景深延长型人工晶状体的临床应用和影响因素
Clinical Application and Influencing Factors of Extended Depth-of-Focus Intraocular Lens
DOI: 10.12677/hjo.2025.141001, PDF, HTML, XML,   
作者: 毛亚敏, 黄渝侃*:华中科技大学同济医学院附属协和医院眼科,湖北 武汉
关键词: 白内障景深延长人工晶状体视程影响因素Cataract Extended Depth of Focus Intraocular Lens Visual Range Influence Factor
摘要: 白内障是我国目前排名第一的致盲性眼病,白内障超声乳化联合人工晶状体植入术是其主要治疗手段。临床上常用的人工晶状体主要可以分为单焦点和多焦点人工晶状体两类。而多焦点、景深延长型及散光矫正型人工晶状体等多种人工晶状体统称为功能性人工晶状体。随着屈光性白内障手术的开展,以及现代生活与工作方式变化的影响,传统的单焦点人工晶状体逐渐无法满足患者对于更广阔视程的需求,因此,功能性人工晶状体的应用越来越普遍。其中景深延长型(EDOF)人工晶状体是一类人工晶状体的总称,根据不同的设计原理具有不同的特性,但基本原理是延长单一的焦点为焦线,从而延长视程。EDOF人工晶状体不仅能够有效提升患者的远视力,还能获得理想的中间视力,增加术后脱镜率。与多焦点人工晶状体相比,EDOF人工晶状体所引发的眩光和光晕的几率较低,从而提供了更为优质的视觉质量。本文将对目前临床上常用的不同设计原理的EDOF人工晶状体、术后效果以及影响术后效果的多种因素进行综述。
Abstract: Cataract is the leading cause of blindness in China, with phacoemulsification combined with intraocular lens (IOLs) implantation being the primary treatment method. The IOLs used in clinical practice can be broadly categorized into monofocal IOLs and multifocal IOLs. Among these, various IOLs such as multifocal IOLs, extended depth-of-focus (EDOF) IOLs, and astigmatism-correcting (Toric) IOLs are collectively referred to as functional IOLs. With advancements in refractive cataract surgery and shifts in modern lifestyle and work styles, traditional monofocal IOLs increasingly fail to meet patients’ demands for a broader visual range. Consequently, the use of functional IOLs is becoming increasingly prevalent. EDOF IOLs represent a category of IOLs that exhibit different characteristics based on distinct design principles; however, their fundamental principle involves extending a single focal point into a focal line, thereby broadening the visual range. EDOF IOLs not only significantly enhance patients’ distance visual acuity but also provide satisfactory intermediate visual acuity while improving the rate of spectacle independence. Compared to multifocal IOLs, EDOF IOLs are associated with a lower likelihood of glare and halos, thereby offering superior visual quality. This article will review the various EDOF IOLs commonly employed in clinical practice, their postoperative outcomes, and the diverse factors influencing these outcomes.
文章引用:毛亚敏, 黄渝侃. 景深延长型人工晶状体的临床应用和影响因素[J]. 眼科学, 2025, 14(1): 1-10. https://doi.org/10.12677/hjo.2025.141001

1. 引言

当前,白内障手术已经进入了屈光手术时代,患者对于术后视力和视觉质量的期望越来越高。由于现代生活方式的变化,越来越多的患者在追求卓越远视力的同时,也希望获得无需依赖眼镜的中视力和近视力。然而,传统的单焦点人工晶状体已无法满足患者对于更宽视程的要求。因此,临床上多种功能性人工晶状体例如多焦点人工晶状体和景深延长型(EDOF)人工晶状体的应用逐渐增多,这为患者在术后实现更优质的视觉效果提供了更多选择。为了深入探讨EDOF人工晶状体的临床应用及其术后效果与影响因素,本文将进行详细的综述分析。

2. EDOF人工晶状体概述

2.1. 基本原理

人眼能够识别在焦点前后一定距离范围内的物体,这个范围被称为焦深。而景深则是指与之对应的物方空间的范围。EDOF人工晶状体,即连续视程型人工晶状体,其基本原理是将单一焦点延展成细长而连续的焦线,从而实现聚焦深度的扩展,进而延长景深,使得患者在一定距离内能够获得良好的视力。EDOF理念并非近年才出现,早在1984年,就有研究指出景深与瞳孔直径存在反比[1],并且在此之后持续深入研究,结合多种技术用于新型人工晶状体的设计与开发。2014年,首款EDOF人工晶状体(Tecnis® Symfony® ZXR00)正式进入欧洲市场,之后多款EDOF人工晶状体相继问世,并逐渐在临床实践中得到了广泛应用。

2.2. 分类

基于不同设计原理,临床上可以将EDOF人工晶状体大致分为两大类:单纯性EDOF人工晶状体和混合多焦型EDOF人工晶状体。前者主要基于球差或小孔设计,后者主要包括衍射型、折射型及折射–衍射型人工晶状体。

2.2.1. 单纯型EDOF人工晶状体

(1) 基于球差的EDOF人工晶状体

球差是一种与透镜中心光线和边缘光线之间焦距差相关的高阶像差。正常角膜为正球差,在瞳孔直径为6.0 mm情况下,角膜球差的平均值为(0.312 ± 0.114) μm [2]。球差越小,聚焦光线的能力越强,在特定距离上的视力更好,因此,多种人工晶状体都是负球差设计,以求降低总体球差,提供更好的视力。但另一方面,包括球差、慧差在内的多种高阶像差可以在一定程度上增加景深[3],这正是基于球差的EDOF人工晶状体的设计提供了理论基础。通过合理设计高阶像差,人工晶状体不仅能够改善患者的视力,还能够有效地扩展景深,从而满足不同环境下的视觉需求。

(a) Mini Well Ready (SIFI, Catania, Italy)

Mini Well Ready是一款单片式EDOF人工晶状体,采用双非球面设计,总体直径为10.75mm,光学区直径为6.00 mm。光学区由3个区域组成:最内层正球差区域形成中央焦点,中间负球差区域形成近焦点,最外层区域单焦点区负责产生远焦点。三个区域之间平滑过渡,形成连续视觉。理论上,该晶体的等效球镜为+3.0D。Giers等人的研究[4]显示离焦范围(定义为视力优于0.2 LogMAR)达到4.0D。尽管该晶体在较大的离焦范围较宽,并且表现出良好的光学质量,但瞳孔大小会较强地影响调制传递函数[5]

(b) Wichterle Intraocular Lens-Continuous Focus (Medicem, Czech Republic)

该人工晶状体材料是含水量为42%的水凝胶。光学区直径达8.90 mm,具有类似于晶状体的双曲面设计,折射力从中心到周边逐渐降低,厚度也从中心的1.70 mm降低为周边的0.80 mm [6]。它的另一个特点是没有袢。因此,有部分文献报道了该人工晶状体的倾斜和脱位现象[7]。该人工晶状体于2018年停产,原因可能与晶状体诱导的球差相关。

(c) TECNIS Eyhance ICB00 (Johnson and Johnson Vision, USA)

一种单片式疏水性丙烯酸人工晶状体,前表面为高阶非球面设计,从周边到中央连续平稳地增加屈光度。它的设计理念是在呈现不逊于单焦点人工晶状体(ZCB00)的远视力和最小光干扰的同时,增强66 cm处的中间视力并补偿球差,达到景深延长的效果。

(d) AcySof IQ Vivity (Alcon, USA)

由疏水性丙烯酸酯/甲基丙烯酸酯共聚物制成,具有紫外线和蓝光滤光片,光学区直径为6.00 mm,总直径为13.00 mm。基于波前重塑设计,前表面中央区2.20 mm直径内有两个精细的表面过度元件。第一个过渡元件创建一个连续的焦点区域使光线在近视和远视两个方向上拉伸,但是部分光线位于视网膜后面,无法发挥作用。因此,第二个过渡元件将波前向前移动,将光从远视方向转移到近视方向,从而尽可能利用所有光能,让患者术后获得良好的全程视力[8]

(2) 基于针孔效应的EDOF人工晶状体

根据Campbell等人的研究[9]推断出,景深随着瞳孔大小的增加而减小。遵循这一原则,在单焦点人工晶状体中使用不透明的针孔掩模可以增强焦深。

(a) IC-8 (AcuFocus Inc, USA)

一种疏水性丙烯酸人工晶状体,总直径为12.50 mm,光学区直径6.00 mm。中心是一个1.36 mm的非衍射透明圆形孔,外侧是一个外径为3.23 mm的黑色不透明环形掩模,可阻挡散焦的近中心光线。临床研究表明,IC-8在单眼和双眼植入后均具有良好的近、中和远视力[10]-[12],在明视条件下,焦深范围扩大最为明显[10]

(b) XtraFocus针孔植入物(Morcher, Germany)

由疏水性丙烯酸制成的黑色不透明隔膜,总直径14.00 mm,中央为1.30 mm无折射力的孔。它作为一种辅助眼内植入物要求植入人工晶体眼中。C袢14˚成角,很薄且抛光良好,以防止损伤葡萄膜组织。封闭部分表面为凹凸设计,可减少与人工晶状体的接触面积。该植入物可阻挡可见光,但可通过红外光(波长大于750 nm),因此可以使用光学相干断层扫描和扫描激光检眼镜进行眼底检查。

2.2.2. 混合型EDOF人工晶状体

(1) 混合多焦衍射型EDOF人工晶状体

色差是不同颜色光的可见光谱之间焦距差异的结果。人类角膜会诱发色差,可见光为混合光,在经过角膜后,波长不同的蓝光和红光无法聚焦在同一焦点造成色差。而衍射型人工晶状体可以减少色差,改善对比敏感度,提高视觉质量。

(a) Tecnis Symfony ZXR00 (Johnson and Johnson Vision, USA)

一种单片式疏水性丙烯酸人工晶状体,总直径为13.00mm,光学区直径为6.00 mm,折射率为1.47。具有双凸波前设计的前非球面(−0.27 μm球差)和梯形设计的后消色差衍射面。阶梯结构的设计的高度、间距和轮廓的修改扩展了焦深。这些设计与消色差技术和负球差校正相结合,在不影响景深或偏心容差的情况下提高了视网膜图像质量,但瞳孔大小会影响术后效果[13]。临床研究表明,Symphony人工晶状体在白内障手术后的可提供较好的远视力和中视力,光干扰发生率低,患者满意度高[14]-[17]

(b) AT Lara 829 MP (Carl Zeiss Meditec, Germany)

一种亲水性丙烯酸人工晶状体,具有疏水表面特性。总直径为11 mm,光学区直径为6 mm。连续衍射表面可以提供从中距离到远距离的焦点。临床结果证实了在广泛的焦点范围内均具有出色的视力。双眼视力在远距离优于0 logMAR,在90 cm和60 cm的中间距离优于0.1 logMAR [18]

(2) 混合多焦折射型EDOF人工晶状体

结合了EDOF技术和折射多焦点技术的人工晶状体。

(a) Lucidis (Swiss Advanced Vision, Switzerland)

Lucidis由含水量为26%的亲水性丙烯酸制成,涉及一个被外部折射环包围的中心非球面元件。它是一种单片折射型非球面人工晶状体,袢为闭环设计。光学区直径为6.00 mm,总直径为10.80 mm或12.40 mm,专为囊袋植入而设计。与传统的单焦点人工晶状体相比,它在近视力和中视力方面提供额外的舒适度,同时仍能实现与远视力相同的光学质量和视力[19]

(b) Lentis Mplus X (Oculentis GmbH, Germany)

是一种非对称区域折射型人工晶状体,有2个不同的焦点和2个分别用于视远和视近的区域,区域之间平滑过渡,提供了景深延长的效果[20]。临床研究显示这款人工晶状体特别适用于瞳孔直径大于3mm的患者[21]

(c) Lentis Comfort LS-313 MF15 (Oculentis, Germany)

一种亲水性丙烯酸人工晶状体,具有疏水表面特性,为单片式非球面非对称区域折射型设计,光学区直径为6.0 mm。其设计包括零球差的视远区和+1.50D附加度数的扇形视近区。临床研究显示该人工晶状体提供了出色的远视力和中视力,近视力和多数EDOF人工晶状体相似,不足以阅读小字,并且对比敏感度高,光现象的发生率较低,患者满意度高[22] [23]

(d) Acunex Vario AN6 V (Oculentis, Germany)

是一款单片式非球面设计人工晶状体,整体直径为12.50 mm,光学区直径6.0 mm,C形袢。中间视力的附加值为+1.50D。Acunex与Lentis基本光学设计原理相同,但是,Acunex是疏水性晶状体,而Lentis是亲水性丙烯酸晶状体[18]

(e) LuxSmart (Bausch & Lomb GmbH, Germany)

一种单片式非球面疏水性丙烯酸人工晶状体,具有直径为6.00 mm的光学区和4个袢。它有带和不带紫色滤光片两种选择。有一个EDOF光学区,然后是一个过渡区,周边是单焦点光学区[8]。临床结果表明,与传统的单焦点人工晶状体相比,LuxSmart人工晶状体在未矫正的中视力和近视力方面实现了更高的性能,而不会增加光现象的风险[24]

(3) 混合多焦折射–衍射型EDOF人工晶状体

是一类混合了衍射型和折射型多焦点技术的人工晶状体。

(a) EDEN (Swiss Advanced Vision, Switzerland)

是可折叠的单片式疏水性丙烯酸人工晶状体。其非球面光学中心被其折射衍射外表面包围。具有瞳孔依赖性。总直径为10.8或12.4 mm,光学尺寸为6.0 mm。它的度数范围为+5.00至+30.00 D,间距为0.50 D,具有+3.00 D附加度数。

(b) Harmonis (Swiss Advanced Vision, Switzerland)

是可折叠的单片式亲水性丙烯酸人工晶状体,具有被折射衍射外表面包围的非球面光学中心。总直径为10.80或12.40 mm,光学尺寸为6.00 mm。同样具有瞳孔依赖性。景深延长效果为+1.00至+2.00D。

(c) ZFR00 (Johnson and Johnson Vision, USA)

一种双焦点与EDOF技术相结合的疏水性丙烯酸人工晶状体,具有波前设计的非球面表面,并保持了Symfony相同的色差校正技术。它的后表面有15个衍射环。使用通过蓝光并阻挡紫光的材料减少了光干扰[25]。在临床研究中,ZFR00人工晶状体在明视和暗视条件下均提供良好的远、中、近视力,患者满意度较高[25]-[27],并且其离焦性能与瞳孔大小无关[13]

3. EDOF人工晶状体的术后效果

尽管不同型号的EDOF人工晶状体在设计上存在差异,但总体来说,EDOF人工晶状体后可以提供良好的视力以及更宽的视程范围[28]。EDOF人工晶状体的景深比单焦点人工晶状体大0.5D以上[29],增加了患者的视程,改善了患者的中视力,这满足了不少患者的生活和工作需求。尽管近视力的改善较远视力和中视力弱,但也优于单焦点人工晶状体[30]。并且双眼植入EDOF人工晶状体可以进一步提高视力和视程,甚至达到脱镜的效果。

离焦曲线是评估EDOF人工晶状体和多焦点人工晶状体术后效果重要检查手段,可以直观的反映从远到近的视力变化。EDOF人工晶状体和三焦点人工晶状体均可获得良好的远视力(离焦曲线上0至−0.50D范围内)。M. Karam等人的Meta分析指出两类人工晶状体的远视力之间没有显著差异 [31],但de Medeiros等人[32]报道EDOF组超过三焦点组。对于中视力(离焦曲线上−1.00D至−1.50D范围内),多项研究的结果不一致。大部分研究认为EDOF人工晶状体的中视力优于三焦点人工晶状体[32]-[35]。但也有研究观察到三焦点人工晶状体的中视力更好[36],或两者无明显差异[37]-[39]。在大多数研究中,三焦点人工晶状体在近视力(离焦曲线上−2.50D至−4.00D范围内)方面明显优于EDOF组[32]-[39]。此外,三焦点人工晶状体在离焦曲线上可见焦点处明显的“高峰”,而EDOF人工晶状体的曲线更加平滑,说明其在有效视程范围的视力变化更加连续[40]

EDOF人工晶状体可以减少患者对眼镜的依赖。据调查,EDOF人工晶状体的近距离工作脱镜率为30%~70% [41] [42],部分患者可以获得良好的全程视力,这可能和不同患者的眼部条件及神经适应性有关。但关于EDOF人工晶状体和三焦点人工晶状体的队列研究以及Meta分析显示,EDOF组的脱镜率低于三焦点组,因为其近视力较后者差[31] [41],而中视力和远视力无明显差异。因此在临床上,双眼植入EDOF人工晶状体的患者可以采用微单视设计,利用左右眼的互相补偿,进一步改善近视力,提高脱镜率。

与传统的多焦点镜片相比,EDOF人工晶状体可以降低出现光干扰概率,提高对比敏感度[15] [37] [43],其特殊的设计可以减少近距和远距图像的重叠程度,降低光晕的可能性[44]。既往研究显示衍射型EDOF人工晶状体术后出现光学干扰的概率为5%~60% [15] [43]。有研究认为EDOF人工晶状体对散光、Kappa角的包容性较三焦点人工晶状体高,因此其适用性比三焦点人工晶状体更广,且术后出现光干扰的概率较多焦点人工晶状体小[45]。Gil等人采用视觉功能指数−14问卷的研究结果显示EDOF组的生活质量得分明显高于三焦组(P < 0.05),表明患者对EDOF人工晶状体的满意度更高[35]

4. 影响EDOF术后远期效果的因素

EDOF人工晶状体旨在提供更广泛的视力范围,但是患者的个体差异会影响EDOF人工晶体的效果和适用性,临床上在应用EDOF人工晶状体时需要综合考虑患者的个体情况。总体而言,影响EDOF人工晶状体术后效果的因素可以分为以下几类。

4.1. 全身因素

高龄、糖尿病、心血管疾病、肾脏病、神经系统疾病、心理疾病等全身病,以及不良的生活方式如吸烟喝酒等均是导致术后效果不佳的风险因素[46]-[48]。糖尿病、心血管疾病、肾脏病以及脑血管意外会改变眼部微循环,增加术后低视力的风险。糖尿病威胁视力的原因还有增加黄斑水肿、糖尿病视网膜病变、后囊混浊、角膜失代偿和术后眼内炎的概率[49] [50]

4.2. 眼部疾病

患者有影响视力的其他眼部疾病,如角膜病、青光眼、视网膜脱落、玻璃体出血等其他眼部疾病。或者存在眼球发育异常、神经功能异常等先天性疾病。

4.3. 手术相关因素

(1) 术前生物参数测量的准确性:眼部生物参数的测量有光学生物测量和超声生物测量两种方式,前者准确性明显高于后者,目前已广泛应用于临床。目前临床常用的测量仪器包括基于扫频光学相干断层扫描(SS-OCT)技术的IOL Master 700光学生物测量仪、基于Scheimpflug技术的Pentacam三维眼前节分析仪等,测量准确性大大提高。

(2) 人工晶状体的计算和选择:最常用于EDOF人工晶状体计算的是第五代Barrett Universal Ⅱ公式[51],平均术后等效球镜在±0.1D范围。有些研究[37] [40] [52]根据眼轴的长度来选择公式,短眼轴(小于22 mm)用Hoffer Q公式,正常眼轴(22~26 mm)用Holladay 1或SRK/T公式,长眼轴(大于26 mm)用Haigis公式。

(3) 手术设计:常用方案为将目标屈光度预设为正视,以提高患者的远视力和中视力。若双眼植入EDOF人工晶状体,可以采用微单视设计,即将主视眼设置为正视,非主视眼预留−0.5D~−0.75D,进一步提高患者近视力。

(4) 手术的熟练度和并发症:手术者的经验、操作的熟练度影响手术效果。比如撕囊的直径和规则程度、手术操作的时长、人工晶状体的置入位置、术中术后有无并发症等等,均影响术后效果。

4.4. 眼部参数

眼部生物参数除会影响EDOF人工晶状体术后效果。有文献表明眼轴长度、瞳孔直径、Kappa角、像差等眼部参数影响EDOF人工晶状体术后视程[53] [54]。此外,瞳孔直径、Kappa角等参数和术后光晕、眩光等情况正相关[55],影响术后视觉质量。但该领域目前研究较少,仍需深入探索。

临床工作中需综合考虑患者情况并个性化设计手术方案,从而达到最佳手术效果。首先,需全面、完善、准确地进行术前检查,排除禁忌症,把握使用EDOF人工晶状体的适应症和禁忌症[29] [56]。总体而言,年轻、无全身病(如糖尿病)及眼部疾病、散光较小、眼部参数无极端值的患者术后效果普遍较好。第二,个性化设计。术前需和患者进行详细沟通,了解患者用眼习惯和需求,针对性的选择EDOF人工晶状体,例如,TECNIS Eyhance通过非衍射环设计减少了光干扰,而IC-8人工晶状体则在抵抗术后散光方面表现出色[57];Tecnis Symfony ZXR00的术后效果受瞳孔大小的影响,而ZFR00受瞳孔大小的影响较小[13]。同时,目标屈光度的设置上建议主视眼为正视,以确保患者拥有更好的远视力。此外,术者还应重视微单视和混搭设计在治疗老视中的应用[58]。第三,手术过程需细致熟练。比如,可利用术源性散光减少原角膜散光;撕囊直径建议为5.0~5.5 mm,囊口应覆盖IOL光学部边缘,以保证IOL的居中性,减少倾斜、偏位及囊袋皱缩。第四,尽量避免并发症。若术中存在囊袋破裂或者悬韧带断裂等情况,需谨慎考虑是否植入EDOF人工晶状体。术后出现较严重的不良视觉症状,需确定残余屈光度,检查是否有晶状体偏位。在排除上述原因,患者无法耐受的情况下,必要时可考虑用单焦点人工晶状体进行置换。

5. 总结

EDOF人工晶状体的出现显著提升了白内障患者的术后用眼体验。这类人工晶状体因其特殊设计,能够提供更广泛的视程和出色的视觉质量。市场上现有多种型号的EDOF人工晶状体,各自具有不同的特性。这种多样性虽然为患者提供了选择的余地,但同时也意味着在选择时,必须充分考虑患者个体差异,包括年龄、健康状况以及预期的视觉效果等因素。在临床应用中,医生需综合评估患者的生活方式、个人期望以及视觉需求,合理权衡手术的风险与收益,确保所选择的晶状体能够满足患者的需求。尽管当前的EDOF人工晶状体尚未完全达到患者的期望,一些功能仍存在改进空间,但我们有理由相信,未来随着技术的发展,将会有更加理想的选择出现,为患者带来更优质的视觉体验。

NOTES

*通讯作者。

参考文献

[1] Nakazawa, M. and Ohtsuki, K. (1984) Apparent Accommodation in Pseudophakic Eyes after Implantation of Posterior Chamber Intra-Ocular Lenses: Optical Analysis. Investigative Ophthalmology & Visual Science, 25, 1458-1460.
[2] Lim, K.L. and Fam, H.B. (2009) Ethnic Differences in Higher-Order Aberrations: Spherical Aberration in the South East Asian Chinese Eye. Journal of Cataract & Refractive Surgery, 35, 2144-2148. https://doi.org/10.1016/j.jcrs.2009.06.031
[3] Cheng, H., Barnett, J.K., Vilupuru, A.S., Marsack, J.D., Kasthurirangan, S., Applegate, R.A., et al. (2004) A Population Study on Changes in Wave Aberrations with Accommodation. Journal of Vision, 4, 3.
https://doi.org/10.1167/4.4.3
[4] Giers, B.C., Khoramnia, R., Varadi, D., Wallek, H., Son, H., Attia, M.S., et al. (2019) Functional Results and Photic Phenomena with New Extended-Depth-of-Focus Intraocular Lens. BMC Ophthalmology, 19, Article No. 197.
https://doi.org/10.1186/s12886-019-1201-3
[5] Domínguez-Vicent, A., Esteve-Taboada, J.J., Del Águila-Carrasco, A.J., Ferrer-Blasco, T. and Montés-Micó, R. (2015) In Vitro Optical Quality Comparison between the Mini WELL Ready Progressive Multifocal and the TECNIS Symfony. Graefes Archive for Clinical and Experimental Ophthalmology, 254, 1387-1397.
https://doi.org/10.1007/s00417-015-3240-7
[6] Studeny, P., Krizova, D. and Urminsky, J. (2015) Clinical Experience with the WIOL-CF Accommodative Bioanalogic Intraocular Lens: Czech National Observational Registry. European Journal of Ophthalmology, 26, 230-235.
https://doi.org/10.5301/ejo.5000653
[7] Kim, Y.C., Kang, K.T., Yeo, Y., Kim, K. and Siringo, F.S. (2016) Consistent Pattern in Positional Instability of Polyfocal Full-Optics Accommodative IOL. International Ophthalmology, 37, 1299-1304.
https://doi.org/10.1007/s10792-016-0398-x
[8] Borkenstein, A.F., Borkenstein, E., Luedtke, H. and Schmid, R. (2021) Optical Bench Analysis of 2 Depth of Focus Intraocular Lenses. Biomedicine Hub, 6, 77-85.
https://doi.org/10.1159/000519139
[9] Campbell, F.W. (1954) A Method for Measuring the Depth of Field of the Human Eye. The Journal of Physiology, 125, 11P.
[10] Hooshmand, J., Allen, P., Huynh, T., Chan, C., Singh, R., Moshegov, C., et al. (2019) Small Aperture IC-8 Intraocular Lens in Cataract Patients: Achieving Extended Depth of Focus through Small Aperture Optics. Eye, 33, 1096-1103.
https://doi.org/10.1038/s41433-019-0363-9
[11] Ang, R.E. (2020) Visual Performance of a Small-Aperture Intraocular Lens: First Comparison of Results after Contralateral and Bilateral Implantation. Journal of Refractive Surgery, 36, 12-19.
https://doi.org/10.3928/1081597x-20191114-01
[12] Dick, H.B., Elling, M. and Schultz, T. (2018) Binocular and Monocular Implantation of Small-Aperture Intraocular Lenses in Cataract Surgery. Journal of Refractive Surgery, 34, 629-631.
https://doi.org/10.3928/1081597x-20180716-02
[13] Rampat, R. and Gatinel, D. (2021) Multifocal and Extended Depth-Of-Focus Intraocular Lenses in 2020. Ophthalmology, 128, e164-e185.
https://doi.org/10.1016/j.ophtha.2020.09.026
[14] Gundersen, K. and Potvin, R. (2017) Trifocal Intraocular Lenses: A Comparison of the Visual Performance and Quality of Vision Provided by Two Different Lens Designs. Clinical Ophthalmology, 11, 1081-1087.
https://doi.org/10.2147/opth.s136164
[15] Lubiński, W., Podborączyńska-Jodko, K., Kirkiewicz, M., Mularczyk, M. and Post, M. (2020) Comparison of Visual Outcomes after Implantation of AtLisa tri 839 MP and Symfony Intraocular Lenses. International Ophthalmology, 40, 2553-2562.
https://doi.org/10.1007/s10792-020-01435-z
[16] Pandit, R.T. (2018) Monocular Clinical Outcomes and Range of Near Vision Following Cataract Surgery with Implantation of an Extended Depth of Focus Intraocular Lens. Journal of Ophthalmology, 2018, Article 8205824.
https://doi.org/10.1155/2018/8205824
[17] Pedrotti, E., Bruni, E., Bonacci, E., Badalamenti, R., Mastropasqua, R. and Marchini, G. (2016) Comparative Analysis of the Clinical Outcomes with a Monofocal and an Extended Range of Vision Intraocular Lens. Journal of Refractive Surgery, 32, 436-442.
https://doi.org/10.3928/1081597x-20160428-06
[18] Kanclerz, P., Toto, F., Grzybowski, A. and Alio, J.L. (2020) Extended Depth-of-Field Intraocular Lenses: An Update. Asia-Pacific Journal of Ophthalmology, 9, 194-202.
https://doi.org/10.1097/apo.0000000000000296
[19] Gillmann, K. and Mermoud, A. (2019) Visual Performance, Subjective Satisfaction and Quality of Life Effect of a New Refractive Intraocular Lens with Central Extended Depth of Focus. Klinische Monatsblätter für Augenheilkunde, 236, 384-390.
https://doi.org/10.1055/a-0799-9700
[20] Akondi, V., Pérez-Merino, P., Martinez-Enriquez, E., Dorronsoro, C., Alejandre, N., Jiménez-Alfaro, I., et al. (2017) Evaluation of the True Wavefront Aberrations in Eyes Implanted with a Rotationally Asymmetric Multifocal Intraocular Lens. Journal of Refractive Surgery, 33, 257-265.
https://doi.org/10.3928/1081597x-20161206-03
[21] García-Domene, M.C., Felipe, A., Peris-Martínez, C., Navea, A., Artigas, J.M. and Pons, Á.M. (2015) Image Quality Comparison of Two Multifocal IOLs: Influence of the Pupil. Journal of Refractive Surgery, 31, 230-235.
https://doi.org/10.3928/1081597x-20150319-02
[22] Oshika, T., Arai, H., Fujita, Y., Inamura, M., Inoue, Y., Noda, T., et al. (2019) One-year Clinical Evaluation of Rotationally Asymmetric Multifocal Intraocular Lens with +1.5 Diopters near Addition. Scientific Reports, 9, Article No. 13117.
https://doi.org/10.1038/s41598-019-49524-z
[23] García, S., Salvá, L., García-Delpech, S., Martínez-Espert, A., Ferrando, V. and Montagud-Martínez, D. (2022) Polychromatic Assessment of a Refractive Segmented EDOF Intraocular Lens. Journal of Clinical Medicine, 11, Article 1480.
https://doi.org/10.3390/jcm11061480
[24] Campos, N., Loureiro, T., Rodrigues-Barros, S., Rita Carreira, A., Gouveia-Moraes, F., Carreira, P., et al. (2021) Preliminary Clinical Outcomes of a New Enhanced Depth of Focus Intraocular Lens. Clinical Ophthalmology, 15, 4801-4807.
https://doi.org/10.2147/opth.s344379
[25] Ozturkmen, C., Kesim, C., Karadeniz, P.G. and Sahin, A. (2021) Visual Acuity, Defocus Curve and Patient Satisfaction of a New Hybrid EDOF-Multifocal Diffractive Intraocular Lens. European Journal of Ophthalmology, 32, 2988-2993.
https://doi.org/10.1177/11206721211057338
[26] Ribeiro, F.J., Ferreira, T.B., Silva, D., Matos, A.C. and Gaspar, S. (2021) Visual Outcomes and Patient Satisfaction after Implantation of a Presbyopia-Correcting Intraocular Lens That Combines Extended Depth-of-Focus and Multifocal Profiles. Journal of Cataract and Refractive Surgery, 47, 1448-1453.
https://doi.org/10.1097/j.jcrs.0000000000000659
[27] Gabrić, N., Gabrić, I., Gabrić, K., Biščević, A., Piñero, D.P. and Bohač, M. (2021) Clinical Outcomes with a New Continuous Range of Vision Presbyopia-Correcting Intraocular Lens. Journal of Refractive Surgery, 37, 256-262.
https://doi.org/10.3928/1081597x-20210209-01
[28] Schallhorn, J.M., Pantanelli, S.M., Lin, C.C., Al-Mohtaseb, Z.N., Steigleman, W.A., Santhiago, M.R., et al. (2021) Multifocal and Accommodating Intraocular Lenses for the Treatment of Presbyopia. Ophthalmology, 128, 1469-1482.
https://doi.org/10.1016/j.ophtha.2021.03.013
[29] MacRae, S., Holladay, J.T., Glasser, A., Calogero, D., Hilmantel, G., Masket, S., et al. (2017) Special Report: American Academy of Ophthalmology Task Force Consensus Statement for Extended Depth of Focus Intraocular Lenses. Ophthalmology, 124, 139-141.
https://doi.org/10.1016/j.ophtha.2016.09.039
[30] Kretz, F.T.A., Khoramnia, R., Attia, M.S., Koss, M.J., Linz, K. and Auffarth, G.U. (2016) Clinical Evaluation of Functional Vision of +1.5 Diopters near Addition, Aspheric, Rotational Asymmetric Multifocal Intraocular Lens. Korean Journal of Ophthalmology, 30, 382-389.
https://doi.org/10.3341/kjo.2016.30.5.382
[31] Karam, M., Alkhowaiter, N., Alkhabbaz, A., Aldubaikhi, A., Alsaif, A., Shareef, E., et al. (2023) Extended Depth of Focus versus Trifocal for Intraocular Lens Implantation: An Updated Systematic Review and Meta-Analysis. American Journal of Ophthalmology, 251, 52-70.
https://doi.org/10.1016/j.ajo.2023.01.024
[32] de Medeiros, A.L., Jones Saraiva, F., Iguma, C.I., Kniggendorf, D.V., Alves, G., Chaves, M.A.P.D., et al. (2019) Comparison of Visual Outcomes after Bilateral Implantation of Two Intraocular Lenses with Distinct Diffractive Optics. Clinical Ophthalmology, 13, 1657-1663.
https://doi.org/10.2147/opth.s202895
[33] Escandón-García, S., Ribeiro, F.J., McAlinden, C., Queirós, A. and González-Méijome, J.M. (2018) Through-Focus Vision Performance and Light Disturbances of 3 New Intraocular Lenses for Presbyopia Correction. Journal of Ophthalmology, 2018, Article 6165493.
https://doi.org/10.1155/2018/6165493
[34] Böhm, M., Petermann, K., Hemkeppler, E. and Kohnen, T. (2019) Defocus Curves of 4 Presbyopia-Correcting IOL Designs: Diffractive Panfocal, Diffractive Trifocal, Segmental Refractive, and Extended-Depth-of-Focus. Journal of Cataract and Refractive Surgery, 45, 1625-1636.
https://doi.org/10.1016/j.jcrs.2019.07.014
[35] Gil, M.A., Varón, C., Cardona, G. and Buil, J.A. (2019) Visual Acuity and Defocus Curves with Six Multifocal Intraocular Lenses. International Ophthalmology, 40, 393-401.
https://doi.org/10.1007/s10792-019-01196-4
[36] Monaco, G., Gari, M., Di Censo, F., Poscia, A., Ruggi, G. and Scialdone, A. (2017) Visual Performance after Bilateral Implantation of 2 New Presbyopia-Correcting Intraocular Lenses: Trifocal versus Extended Range of Vision. Journal of Cataract and Refractive Surgery, 43, 737-747.
https://doi.org/10.1016/j.jcrs.2017.03.037
[37] Ruiz-Mesa, R., Abengózar-Vela, A., Aramburu, A. and Ruiz-Santos, M. (2017) Comparison of Visual Outcomes after Bilateral Implantation of Extended Range of Vision and Trifocal Intraocular Lenses. European Journal of Ophthalmology, 27, 460-465.
https://doi.org/10.5301/ejo.5000935
[38] Webers, V.S.C., Bauer, N.J.C., Saelens, I.E.Y., Creten, O.J.M., Berendschot, T.T.J.M., van den Biggelaar, F.J.H.M., et al. (2020) Comparison of the Intermediate Distance of a Trifocal IOL with an Extended Depth-of-Focus IOL: Results of a Prospective Randomized Trial. Journal of Cataract and Refractive Surgery, 46, 193-203.
https://doi.org/10.1097/j.jcrs.0000000000000012
[39] Farvardin, M., Johari, M., Attarzade, A., Rahat, F., Farvardin, R. and Farvardin, Z. (2020) Comparison between Bilateral Implantation of a Trifocal Intraocular Lens(Alcon Acrysof IQ® PanOptix) and Extended Depth of Focus Lens (Tecnis® Symfony® ZXR00 Lens). International Ophthalmology, 41, 567-573.
https://doi.org/10.1007/s10792-020-01608-w
[40] Cochener, B., Boutillier, G., Lamard, M. and Auberger-Zagnoli, C. (2018) A Comparative Evaluation of a New Generation of Diffractive Trifocal and Extended Depth of Focus Intraocular Lenses. Journal of Refractive Surgery, 34, 507-514.
https://doi.org/10.3928/1081597x-20180530-02
[41] Law, E.M., Aggarwal, R.K., Buckhurst, H., Kasaby, H.E., Marsden, J., Shum, G., et al. (2021) One-Year Post-Operative Comparison of Visual Function and Patient Satisfaction with Trifocal and Extended Depth of Focus Intraocular Lenses. European Journal of Ophthalmology, 32, 2967-2974.
https://doi.org/10.1177/11206721211069737
[42] Rementería-Capelo, L.A., García-Pérez, J.L., Gros-Otero, J., Carrillo, V., Pérez-Lanzac, J. and Contreras, I. (2020) Real-world Evaluation of Visual Results and Patient Satisfaction for Extended Range of Focus Intraocular Lenses Compared to Trifocal Lenses. International Ophthalmology, 41, 163-172.
https://doi.org/10.1007/s10792-020-01563-6
[43] Ang, R.E., Picache, G.C.S., Rivera, M.C.R., Lopez, L.R.L. and Cruz, E.M. (2020) A Comparative Evaluation of Visual, Refractive, and Patient-Reported Outcomes of Three Extended Depth of Focus (EDOF) Intraocular Lenses. Clinical Ophthalmology, 14, 2339-2351.
[44] Sharma, N., Kaur, M., Agarwal, T., Sangwan, V.S. and Vajpayee, R.B. (2018) Treatment of Acute Ocular Chemical Burns. Survey of Ophthalmology, 63, 214-235.
https://doi.org/10.1016/j.survophthal.2017.09.005
[45] Savini, G., Schiano-Lomoriello, D., Balducci, N. and Barboni, P. (2018) Visual Performance of a New Extended Depth-of-Focus Intraocular Lens Compared to a Distance-Dominant Diffractive Multifocal Intraocular Lens. Journal of Refractive Surgery, 34, 228-235.
https://doi.org/10.3928/1081597x-20180125-01
[46] Rani, P., Raman, R., Chandrakantan, A., Pal, S., Perumal, G. and Sharma, T. (2009) Risk Factors for Diabetic Retinopathy in Self-Reported Rural Population with Diabetes. Journal of Postgraduate Medicine, 55, 92-96.
https://doi.org/10.4103/0022-3859.48787
[47] Wong, T.Y., Cheung, N., Tay, W.T., Wang, J.J., Aung, T., Saw, S.M., et al. (2008) Prevalence and Risk Factors for Diabetic Retinopathy. Ophthalmology, 115, 1869-1875.
https://doi.org/10.1016/j.ophtha.2008.05.014
[48] Lim, M.C., Lee, S.Y., Cheng, B.C., Wong, D.W., Ong, S.G., Ang, C.L., et al. (2008) Diabetic Retinopathy in Diabetics Referred to a Tertiary Centre from a Nationwide Screening Programme. Annals of the Academy of Medicine, 37, 753-759.
https://doi.org/10.47102/annals-acadmedsg.v37n9p753
[49] Chen, X.Y., Song, W.J., Cai, H.Y. and Zhao, L. (2016) Macular Edema after Cataract Surgery in Diabetic Eyes Evaluated by Optical Coherence Tomography. International Journal of Ophthalmology, 9, 81-85.
[50] Hayashi, K., Hayashi, H., Nakao, F. and Hayashi, F. (2002) Posterior Capsule Opacification after Cataract Surgery in Patients with Diabetes Mellitus. American Journal of Ophthalmology, 134, 10-16.
https://doi.org/10.1016/s0002-9394(02)01461-7
[51] Shin, D.E., Lee, H., Kim, T. and Koh, K. (2022) Comparison of Visual Results and Optical Quality of Two Presbyopia-Correcting Intraocular Lenses: TECNIS Symfony versus TECNIS Synergy. European Journal of Ophthalmology, 32, 3461-3469.
https://doi.org/10.1177/11206721221093024
[52] Mencucci, R., Favuzza, E., Caporossi, O., Savastano, A. and Rizzo, S. (2018) Comparative Analysis of Visual Outcomes, Reading Skills, Contrast Sensitivity, and Patient Satisfaction with Two Models of Trifocal Diffractive Intraocular Lenses and an Extended Range of Vision Intraocular Lens. Graefes Archive for Clinical and Experimental Ophthalmology, 256, 1913-1922.
https://doi.org/10.1007/s00417-018-4052-3
[53] Giménez-Calvo, G., Bartol-Puyal, F.d.A., Altemir, I., Méndez-Martínez, S., Almenara, C., Soriano-Pina, D., et al. (2022) Influence of Ocular Biometric Factors on the Defocus Curve in an Enlarged Depth-of-Focus Intraocular Lens. International Ophthalmology, 43, 945-955.
https://doi.org/10.1007/s10792-022-02496-y
[54] Luo, J., Liu, Y., Wang, F., Su, Y., Xiao, X., Du, H., et al. (2021) Effect of the Kappa Angle on Depth of Focus after Implantation of the TECNIS Symfony Intraocular Lens. International Ophthalmology, 41, 2513-2520.
https://doi.org/10.1007/s10792-021-01809-x
[55] Teshigawara, T., Meguro, A. and Mizuki, N. (2021) The Effect of Age, Postoperative Refraction, and Pre-and Postoperative Pupil Size on Halo Size and Intensity in Eyes Implanted with a Trifocal or Extended Depth-of-Focus Lens. Clinical Ophthalmology, 15, 4141-4152.
https://doi.org/10.2147/opth.s327660
[56] 中华医学会眼科学分会白内障及人工晶状体学组. 中国多焦点人工晶状体临床应用专家共识(2019年) [J]. 中华眼科杂志, 2019, 55(7):491-494.
[57] Sánchez-González, J., Sánchez-González, M.C., De-Hita-Cantalejo, C. and Ballesteros-Sánchez, A. (2022) Small Aperture IC-8 Extended-Depth-of-Focus Intraocular Lens in Cataract Surgery: A Systematic Review. Journal of Clinical Medicine, 11, Article 4654.
https://doi.org/10.3390/jcm11164654
[58] Fernandes, M.C., Nunomura, C.Y. and Messias, A. (2024) Visual Performance and Photic Disturbances with Diffractive and Nondiffractive EDOF Intraocular Lenses Using Mini-Monovision: Randomized Trial. Journal of Cataract and Refractive Surgery, 50, 153-159.
https://doi.org/10.1097/j.jcrs.0000000000001330