[1]
|
Leiter, A., Veluswamy, R.R. and Wisnivesky, J.P. (2023) The Global Burden of Lung Cancer: Current Status and Future Trends. Nature Reviews Clinical Oncology, 20, 624-639. https://doi.org/10.1038/s41571-023-00798-3
|
[2]
|
Raskova Kafkova, L., Mierzwicka, J.M., Chakraborty, P., Jakubec, P., Fischer, O., Skarda, J., et al. (2024) NSCLC: From Tumorigenesis, Immune Checkpoint Misuse to Current and Future Targeted Therapy. Frontiers in Immunology, 15, Article 1342086. https://doi.org/10.3389/fimmu.2024.1342086
|
[3]
|
Passaro, A., Jänne, P.A., Mok, T. and Peters, S. (2021) Overcoming Therapy Resistance in EGFR-Mutant Lung Cancer. Nature Cancer, 2, 377-391. https://doi.org/10.1038/s43018-021-00195-8
|
[4]
|
Tagliamento, M., Genova, C., Rossi, G., Coco, S., Rijavec, E., Dal Bello, M.G., et al. (2019) Microtubule-Targeting Agents in the Treatment of Non-Small Cell Lung Cancer: Insights on New Combination Strategies and Investigational Compounds. Expert Opinion on Investigational Drugs, 28, 513-523. https://doi.org/10.1080/13543784.2019.1627326
|
[5]
|
Guo, X., Chen, S., Wang, X. and Liu, X. (2023) Immune-Related Pulmonary Toxicities of Checkpoint Inhibitors in Non-Small Cell Lung Cancer: Diagnosis, Mechanism, and Treatment Strategies. Frontiers in Immunology, 14, Article 1138483. https://doi.org/10.3389/fimmu.2023.1138483
|
[6]
|
Ji, M., Liu, Y., Li, Q., Li, X., Zhao, W., Zhang, H., et al. (2015) PD-1/PD-L1 Pathway in Non-Small-Cell Lung Cancer and Its Relation with EGFR Mutation. Journal of Translational Medicine, 13, Article No. 5. https://doi.org/10.1186/s12967-014-0373-0
|
[7]
|
Jiang, X., Wang, J., Deng, X., Xiong, F., Ge, J., Xiang, B., et al. (2019) Role of the Tumor Microenvironment in PD-L1/PD-1-Mediated Tumor Immune Escape. Molecular Cancer, 18, Article No. 10. https://doi.org/10.1186/s12943-018-0928-4
|
[8]
|
Patel, S.A. and Weiss, J. (2020) Advances in the Treatment of Non-Small Cell Lung Cancer: Immunotherapy. Clinics in Chest Medicine, 41, 237-247. https://doi.org/10.1016/j.ccm.2020.02.010
|
[9]
|
Nagel, T., Kalden, J.R. and Manger, B. (1998) Regulation der T-Zell-Aktivierung über CD28 und CTLA-4. Medizinische Klinik, 93, 592-597. https://doi.org/10.1007/bf03042674
|
[10]
|
Leach, D.R., Krummel, M.F. and Allison, J.P. (1996) Enhancement of Antitumor Immunity by CTLA-4 Blockade. Science, 271, 1734-1736. https://doi.org/10.1126/science.271.5256.1734
|
[11]
|
Yang, J.C., Han, B., De La Mora Jiménez, E., Lee, J., Koralewski, P., Karadurmus, N., et al. (2024) Pembrolizumab with or without Lenvatinib for First-Line Metastatic NSCLC with Programmed Cell Death-Ligand 1 Tumor Proportion Score of at Least 1% (LEAP-007): A Randomized, Double-Blind, Phase 3 Trial. Journal of Thoracic Oncology, 19, 941-953. https://doi.org/10.1016/j.jtho.2023.12.023
|
[12]
|
Herbst, R.S., Garon, E.B., Kim, D., Cho, B.C., Perez-Gracia, J.L., Han, J., et al. (2020) Long-Term Outcomes and Retreatment among Patients with Previously Treated, Programmed Death-Ligand 1-Positive, Advanced Non-Small-Cell Lung Cancer in the KEYNOTE-010 Study. Journal of Clinical Oncology, 38, 1580-1590. https://doi.org/10.1200/jco.19.02446
|
[13]
|
Nishio, M., Takahashi, T., Yoshioka, H., Nakagawa, K., Fukuhara, T., Yamada, K., et al. (2019) Keynote‐025: Phase 1b Study of Pembrolizumab in Japanese Patients with Previously Treated Programmed Death Ligand 1-Positive Advanced Non-Small‐Cell Lung Cancer. Cancer Science, 110, 1012-1020. https://doi.org/10.1111/cas.13932
|
[14]
|
Gadgeel, S., Rodríguez-Abreu, D., Speranza, G., Esteban, E., Felip, E., Dómine, M., et al. (2020) Updated Analysis from KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non-Small-Cell Lung Cancer. Journal of Clinical Oncology, 38, 1505-1517. https://doi.org/10.1200/jco.19.03136
|
[15]
|
Garon, E.B., Aerts, J., Kim, J.S., Muehlenbein, C.E., Peterson, P., Rizzo, M.T., et al. (2021) Safety of Pemetrexed Plus Platinum in Combination with Pembrolizumab for Metastatic Nonsquamous Non-Small Cell Lung Cancer: A Post Hoc Analysis of Keynote-189. Lung Cancer, 155, 53-60. https://doi.org/10.1016/j.lungcan.2021.02.021
|
[16]
|
Xing, P., Wang, M., Zhao, J., Zhong, W., Chi, Y., Xu, Z., et al. (2021) Study Protocol: A Single‐Arm, Multicenter, Phase II Trial of Camrelizumab Plus Apatinib for Advanced Nonsquamous NSCLC Previously Treated with First‐Line Immunotherapy. Thoracic Cancer, 12, 2825-2828. https://doi.org/10.1111/1759-7714.14113
|
[17]
|
Hellmann, M.D., Paz-Ares, L., Bernabe Caro, R., Zurawski, B., Kim, S., Carcereny Costa, E., et al. (2019) Nivolumab Plus Ipilimumab in Advanced Non-Small-Cell Lung Cancer. New England Journal of Medicine, 381, 2020-2031. https://doi.org/10.1056/nejmoa1910231
|
[18]
|
Kelley, R.K., Sangro, B., Harris, W., Ikeda, M., Okusaka, T., Kang, Y., et al. (2021) Safety, Efficacy, and Pharmacodynamics of Tremelimumab Plus Durvalumab for Patients with Unresectable Hepatocellular Carcinoma: Randomized Expansion of a Phase I/II Study. Journal of Clinical Oncology, 39, 2991-3001. https://doi.org/10.1200/jco.20.03555
|
[19]
|
Sangro, B., Chan, S.L., Kelley, R.K., Lau, G., Kudo, M., Sukeepaisarnjaroen, W., et al. (2024) Four-Year Overall Survival Update from the Phase III HIMALAYA Study of Tremelimumab Plus Durvalumab in Unresectable Hepatocellular Carcinoma. Annals of Oncology, 35, 448-457. https://doi.org/10.1016/j.annonc.2024.02.005
|
[20]
|
Lotze, M.T., Olejniczak, S.H. and Skokos, D. (2024) CD28 Co-Stimulation: Novel Insights and Applications in Cancer Immunotherapy. Nature Reviews Immunology, 24, 878-895. https://doi.org/10.1038/s41577-024-01061-1
|
[21]
|
Kamphorst, A.O., Wieland, A., Nasti, T., Yang, S., Zhang, R., Barber, D.L., et al. (2017) Rescue of Exhausted CD8 T Cells by PD-1-Targeted Therapies Is CD28-Dependent. Science, 355, 1423-1427. https://doi.org/10.1126/science.aaf0683
|
[22]
|
Kong, X., Zhang, J., Chen, S., Wang, X., Xi, Q., Shen, H., et al. (2024) Immune Checkpoint Inhibitors: Breakthroughs in Cancer Treatment. Cancer Biology & Medicin. https://doi.org/10.20892/j.issn.2095-3941.2024.0055
|
[23]
|
Li, J., Huang, J., Jiang, Z., Li, R., Sun, A., Lai-Han Leung, E., et al. (2019) Current Clinical Progress of PD-1/PD-L1 Immunotherapy and Potential Combination Treatment in Non-Small Cell Lung Cancer. Integrative Cancer Therapies, 18. https://doi.org/10.1177/1534735419890020
|
[24]
|
Zhang, W., Li, S., Li, C., Li, T. and Huang, Y. (2022) Remodeling Tumor Microenvironment with Natural Products to Overcome Drug Resistance. Frontiers in Immunology, 13, Article 1051998. https://doi.org/10.3389/fimmu.2022.1051998
|
[25]
|
Chen, D.S. and Mellman, I. (2017) Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature, 541, 321-330. https://doi.org/10.1038/nature21349
|
[26]
|
Huang, M., Jiang, X., Wang, B., Sun, Y. and Lu, J. (2021) Combination Therapy with PD-1/PD-L1 Blockade in Non-Small Cell Lung Cancer: Strategies and Mechanisms. Pharmacology & Therapeutics, 219, Article ID: 107694. https://doi.org/10.1016/j.pharmthera.2020.107694
|
[27]
|
Butterfield, L.H. and Najjar, Y.G. (2023) Immunotherapy Combination Approaches: Mechanisms, Biomarkers and Clinical Observations. Nature Reviews Immunology, 24, 399-416. https://doi.org/10.1038/s41577-023-00973-8
|
[28]
|
Sholl, L.M. (2022) Biomarkers of Response to Checkpoint Inhibitors Beyond PD-L1 in Lung Cancer. Modern Pathology, 35, 66-74. https://doi.org/10.1038/s41379-021-00932-5
|
[29]
|
Lahiri, A., Maji, A., Potdar, P.D., Singh, N., Parikh, P., Bisht, B., et al. (2023) Lung Cancer Immunotherapy: Progress, Pitfalls, and Promises. Molecular Cancer, 22, Article No. 40. https://doi.org/10.1186/s12943-023-01740-y
|