优II型偶长ZCP。2023年,陈等人[11]通过迭代技术,构造了长度分别为 ( 2 k+2 N,( 2 k+2 1 )N ) ( 2N+2, 3N 2 +2 ) ( 2 k+2 N+ 2 k+1 , 2 k+2 N+ 2 k+1 N 2 ) 的II型偶长ZCP,且零相关区外相关函数值较小。2023年,陈等人[12]通过交织法构造了长度为 ( ( 2k+1 )N,( 2k+1 )Nk ) 的II型偶长ZCP,其零相关区宽度可以接近或达到II型偶长二进制Z-互补对的理论上界。2023年,陈等人通过插入法构造了长度为 ( 2N+2, 3 2 N+2 ) 的II型偶长ZCP。综上所述,构造出长度更为灵活的II型EB-ZCPs具有重要的意义和价值。

本文结构如下:第二节介绍了一些需要用到的符号与定义;第三节给出了II型偶长Z-互补序列对的构造,证明与实例;第四节对本文进行了总结。

2. 预备知识

本文中的一些符号表示如下:

+和−分别表示+1和−1;

ab 表示 a b 的克罗内克积;

a||b 表示 a b 的级联。

定义1 对于一个长度为N的二进制序列对 ( a,b ) ,定义非周期互相关函数(ACCF)

ρ a,b ( τ )= i=0 N1τ a i b i+τ ,    0τN1

a=b   ρ a,b ( τ ) 被称之为非周期自相关函数(AACF),记为 ρ a ( τ )

定义2 a b 为两条长度为N的二进制序列,若对任意 1τN1 ,且序列对 ( a,b ) 满足

ρ a ( τ )+ ρ b ( τ )=0,

则称序列对 ( a,b ) 为格雷互补对(GCP)。

引理1 如果 ( a,b ) 是长度为N、ZCZ宽度为Z的II型EB-ZCP,则

ZN1

定义3 如果上式可以取等号,则称 ( a,b ) 达到Z-最优,即II型EB-ZCP的ZCZ宽度的理论上界为 Z=N1

引理2 [13]

( a 0 ; b 0 )= K 2

( a i ; b i )=Turyn( A 0 ,( a i1 ; b i1 ) ),  A 0 { K 2 , K 10 , K 26 },

( a;b )=( a i ; b i ) 是长度为 N= 2 α 10 β 26 γ ( α1,β,γ0 且为整数的GCP),并且 ( a i ; b i ) 该序列对的前 N/2 项每列都具有相同的符号。

3. 构造

定理1 设序列对 ( a,b ) 是由引理2生成的长度为N的GCP,构造序列对 ( c,d ) c=( a b ) d=( b a ) ( r 1 , r 2 )=( 0,2N1 ) ( r 1 , r 2 )=( N 2 1, N 2 ) eυ( c, r 1 , r 2 ) fυ( d, r 1 , r 2 ) ,其中 υ( ) 是删除函数。则序列对 ( e,f ) 是II型偶长Z-互补序列对,参数是 ( 2N2, 3 2 N1 ) ,并且在零相关区外的幅值为4。

证明 令 a=( a 0 , a 1 ,, a N1 ) b=( b 0 , b 1 ,, b N1 ) 是一个长度为 N= 2 α 10 β 26 γ 的GCP,并且它满足 α1 β,γ0 α,β,γ 为非负整数。根据删除函数的定义:

1) 当 r 1 =0, r 2 =2N1 ,可以得到 ( e,f ) ,即

 e=( e 0 , e 1 ,, e N1 )=( a 1 , a 2 ,, a N1 , b N1 , b N2 ,, b 1 ) f=( f 0 , f 1 ,, f N1 )=( b 1 , b 2 ,, b N1 , a N1 , a N2 ,, a 1 )

根据 τ 取值范围分下面三种情形讨论 | ρ e ( τ )+ ρ f ( τ ) |

情形1:当 N1τ2N3 时,

ρ e ( τ )= i=1 N1 a i b 2Nτi1 ρ f ( τ )= i=1 N1 b i ( a 2Nτi1 )

| ρ e ( τ )+ ρ f ( τ ) |=| i=1 N1 a i b 2Nτi1 i=1 N1 b i ( a 2Nτi1 ) | =0

情形2:当 N 2 τN2 时,

ρ e ( τ )= i=1 Nτ1 a i a i+τ + i=Nτ N1 a i b 2Nτi1 + i=1 Nτ1 b i b i+τ ρ f ( τ )= i=1 Nτ1 b i b i+τ + i=Nτ N1 b i ( a 2Nτi1 ) + i=1 Nτ1 a i a i+τ

因为 ρ a ( τ )+ ρ b ( τ )=0 ,根据引理2知, ( a,b ) 0i< N 2 a i = b i ;在 N 2 i<N 时, a i = b i ,所以

| ρ e ( τ )+ ρ f ( τ ) |=| i=Nτ N1 a i b 2Nτi1 + i=Nτ N1 b i ( a 2Nτi1 ) 2 a 0 a τ 2 b 0 b τ | =| 2 a 0 ( a τ + b τ ) | =0

情形3:当 1τ N 2 1 时,

ρ e ( τ )= i=1 Nτ1 a i a i+τ + i=Nτ N1 a i b 2Nτi1 + i=1 Nτ1 b i b i+τ ρ f ( τ )= i=1 Nτ1 b i b i+τ + i=Nτ N1 b i ( a 2Nτi1 ) + i=1 Nτ1 a i a i+τ

因为 ρ a ( τ )+ ρ b ( τ )=0 ,根据引理2知, ( a,b ) 0i< N 2 a i = b i ,所以

| ρ e ( τ )+ ρ f ( τ ) |=| i=Nτ N1 a i b 2Niτ1 + i=Nτ N1 b i ( a 2Niτ1 )2 a 0 a τ 2 b 0 bτ | =| 4 a 0 a τ | =4

2) 当 r 1 = N 2 1, r 2 = N 2 ,可以得到 ( e,f ) ,即

e=( e 0 , e 1 ,, e N1 )=( a 0 , a 1 , a 2 ,, a N2 , b N2 ,, b 1 , b 0 )  f=( f 0 , f 1 ,, f N1 )=( b 0 , b 1 , b 2 ,, b N2 , a N2 ,, a 1 , a 0 )

根据 τ 取值范围分下面三种情形讨论 | ρ e ( τ )+ ρ f ( τ ) |

情形1:当 N1τ2N3 时,

ρ e ( τ )= i=0 N2 a i b 2Nτi3 ρ f ( τ )= i=0 N2 b i ( a 2Nτi3 )

| ρ e ( τ )+ ρ f ( τ ) |=| i=0 N2 a i b 2Nτi3 i=0 N2 b i ( a 2Nτi3 ) | =0

情形2:当 N 2 τN2 时,

ρ e ( τ )= i=0 Nτ2 a i a i+τ + i=Nτ1 N2 a i b 2Nτi3 + i=0 Nτ2 b i b i+τ ρ f ( τ )= i=0 Nτ2 b i b i+τ + i=Nτ1 N2 b i ( a 2Nτi3 ) + i=0 Nτ2 a i a i+τ

因为 ρ a ( τ )+ ρ b ( τ )=0 ,根据引理2知, ( a,b ) 0i< N 2 a i = b i ;在 N 2 i<N 时, a i = b i ,所以

| ρ e ( τ )+ ρ f ( τ ) |=| i=Nτ1 N2 a i b 2Nτi1 + i=Nτ1 N2 b i ( a 2Nτi1 ) 2 a N1 a Nτ1 2 b N1 b Nτ1 | =| 2 a N1 ( a Nτ1 + b Nτ1 ) | =0

情形3:当 1τ N 2 1 时,

ρ e ( τ )= i=0 Nτ2 a i a i+τ + i=Nτ1 N2 a i b 2Nτi3 + i=0 Nτ2 b i b i+τ ρ f ( τ )= i=0 Nτ2 b i b i+τ + i=Nτ1 N2 b i ( a 2Nτi3 ) + i=0 Nτ2 a i a i+τ

因为 ρ a ( τ )+ ρ b ( τ )=0 ,根据引理2知, ( a,b ) 0i< N 2 a i = b i ,所以

| ρ e ( τ )+ ρ f ( τ ) |=| i=Nτ1 N2 a i b 2Nτi3 + i=Nτ1 N2 b i ( a 2Nτi3 ) 2 a N1 a Nτ1 2 b N1 b Nτ1 | =| 4 a N1 a Nτ1 | =4

综上所述, ( e,f ) 是长度为 2N2 、零相关区为 3 2 N1 ,且在零相关区外的幅值为4的II型偶长Z-互补序列对。

为了更好地阐述上述定理,我们给出如下例子,并且例子的结果皆由Matlab得到。

1 ( a,b )=( ++++++++++,++++++ ) 是由引理2产生的长度为 N=16 的GCP,验证定理1当 r 1 =0, r 2 =2N1 的情况下产生得到的 ( e,f ) 是II型偶长Z-互补序列对。

二进制序列 ( e,f ) 通过定理1产生得到,当 r 1 =0, r 2 =2N1

e=( ++++++++++++++ ) f=( ++++++++++ )

计算得到其非周期自相关函数和为

( | ρ e ( τ )+ ρ f ( τ ) | 0 29 )=( 60, 4 7 , 0 22 )

所以 ( e,f ) 是一个长度为30的II型偶长Z-互补序列对,并且零相关区长度为 Z=23

2 ( a,b )=( ++++,++++++ ) 是由引理2产生的长度为 N=8 的GCP,验证定理1当 r 1 = N 2 1, r 2 = N 2 的情况下产生得到的 ( e,f ) 是II型偶长Z-互补序列对。

二进制序列 ( e,f ) 通过定理1产生得到,当 r 1 = N 2 1, r 2 = N 2

e=( +++++++++ ) f=( ++++++++++ )

计算得到其非周期自相关函数和为

( | ρ e ( τ )+ ρ f ( τ ) | 0 13 )=( 28, 4 3 , 0 10 )

所以 ( e,f ) 是一个长度为14的II型偶长Z-互补序列对,并且零相关区长度为 Z=11 。现有II型EB-ZCP见表1

Table 1. Existing type II EB-ZCP

1. 现有II型 EB-ZCP

文献

长度

ZCZ

零相关区外的值

[7]

2 k N+ 2 k1 N Z + ,k2

2 k N+ 2 k1 N

4v 2 k ( 2N1 )

[7]

3N

3N1

2N

[7]

14N

14N1

4N

[8]

2 m P

2 m P+1P

--

[11]

2 k+2 N k{ 1,2,3, } N= 2 α 10 β 26 γ

( 2 k+2 1 )N

2 k ×4N

[11]

2N+2 N= 2 α 10 β 26 γ

3 2 N+2

4

[14]

8N+4

5N+2

8

[15]

2N+3

N+2

2 or 6

[15]

4N+4

7 2 N+4

8

定理1

2N2 N= 2 α 10 β 26 γ

3 2 N1

4

本文与文献[11] [15]的构造方法相比,存在以下的不同之处。

1) 本文删除的码元是2个,文献[11]是插入2个码元,文献[15]是插入3个码元。

2) 本文删除的位置有2种方法,文献[11]的插入位置在种子对的后端,文献[15]的插入位置在种子对第1个码元前,中端以及最后1个码元后,本文的删除位置在种子对的前端和后端或者种子对的中端。

3) 本文构造的序列与文献[15]相比,其零相关区外的值更小。

4. 结语

本文主要研究了II型偶长Z-互补序列对,在二进制互补对的核的基础上,利用Turyn构造新的序列,在此序列上利用级联和删除2个码元,得到了长度为 2N2,N= 2 α 10 β 26 γ 的II型EB-ZCP,其中 α1,β0,γ0 α,β,γ 为非负整数。本文所得的II型EB-ZCP在特定的长度上是最优的,与现有的ZCPs相比包含许多新长度,其零相关区外的值较低,可以为无线通信系统提供更加性能优良的Z-互补对。

参考文献

[1] Chen, H.H., Yeh, J.-F. and Suehiro, N. (2001) A Multicarrier CDMA Architecture Based on Orthogonal Complementary Codes for New Generations of Wideband Wireless Communications. IEEE Communications Magazine, 39, 126-135.
https://doi.org/10.1109/35.956124
[2] Liu, Z., Guan, Y.L. and Chen, H. (2015) Fractional-Delay-Resilient Receiver Design for Interference-Free MC-CDMA Communications Based on Complete Complementary Codes. IEEE Transactions on Wireless Communications, 14, 1226-1236.
https://doi.org/10.1109/twc.2014.2365467
[3] Spasojevic, P. and Georghiades, C.N. (2001) Complementary Sequences for ISI Channel Estimation. IEEE Transactions on Information Theory, 47, 1145-1152.
https://doi.org/10.1109/18.915670
[4] Pezeshki, A., Calderbank, A.R., Moran, W. and Howard, S.D. (2008) Doppler Resilient Golay Complementary Waveforms. IEEE Transactions on Information Theory, 54, 4254-4266.
https://doi.org/10.1109/tit.2008.928292
[5] Golay, M.J.E. (1951) Static Multislit Spectrometry and Its Application to the Panoramic Display of Infrared Spectra. Journal of the Optical Society of America, 41, 468-472.
https://doi.org/10.1364/josa.41.000468
[6] Fan, P., Yuan, W. and Tu, Y. (2007) Z-Complementary Binary Sequences. IEEE Signal Processing Letters, 14, 509-512.
https://doi.org/10.1109/lsp.2007.891834
[7] Gu, Z., Zhou, Z., Wang, Q. and Fan, P. (2021) New Construction of Optimal Type-II Binary Z-Complementary Pairs. IEEE Transactions on Information Theory, 67, 3497-3508.
https://doi.org/10.1109/tit.2020.3007670
[8] Kumar, R., Sarkar, P., Srivastava, P.K. and Majhi, S. (2021) A Direct Construction of Asymptotically Optimal Type-II ZCP for Every Possible Even Length. IEEE Signal Processing Letters, 28, 1799-1802.
https://doi.org/10.1109/lsp.2021.3105927
[9] Peng, X., Shen, M., Lin, H. and Wang, S. (2022) A Direct Construction of Binary Even-Length Z-Complementary Pairs with Zero Correlation Zone Ratio of 6/7. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 105, 1612-1615.
https://doi.org/10.1587/transfun.2021eal2105
[10] Zeng, F., He, X., Zhang, Z. and Yan, L. (2023) New Construction of Z-Optimal Type-II Even-Length Quadriphase Z-Complementary Pairs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 106, 450-453.
https://doi.org/10.1587/transfun.2022tal0001
[11] 陈晓玉, 孙连峰, 张杰坤, 等. 新的Ⅱ型偶长Z-互补对构造[J]. 通信学报, 2023, 44(3): 138-144.
[12] 陈晓玉, 孙连峰, 张钇涵. 具有大零相关区宽度的Ⅱ型偶长Z-互补对构造方法[J]. 通信学报, 2023, 44(6): 167-174.
[13] Chen, X., Zhang, Y., Sun, L. and Li, Y. (2023) New Constructions of Type-II Binary Z-Complementary Pairs. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 106, 1272-1276.
https://doi.org/10.1587/transfun.2022eal2071
[14] 张丁燕. 二元互相关Z-互补序列对研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2022.
[15] Gu, Z., Wang, Y. and Yang, Y. (2021) New Construction of Even-Length Binary Z-Complementary Pairs with Low PAPR. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 104, 412-416.
https://doi.org/10.1587/transfun.2020sdl0002